
electronics

Article

Design and Construction of a Cost-Effective Didactic
Robotic Arm for Playing Chess, Using an Artificial
Vision System

Cristian del Toro, Carlos Robles-Algarín and Omar Rodríguez-Álvarez *

Facultad de Ingeniería, Universidad del Magdalena, Santa Marta 470003, Colombia;
cristiandltro@gmail.com (C.d.T.); croblesa@unimagdalena.edu.co (C.R.-A)
* Correspondence: orodriguez@unimagdalena.edu.co; Tel.: +57-5-421-7940

Received: 6 September 2019; Accepted: 8 October 2019; Published: 12 October 2019
����������
�������

Abstract: This paper presents the design and construction of a robotic arm that plays chess against a
human opponent, based on an artificial vision system. The mechanical design was an adaptation of
the robotic arm proposed by the rapid prototyping laboratory FabLab RUC (Fabrication Laboratory
of the University of Roskilde). Using the software Solidworks, a gripper with 4 joints was designed.
An artificial vision system was developed for detecting the corners of the squares on a chessboard and
performing image segmentation. Then, an image recognition model was trained using convolutional
neural networks to detect the movements of pieces on the board. An image-based visual servoing
system was designed using the Kanade–Lucas–Tomasi method, in order to locate the manipulator.
Additionally, an Arduino development board was programmed to control and receive information
from the robotic arm using Gcode commands. Results show that with the Stockfish chess game
engine, the system is able to make game decisions and manipulate the pieces on the board. In this
way, it was possible to implement a didactic robotic arm as a relevant application in data processing
and decision-making for programmable automatons.

Keywords: artificial vision system; chess playing robotic arm; convolutional neural networks;
Kanade–Lucas–Tomasi method; Stockfish chess game engine; Gcode commands

1. Introduction

The first machine to play chess was built in 1769 by Wolfgang von Kempelen and was known
as “The Turk” [1]. Apparently, the machine could play chess against a human opponent, but it was
actually operated by a chess master.

For many years, researchers in the area of artificial intelligence have been working on algorithms
to play chess autonomously. Alan Turing and David Champernowne were the first to develop a
program capable of playing a full chess game [2], known as “Turing’s paper machine” [3,4]. Because at
the time there were no computers capable of executing the instructions, it was Turing himself who
performed the processing tasks using paper and pencil. It was not until 1996 that a fully functional
computer program, IBM’s Deep Blue, was able to defeat the world champion Gary Kasparov [5].

Since then, many chess engines have been developed, and simultaneously it has become easier
to develop mechanical robots [6,7]. The chess game is an excellent application that works as a test
bed for the implementation of autonomous robotic systems, as it requires solutions for perception,
manipulation, and human–robot interactions for a well-structured problem [8–12].

Several alternatives have been used for the perception of game state in different implementations
of autonomous chess systems. In [13,14], the authors focused on differentiating specific chess pieces,
but the high levels of precision required by reliable autonomous systems were not achieved. Most

Electronics 2019, 8, 1154; doi:10.3390/electronics8101154 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-5879-5243
http://www.mdpi.com/2079-9292/8/10/1154?type=check_update&version=1
http://dx.doi.org/10.3390/electronics8101154
http://www.mdpi.com/journal/electronics

Electronics 2019, 8, 1154 2 of 15

practical implementations address this problem by detecting the movements of the pieces and tracking
them from their initial position, assuming that the initial configuration of the board is correct.

In [15,16], the researchers used on-board magnetic sensors to detect the movement of the pieces,
and a fixed position for the board relative to the robot in order to ease the manipulation [17–19].
Other works used 2D and depth cameras to follow the development of the game [20–24], while in the
investigation carried out in [25], depth cameras were used to detect the occupancy of the board squares
and compare the current state with the previous states.

In this work, a single 2D fisheye camera mounted on the arm grip was used for all perception
tasks. Most of the implementations reported in the literature and chess game tracking systems with
2D cameras use variations of color-based comparisons [26], image subtraction methods to detect
changes [27], and border detectors in order to detect the occupancy of the board squares [28].

Color-based and image subtraction methods require chess sets for a substantial color contrast
between the board and the pieces; thus, these methods are not robust to lighting changes. Edge-based
methods work well with chess sets with low color contrast, but are prone to misinterpret shadows on
empty squares.

The main novelty of this work is the use of a hybrid Siamese network that is responsible for the
detection of position changes of the pieces using a comparison layer, and the color classification of
pieces using a classification layer. Class classification was used to verify the board initial configuration
and was useful in speeding up the data tagging during the database creation [29,30].

The Siamese network approach for the detection of changes provided good results in extreme
cases of movement of pieces with very little background color contrast (such as for white pieces on a
white background). In addition, the method is very robust for changes in lighting.

The implementation uses an image-based visual servoing algorithm (IBVS) [31] based on the
Kanade–Lucas–Tomasi feature tracker (KLT) to position the grip [32]. Therefore, the system does not
depend on a fixed position for the board relative to the robot to manipulate the pieces.

This work focuses on vision algorithms and their integration with the mechanical system. The main
goal was the design of a didactic robot for research purposes.

2. Materials and Methods

The structure of the system consists of a computer connected to an Arduino board, which is
responsible for controlling the motors of the robotic arm using two TB6560 stepper drivers. The system
incorporates a 170-degree fisheye camera [33] mounted on the arm grip and connected to the computer
via USB (see Figure 1).

Electronics 2019, 8, x; doi: FOR PEER REVIEW www.mdpi.com/journal/electronics

2. Materials and Methods

The structure of the system consists of a computer connected to an Arduino board, which is
responsible for controlling the motors of the robotic arm using two TB6560 stepper drivers. The
system incorporates a 170-degree fisheye camera [33] mounted on the arm grip and connected to the
computer via USB (see Figure 1).

Figure 1. General block diagram of the system.

2.1. Robotic Arm Design

The design used for the robot structure was made by the rapid prototyping laboratory FabLab
RUC of the University of Roskilde, Denmark. It is an open design that includes CNC (Computer
Numerical Control) diagrams for laser cutting and some software elements that were not used in this
work.

The original design was conceived to be cut in 12 mm plywood and to use Nema 42 stepper
motors. However, the cost of these motors together with their drivers exceeded the project budget.
For this reason, modifications were made to the original design and all parts were resized by a factor
of two-thirds (see Figure 2a). This modification made it possible to replace the original Nema 42
motors with smaller Nema 23 motors (see Figure 2b). Additionally, the thickness of the plywood was
reduced from 12 mm to 9 mm.

Figure 1. General block diagram of the system.

2.1. Robotic Arm Design

The design used for the robot structure was made by the rapid prototyping laboratory FabLab
RUC of the University of Roskilde, Denmark. It is an open design that includes CNC (Computer
Numerical Control) diagrams for laser cutting and some software elements that were not used in
this work.

Electronics 2019, 8, 1154 3 of 15

The original design was conceived to be cut in 12 mm plywood and to use Nema 42 stepper
motors. However, the cost of these motors together with their drivers exceeded the project budget.
For this reason, modifications were made to the original design and all parts were resized by a factor of
two-thirds (see Figure 2a). This modification made it possible to replace the original Nema 42 motors
with smaller Nema 23 motors (see Figure 2b). Additionally, the thickness of the plywood was reduced
from 12 mm to 9 mm.

Electronics 2019, 8, x FOR PEER REVIEW 2 of 19

Figure 2. (a) Robotic arm parts for laser cutting; (b) Nema 23 stepper motors, driver, and power
supply.

To provide an initial reference position for joints, end-stop switches were used for each stepper
motor (three on the rotation axes and one for the gripper).

Gripper Design

A four-finger gripper was designed using Solidworks software and subsequently printed using
an Ultimaker 3D printer (See Figure 3). This was different from the design proposed by FabLab RUC.
A Nema 14 stepper motor coupled to a worm was used with a linear gear to open and close the
gripper fingers [34]. The design allowed the camera to be coupled in the center of the gripper.

Figure 2. (a) Robotic arm parts for laser cutting; (b) Nema 23 stepper motors, driver, and power supply.

To provide an initial reference position for joints, end-stop switches were used for each stepper
motor (three on the rotation axes and one for the gripper).

Gripper Design

A four-finger gripper was designed using Solidworks software and subsequently printed using
an Ultimaker 3D printer (See Figure 3). This was different from the design proposed by FabLab RUC.
A Nema 14 stepper motor coupled to a worm was used with a linear gear to open and close the gripper
fingers [34]. The design allowed the camera to be coupled in the center of the gripper.

Electronics 2019, 8, x FOR PEER REVIEW 3 of 19

Figure 3. Design made in Solidworks for the gripper.

2.2. Control Stage with Arduino

An Arduino Mega 2560 was used, functioning as an interface between the computer and the
stepper driver. The Arduino is also connected to the end-stop switches, which are triggered in the
starting position of the motors. The drivers are controlled through the digital pins.

2.2.1. Stepper Drivers

The TB6560 driver supplies power to Nema 23 motors installed in the three rotational axes. The
interface with the TB6560 driver was performed using the parallel port in manual operation mode
(see Figure 4a). For each motor, the activation, direction, and step pins were used. The limit pins for
the three axes were not used, since this task was performed by the Arduino with the end-stop
switches.

The driver module was set to one-half micro steps. Initially tests were performed with smaller
micro steps, but the torque needed to move the arm was not achieved. Additionally, an L298N
module was used [35,36] to control the speed of the Nema 14 motor of the gripper (see Figure 4b).

Figure 3. Design made in Solidworks for the gripper.

2.2. Control Stage with Arduino

An Arduino Mega 2560 was used, functioning as an interface between the computer and the
stepper driver. The Arduino is also connected to the end-stop switches, which are triggered in the
starting position of the motors. The drivers are controlled through the digital pins.

2.2.1. Stepper Drivers

The TB6560 driver supplies power to Nema 23 motors installed in the three rotational axes.
The interface with the TB6560 driver was performed using the parallel port in manual operation mode
(see Figure 4a). For each motor, the activation, direction, and step pins were used. The limit pins for
the three axes were not used, since this task was performed by the Arduino with the end-stop switches.

Electronics 2019, 8, 1154 4 of 15

The driver module was set to one-half micro steps. Initially tests were performed with smaller
micro steps, but the torque needed to move the arm was not achieved. Additionally, an L298N module
was used [35,36] to control the speed of the Nema 14 motor of the gripper (see Figure 4b).

Electronics 2019, 8, x FOR PEER REVIEW 4 of 19

Figure 4. (a) TB6560 stepper motor driver. (b) L298N motor driver module.

2.2.2. G-code Commands

In order to facilitate the control of the robotic arm, a set of G-code commands was implemented
[37], which was received by the Arduino serial port.

G1: This command generates a linear path from the current position to the desired coordinate
for the motors. If the arm is in motion during the command reception, the final coordinate is rewritten
and the direction of movement changes. If the arm position is unknown (before the end-stop switches
are triggered), no movement is made, since the joints can collide. During the movement, the Arduino
sends the current arm position to the computer.

G28: All motors move in the direction of the end-stops switches, with the positions set to zero.
Although in most CNC machines the axes move one by one, in this case axes A and B move at the
same time, because of the mechanical constraints of the workspace of robot (see Figure 5).

When the end-stops switches are triggered, the Arduino sends the initial position through the
serial port. This was useful to establish the mechanical constraints of the robot.

M18: Disable all stepper motors. It is possible to move the robot manually.
M17: Enable all stepper motors, with their position remaining unknown.
M114: The Arduino sends the current position of the motors through the serial port. This code

is useful for debugging purposes.

Figure 4. (a) TB6560 stepper motor driver. (b) L298N motor driver module.

2.2.2. G-Code Commands

In order to facilitate the control of the robotic arm, a set of G-code commands was implemented [37],
which was received by the Arduino serial port.

G1: This command generates a linear path from the current position to the desired coordinate for
the motors. If the arm is in motion during the command reception, the final coordinate is rewritten
and the direction of movement changes. If the arm position is unknown (before the end-stop switches
are triggered), no movement is made, since the joints can collide. During the movement, the Arduino
sends the current arm position to the computer.

G28: All motors move in the direction of the end-stops switches, with the positions set to zero.
Although in most CNC machines the axes move one by one, in this case axes A and B move at the
same time, because of the mechanical constraints of the workspace of robot (see Figure 5).

When the end-stops switches are triggered, the Arduino sends the initial position through the
serial port. This was useful to establish the mechanical constraints of the robot.

M18: Disable all stepper motors. It is possible to move the robot manually.
M17: Enable all stepper motors, with their position remaining unknown.
M114: The Arduino sends the current position of the motors through the serial port. This code is

useful for debugging purposes.

Electronics 2019, 8, x FOR PEER REVIEW 5 of 19

Figure 5. Axes of the robotic arm.

2.3. Computer Software

A computer application handles the high-level processing tasks. The software was written in
Python 3.6, because it has libraries suitable for image processing and the design of neural network
models.

2.3.1. Image Capture and Preprocessing

A fisheye camera lens with an angle of view of 170 degrees was used in order to cover the whole
chessboard. This camera has a good angle of view, but the lens distorts the captured image; thus, it
was necessary to implement an image correction model. Therefore, a calibration process was done
with an asymmetric chessboard and several image samples, using the tools incorporated in the
OpenCV (Open Source Computer Vision) library [38,39].

2.3.2. Chessboard Corner Detection and Image Segmentation

A corner detection algorithm is required for several reasons, including searching the board
during game initiation, image segmentation of the pieces for the recognition model, and definition of
the tracking point in the visual servoing system during the piece-grabbing process.

The first stage of the corner detection algorithm consists of finding straight lines in the image.
For this, the Canny edge detector [40–42] and the Hough transform [43–46] were used, which are
available in the OpenCV library.

For each detected line, there is an associate pair (r, θ), where r is the distance from the origin of
the image (upper left corner) to the closest point on the line, and θ is the angle between the x axis and
the line connecting the origin to that closest point.

For the second stage of the process, kernel density estimation (KDE) [47] was used to find the
two main groups of angles θ with a difference of 90 degrees, which correspond to the groups of
vertical and horizontal lines. As long as there are not many parallel lines in the image, the angles of
the chessboard lines correspond to the two highest peaks in the KDE (see Figure 6). The lines with
angles distant to the board’s line angles were discarded.

Figure 5. Axes of the robotic arm.

2.3. Computer Software

A computer application handles the high-level processing tasks. The software was written
in Python 3.6, because it has libraries suitable for image processing and the design of neural
network models.

2.3.1. Image Capture and Preprocessing

A fisheye camera lens with an angle of view of 170 degrees was used in order to cover the whole
chessboard. This camera has a good angle of view, but the lens distorts the captured image; thus, it was

Electronics 2019, 8, 1154 5 of 15

necessary to implement an image correction model. Therefore, a calibration process was done with an
asymmetric chessboard and several image samples, using the tools incorporated in the OpenCV (Open
Source Computer Vision) library [38,39].

2.3.2. Chessboard Corner Detection and Image Segmentation

A corner detection algorithm is required for several reasons, including searching the board during
game initiation, image segmentation of the pieces for the recognition model, and definition of the
tracking point in the visual servoing system during the piece-grabbing process.

The first stage of the corner detection algorithm consists of finding straight lines in the image.
For this, the Canny edge detector [40–42] and the Hough transform [43–46] were used, which are
available in the OpenCV library.

For each detected line, there is an associate pair (r, θ), where r is the distance from the origin of
the image (upper left corner) to the closest point on the line, and θ is the angle between the x axis and
the line connecting the origin to that closest point.

For the second stage of the process, kernel density estimation (KDE) [47] was used to find the two
main groups of angles θwith a difference of 90 degrees, which correspond to the groups of vertical and
horizontal lines. As long as there are not many parallel lines in the image, the angles of the chessboard
lines correspond to the two highest peaks in the KDE (see Figure 6). The lines with angles distant to
the board’s line angles were discarded.

Electronics 2019, 8, x FOR PEER REVIEW 6 of 19

Figure 6. Kernel density estimation (KDE) of the line angles.

The next step is to find the board lines. The KDE of distances r for the groups of vertical and
horizontal lines was calculated. From this, nine peaks were found for each group.

In Figure 7, there is a smaller peak corresponding to the board edge line (red circle at the right).
When checking the average distance between the peaks, the board edge lines are also filtered.

Figure 6. Kernel density estimation (KDE) of the line angles.

The next step is to find the board lines. The KDE of distances r for the groups of vertical and
horizontal lines was calculated. From this, nine peaks were found for each group.

In Figure 7, there is a smaller peak corresponding to the board edge line (red circle at the right).
When checking the average distance between the peaks, the board edge lines are also filtered.

Electronics 2019, 8, x FOR PEER REVIEW 7 of 19

Figure 7. KDE of rho distances for vertical or horizontal group of lines. The peak in the red circle
corresponds to one of the board’s edge lines .

The Hough transform finds several redundant lines in the image for every line on the
chessboard. Each peak on the r KDE is used as an estimate of the local averages for every subgroup
of redundant lines in order to estimate the r values of the board lines. The θ angles of the board lines
are independently computed with the average θ of the redundant subgroup of lines, since the real
lines in the image are not perfectly parallel with each other. The chessboard corners are found by
intersecting the predicted vertical and horizontal lines.

2.3.3. Change Detection and Class Classification

After the chessboard corner detection, the image is segmented and used for the movement
detection and classification of the pieces and background colors. The system follows the pieces during
the game, using the change detection to track their movements from their initial positions.

Initially, different models were tested for the color classification (namely, logistic regression [48],
fully connected neural networks [49], and convolutional neural networks [50]). The best results were
obtained with convolutional neural networks. The classes were classified as: white background,
green background, white piece on a white background, white piece on green background, black piece
on white background, and black piece on green background.

Later, a Siamese network [51–54] that compares the image of the current move with that of the
previous move was designed in order to detect movements. The feature vector of the convolution
stage was used for color recognition and for movement detection using additional network layers,
but the vector from the previous movement image was used only for the comparison layer (see Figure
8).

The change detection was solved using the Siamese network, because in the case of white pieces
on a white background, the color contrast is very subtle (see Figure 8). The use of methods such as
color comparison and image subtraction is not suitable for these cases. Also, the use of class
classification alone is not robust enough to compare the classification outputs to detect changes.

Figure 7. KDE of rho distances for vertical or horizontal group of lines. The peak in the red circle
corresponds to one of the board’s edge lines.

The Hough transform finds several redundant lines in the image for every line on the chessboard.
Each peak on the r KDE is used as an estimate of the local averages for every subgroup of redundant lines
in order to estimate the r values of the board lines. The θ angles of the board lines are independently
computed with the average θ of the redundant subgroup of lines, since the real lines in the image are
not perfectly parallel with each other. The chessboard corners are found by intersecting the predicted
vertical and horizontal lines.

Electronics 2019, 8, 1154 6 of 15

2.3.3. Change Detection and Class Classification

After the chessboard corner detection, the image is segmented and used for the movement
detection and classification of the pieces and background colors. The system follows the pieces during
the game, using the change detection to track their movements from their initial positions.

Initially, different models were tested for the color classification (namely, logistic regression [48],
fully connected neural networks [49], and convolutional neural networks [50]). The best results were
obtained with convolutional neural networks. The classes were classified as: white background, green
background, white piece on a white background, white piece on green background, black piece on
white background, and black piece on green background.

Later, a Siamese network [51–54] that compares the image of the current move with that of the
previous move was designed in order to detect movements. The feature vector of the convolution
stage was used for color recognition and for movement detection using additional network layers, but
the vector from the previous movement image was used only for the comparison layer (see Figure 8).

The change detection was solved using the Siamese network, because in the case of white pieces
on a white background, the color contrast is very subtle (see Figure 8). The use of methods such as color
comparison and image subtraction is not suitable for these cases. Also, the use of class classification
alone is not robust enough to compare the classification outputs to detect changes.

Electronics 2019, 8, x FOR PEER REVIEW 8 of 19

Figure 8. Example of white piece on a white background.

The model was designed using Keras. It has six outputs for the class classification, and one for
the change detection (see Figure 9).

Figure 8. Example of white piece on a white background.

The model was designed using Keras. It has six outputs for the class classification, and one for the
change detection (see Figure 9).

Electronics 2019, 8, x FOR PEER REVIEW 9 of 19

Figure 9. Structure of the Siamese network (FC: Fully Connected).

Database collection: The software includes the option of making predictions using the current
class classification model (to speed up the labelling process), a panel to label the data, and a save
button to export a npz file with the image, board corners, and color labels. In this way, a database of
5 tagged images (320 tagged squares) was created.

For each image, the lighting conditions were purposely changed, the robot camera position was
moved a few centimeters, and the pieces were slightly misplaced; this was done to obtain more
realistic data.

Training: To perform the training, the images, corners, and labels from the npz files were
imported. The images were trimmed using the corners as reference, with a padding equaling 25% of
the square size; thus, the information for the surrounding squares facilitated the background color
recognition. The images were scaled to a size of 30 x 30 pixels with three color channels.

The data were randomly separated into training and test data with a ratio of 8:2. To take better
advantage of the data, the images were rotated and flipped. This process generated 8 images for each
image in the original database.

2.3.4. Move Validation

The software uses the Stockfish chess engine for game decision-making and movement
validation. The color prediction was used to verify the initial position of the board, while the change
detector was used to track each movement of a piece from its initial position.

For the change detection, the comparison layer outputs a value between 0 and 1. Although it is
not a probability function, it was used as a likability metric to predict the changes. Values close to
zero represent little change, while values close to one represent a significant change. The use of this
metric overcomes confusion when more than 2 squares appear to have changed, since the metric can
present small changes for other reasons; for example, if the lighting varies or an adjacent piece casts
a long shadow on the square.

Each movement involves a change in two squares (the castling and En passant are exceptions
that are not handled properly). The likability of a movement is modeled with the product of the
change metrics of the two squares involved. The prediction of the opponent movement is then the
valid move with the highest likability for the squares with change metrics greater than 0.3.

2.3.5. Visual Servoing

From the robot resting position, the camera is able to see the whole board. To grab a chess piece,
the target point is expressed using the corners and center of the square where the piece is situated
(see Figure 10). However, during the movement, when the arm approaches the piece, the camera
loses sight of the board corners and cannot be used to track the position of piece. For this reason, the

Figure 9. Structure of the Siamese network (FC: Fully Connected).

Database collection: The software includes the option of making predictions using the current
class classification model (to speed up the labelling process), a panel to label the data, and a save button
to export a npz file with the image, board corners, and color labels. In this way, a database of 5 tagged
images (320 tagged squares) was created.

Electronics 2019, 8, 1154 7 of 15

For each image, the lighting conditions were purposely changed, the robot camera position
was moved a few centimeters, and the pieces were slightly misplaced; this was done to obtain more
realistic data.

Training: To perform the training, the images, corners, and labels from the npz files were imported.
The images were trimmed using the corners as reference, with a padding equaling 25% of the square
size; thus, the information for the surrounding squares facilitated the background color recognition.
The images were scaled to a size of 30 x 30 pixels with three color channels.

The data were randomly separated into training and test data with a ratio of 8:2. To take better
advantage of the data, the images were rotated and flipped. This process generated 8 images for each
image in the original database.

2.3.4. Move Validation

The software uses the Stockfish chess engine for game decision-making and movement validation.
The color prediction was used to verify the initial position of the board, while the change detector was
used to track each movement of a piece from its initial position.

For the change detection, the comparison layer outputs a value between 0 and 1. Although it is
not a probability function, it was used as a likability metric to predict the changes. Values close to zero
represent little change, while values close to one represent a significant change. The use of this metric
overcomes confusion when more than 2 squares appear to have changed, since the metric can present
small changes for other reasons; for example, if the lighting varies or an adjacent piece casts a long
shadow on the square.

Each movement involves a change in two squares (the castling and En passant are exceptions that
are not handled properly). The likability of a movement is modeled with the product of the change
metrics of the two squares involved. The prediction of the opponent movement is then the valid move
with the highest likability for the squares with change metrics greater than 0.3.

2.3.5. Visual Servoing

From the robot resting position, the camera is able to see the whole board. To grab a chess piece,
the target point is expressed using the corners and center of the square where the piece is situated
(see Figure 10). However, during the movement, when the arm approaches the piece, the camera
loses sight of the board corners and cannot be used to track the position of piece. For this reason, the
Kanade–Lucas–Tomasi algorithm was used to track the piece during image-based visual servoing
(IBVS). The depth information is obtained from the known kinematics of the robot [55,56].

Electronics 2019, 8, x FOR PEER REVIEW 10 of 19

Kanade–Lucas–Tomasi algorithm was used to track the piece during image-based visual servoing
(IBVS). The depth information is obtained from the known kinematics of the robot [55,56].

Tracking a single point is not reliable. In addition, all the points in the image are not suitable for
tracking; thus, a mask was implemented to find reference points around the target point (see Figure
10b). The reference points are paired, and for each pair, a prediction of the position of the target point
is done for each frame. Two points are sufficient for each prediction, since the camera remains parallel
to the plane of the board during movement; thus, the projective transformation of the image is
neglectable.

Figure 10. (a) Tracking the point of interest (red) using reference points (green). (b) The mask used to
find reference points.

2.3.6. Robot Calibration and Kinematics

To perform the calibration of the robot, a mapping is made between the stepper motor positions
and the angles of the segments via linear regression (see Figure 11b). The angles were measured with
the gyroscope from a cell phone. With the motors disabled, the robot moves manually to the position
to be measured; thus, it is possible to use the G28 code to obtain the motor positions corresponding
to the segment angles. Note that the angle of segment B is independent of motor A (see Figure 11a).

Figure 10. (a) Tracking the point of interest (red) using reference points (green). (b) The mask used to
find reference points.

Tracking a single point is not reliable. In addition, all the points in the image are not suitable
for tracking; thus, a mask was implemented to find reference points around the target point (see
Figure 10b). The reference points are paired, and for each pair, a prediction of the position of the target

Electronics 2019, 8, 1154 8 of 15

point is done for each frame. Two points are sufficient for each prediction, since the camera remains
parallel to the plane of the board during movement; thus, the projective transformation of the image
is neglectable.

2.3.6. Robot Calibration and Kinematics

To perform the calibration of the robot, a mapping is made between the stepper motor positions
and the angles of the segments via linear regression (see Figure 11b). The angles were measured with
the gyroscope from a cell phone. With the motors disabled, the robot moves manually to the position
to be measured; thus, it is possible to use the G28 code to obtain the motor positions corresponding to
the segment angles. Note that the angle of segment B is independent of motor A (see Figure 11a).

Electronics 2019, 8, x FOR PEER REVIEW 11 of 19

Figure 11. (a) Segments, angles, and coordinates of the arm. (b) Angle vs. motor position for the

segment.

The formulas for the end effector rho and z positions from which we start are: rho l1 cos A l2 cos B (1) 𝑧 𝑙1 sin 𝐴 𝑙2 sin 𝐵 (2)

During the piece-grabbing movement, the position of the robot is solved so it can hover over a
point P, which is given by the visual servoing algorithm (see Figure 12). With each frame, the final
position is recomputed and rectified.

Figure 11. (a) Segments, angles, and coordinates of the arm. (b) Angle vs. motor position for
the segment.

The formulas for the end effector rho and z positions from which we start are:

rho = l1× cos(A) + l2× cos(B) (1)

z = l1× sin(A) + l2× sin(B) (2)

During the piece-grabbing movement, the position of the robot is solved so it can hover over a
point P, which is given by the visual servoing algorithm (see Figure 12). With each frame, the final
position is recomputed and rectified.

Electronics 2019, 8, x FOR PEER REVIEW 12 of 19

Figure 12. Position unknown for the guide point.

Variables rho' and ΔC (see Figure 12) are required to solve the position of the robot. Here, rho is
obtained from the known kinematics of the robot. The vector V is converted from pixels to
centimeters. The ratio of conversion depends on the camera height and was calculated using a linear
regression, for which distance measurements were made at different camera heights (see Figure 13).
Using rho and V, is easy to find rho' and ΔC.

Figure 12. Position unknown for the guide point.

Variables rho’ and ∆C (see Figure 12) are required to solve the position of the robot. Here, rho is
obtained from the known kinematics of the robot. The vector V is converted from pixels to centimeters.
The ratio of conversion depends on the camera height and was calculated using a linear regression, for
which distance measurements were made at different camera heights (see Figure 13). Using rho and V,
is easy to find rho’ and ∆C.

Electronics 2019, 8, 1154 9 of 15

Electronics 2019, 8, x FOR PEER REVIEW 13 of 19

Figure 13. Relationship between centimeters and pixels with the camera height.

To solve the inverse kinematics, a penalty method was used with the square error of the position
as a function J to minimize. This function finds the angles A and B for the desired rho' and z
coordinates. Here, rho' is calculated with the visual servoing system, and z is fixed depending on the
task or piece to be grasped. 𝐽 𝑟ℎ𝑜𝑠 𝑟ℎ𝑜′ 𝑧𝑠 𝑧 1000 𝑚𝑎𝑠𝑘 (3)

Since J is minimized for only two variables, a simple two-step exhaustive search is done, first for
several scattered values of A and B, then for all the values close to the first solution. Here, mask is a
Boolean matrix that penalizes the regions corresponding to the mechanical restrictions of the arm.
The J function has a single local minimum because the arm joints do not have enough freedom of
movement to obtain more than one solution for the same coordinate.

Although the inverse kinematics can be solved algebraically, the penalty method easily
considers the mechanical restrictions and obtains the closest solution if the desired coordinate is out
of the workspace of robot.

The inverse kinematics solution is computed and updated for each frame during the image-
based visual servoing.

2.4. Graphical User Interface

The graphical user interface (GUI) was developed using Kivy, an MIT licensed Python library
(see Figure 14).

Figure 13. Relationship between centimeters and pixels with the camera height.

To solve the inverse kinematics, a penalty method was used with the square error of the position
as a function J to minimize. This function finds the angles A and B for the desired rho’ and z coordinates.
Here, rho’ is calculated with the visual servoing system, and z is fixed depending on the task or piece to
be grasped.

J = (rhos− rho′)2 + (zs− z)2 + 1000×mask (3)

Since J is minimized for only two variables, a simple two-step exhaustive search is done, first
for several scattered values of A and B, then for all the values close to the first solution. Here, mask is
a Boolean matrix that penalizes the regions corresponding to the mechanical restrictions of the arm.
The J function has a single local minimum because the arm joints do not have enough freedom of
movement to obtain more than one solution for the same coordinate.

Although the inverse kinematics can be solved algebraically, the penalty method easily considers
the mechanical restrictions and obtains the closest solution if the desired coordinate is out of the
workspace of robot.

The inverse kinematics solution is computed and updated for each frame during the image-based
visual servoing.

2.4. Graphical User Interface

The graphical user interface (GUI) was developed using Kivy, an MIT licensed Python library
(see Figure 14).

Electronics 2019, 8, x FOR PEER REVIEW 14 of 19

Figure 14. Graphical user interface.

The components of the GUI are the following:
Video screen: Displays the video input of the fisheye camera, as well as the target point and cues

during the visual servoing.
Serial monitor: Prints the commands received from the Arduino Mega.
Virtual board: Shows the progress during the game. It can also be manually edited to tag the

images during the training database creation.
Control panel: Incorporates buttons to start a game, makes predictions of the colors of pieces,

saves tagged images to the database, moves the arm manually, etc.

3. Results and Discussion

The integration of the mechanical and artificial vision systems resulted in a fully functional robot
capable of autonomously playing chess against a human using Stockfish as a chess engine (see Figure
15). The mechanical system is currently used by the research group “Magma Ingeniería” to evaluate
intelligent controllers using neural networks, fuzzy logic, and numeric optimization algorithms.

Figure 14. Graphical user interface.

The components of the GUI are the following:
Video screen: Displays the video input of the fisheye camera, as well as the target point and cues

during the visual servoing.

Electronics 2019, 8, 1154 10 of 15

Serial monitor: Prints the commands received from the Arduino Mega.
Virtual board: Shows the progress during the game. It can also be manually edited to tag the

images during the training database creation.
Control panel: Incorporates buttons to start a game, makes predictions of the colors of pieces,

saves tagged images to the database, moves the arm manually, etc.

3. Results and Discussion

The integration of the mechanical and artificial vision systems resulted in a fully functional robot
capable of autonomously playing chess against a human using Stockfish as a chess engine (see Figure 15).
The mechanical system is currently used by the research group “Magma Ingeniería” to evaluate
intelligent controllers using neural networks, fuzzy logic, and numeric optimization algorithms.

Electronics 2019, 8, x FOR PEER REVIEW 15 of 19

Figure 15. Robotic arm.

3.1. Results for Capture and Image Processing

An example of the distorted image can be seen in Figure 16a, while the results obtained with the
corrected image are shown in Figure 16b. The process consists of searching the corners of the
chessboard squares and making an image database that is used to create a distortion correction matrix
(see Figure 16c).

Figure 15. Robotic arm.

3.1. Results for Capture and Image Processing

An example of the distorted image can be seen in Figure 16a, while the results obtained with
the corrected image are shown in Figure 16b. The process consists of searching the corners of the
chessboard squares and making an image database that is used to create a distortion correction matrix
(see Figure 16c).

Electronics 2019, 8, x FOR PEER REVIEW 16 of 19

Figure 16. (a) Example of a distorted image. (b) Corrected image. (c) Corner detection on the
calibration chessboard.

Although the corrected image has a cutout space compared to the distorted image, the utility of
the fisheye camera is demonstrated in comparison to a traditional 45-degree camera.

3.2. Chessboard Detection and Segmentation of the Squares

With the use of the Canny filter and the Hough transform, straight lines were detected on the
board, which were filtered successfully using the Kernel density estimation. In this way, the peaks of
the density function were interpreted as local averages in space to predict the positions of the lines
on the board (see Figure 17).

When lighting conditions are bad, this is the first stage in the image processing pipeline that
fails. When the pieces create too many shadows on the board, the Hough transform may fail to
recognize the lines.

Figure 16. (a) Example of a distorted image. (b) Corrected image. (c) Corner detection on the
calibration chessboard.

Although the corrected image has a cutout space compared to the distorted image, the utility of
the fisheye camera is demonstrated in comparison to a traditional 45-degree camera.

Electronics 2019, 8, 1154 11 of 15

3.2. Chessboard Detection and Segmentation of the Squares

With the use of the Canny filter and the Hough transform, straight lines were detected on the
board, which were filtered successfully using the Kernel density estimation. In this way, the peaks of
the density function were interpreted as local averages in space to predict the positions of the lines on
the board (see Figure 17).

When lighting conditions are bad, this is the first stage in the image processing pipeline that fails.
When the pieces create too many shadows on the board, the Hough transform may fail to recognize
the lines.

Electronics 2019, 8, x FOR PEER REVIEW 17 of 19

Figure 17. Results obtained with the Hough transform and the Canny filter.

3.3. Recognition Models

Different recognition models were evaluated, including logistic regression, a dense network, and
a convolutional network. The best performance was obtained with the convolutional neural
networks.

Logistic Regression: Six logistic regression models were implemented, one for each class label,
achieving 93.1% accuracy for the test data.

Dense Network: The tested model consisted of 50 ReLU (Rectified Linear Unit) neurons in the
hidden layer and 6 sigmoid output neurons, one for each class label. With this model, an accuracy of
94.4% was achieved for the test data. The improvement in performance was less than expected.

Convolutional Network: Two convolutional layers were implemented. The first layer had 32
filters and the second had 64 filters, using batch normalization and a dropout value of 20%. A dense
layer with 6 outputs with sigmoidal activation was used, one for each classification label. Accuracy
of 98.6% was achieved for the test data. This network was used as the basis for the Siamese network.

In the confusion matrix of the final model (See Figure 18), there were no errors in color
predictions, but during the last training epochs, the precision ranged between 0.99 and 1.

Figure 19 shows that there is a region between epochs 30 and 100 where the model seems to
over-fit and its performance falls for the test data; however, the model subsequently stabilizes and
the curves overlap.

On the other hand, the success rate for detecting changes in the position of the chess pieces was
509/512. For all implemented models, because of the lack of color contrast, the most frequent
confusions were presented in the following cases: (a) white piece on white background; (b) white
background without a piece.

Figure 17. Results obtained with the Hough transform and the Canny filter.

3.3. Recognition Models

Different recognition models were evaluated, including logistic regression, a dense network, and
a convolutional network. The best performance was obtained with the convolutional neural networks.

Logistic Regression: Six logistic regression models were implemented, one for each class label,
achieving 93.1% accuracy for the test data.

Dense Network: The tested model consisted of 50 ReLU (Rectified Linear Unit) neurons in the
hidden layer and 6 sigmoid output neurons, one for each class label. With this model, an accuracy of
94.4% was achieved for the test data. The improvement in performance was less than expected.

Convolutional Network: Two convolutional layers were implemented. The first layer had 32
filters and the second had 64 filters, using batch normalization and a dropout value of 20%. A dense
layer with 6 outputs with sigmoidal activation was used, one for each classification label. Accuracy of
98.6% was achieved for the test data. This network was used as the basis for the Siamese network.

In the confusion matrix of the final model (See Figure 18), there were no errors in color predictions,
but during the last training epochs, the precision ranged between 0.99 and 1.

Figure 19 shows that there is a region between epochs 30 and 100 where the model seems to
over-fit and its performance falls for the test data; however, the model subsequently stabilizes and the
curves overlap.

Electronics 2019, 8, x FOR PEER REVIEW 18 of 19

Figure 18. Confusion matrix. Tags: white background (WB), green background (GB), white piece on
white background (WPWB), white piece on green background (WPGB), black piece on white
background (BPWB), and black piece on green background (BPGB).

Figure 18. Confusion matrix. Tags: white background (WB), green background (GB), white piece
on white background (WPWB), white piece on green background (WPGB), black piece on white
background (BPWB), and black piece on green background (BPGB).

Electronics 2019, 8, 1154 12 of 15

On the other hand, the success rate for detecting changes in the position of the chess pieces was
509/512. For all implemented models, because of the lack of color contrast, the most frequent confusions
were presented in the following cases: (a) white piece on white background; (b) white background
without a piece.

Electronics 2019, 8, x FOR PEER REVIEW 19 of 19

Figure 19. (a) Losses vs. training epochs. (b) Precision vs. training epochs.

3.4. Manipulation

The four-finger gripper (see Figure 3) was specially designed for this project. The camera is
positioned in the middle of the grip, making it is easy to center the end effector over the pieces. The
disadvantage of this configuration is that if the camera is covered when a piece is grasped, then the
image based visual servo can be used for the picking action, but not during the placement of the
piece. Instead, the robot uses the IBVS to search the final position of the movement before grasping
the piece, and later returns to the same coordinates.

Given the low-cost nature of the project and the simple open-loop mechanical system, the robot
does not have good repeatability. When it blindly returns to a previous position to place a piece, there
is 30% chance (15 out of 50 recorded movements) of placing the piece slightly over a line of that
square.

On the other hand, the pickup movement of the piece is not seriously affected by the low
accuracy of the mechanical system, because the error displacement (see vector V, Figure 12) is
computed with respect to the camera mounted on the end effector. Also, the four-finger gripper easily
centers the pieces during the gripping process, even when they are not properly placed in the middle
of the square. The pickup manipulation errors are relatively low.

Figure 19. (a) Losses vs. training epochs. (b) Precision vs. training epochs.

3.4. Manipulation

The four-finger gripper (see Figure 3) was specially designed for this project. The camera is
positioned in the middle of the grip, making it is easy to center the end effector over the pieces. The
disadvantage of this configuration is that if the camera is covered when a piece is grasped, then the
image based visual servo can be used for the picking action, but not during the placement of the piece.
Instead, the robot uses the IBVS to search the final position of the movement before grasping the piece,
and later returns to the same coordinates.

Given the low-cost nature of the project and the simple open-loop mechanical system, the robot
does not have good repeatability. When it blindly returns to a previous position to place a piece, there
is 30% chance (15 out of 50 recorded movements) of placing the piece slightly over a line of that square.

On the other hand, the pickup movement of the piece is not seriously affected by the low accuracy
of the mechanical system, because the error displacement (see vector V, Figure 12) is computed with
respect to the camera mounted on the end effector. Also, the four-finger gripper easily centers the
pieces during the gripping process, even when they are not properly placed in the middle of the square.
The pickup manipulation errors are relatively low.

The method proposed by Tomasi and Kanade [57] to find features is prone to finding corners
(points whose gradient matrix has at least two large eigenvalues). The chessboard has multiple crossing
lines that provide multiple good quality tracking features; therefore, the IBVS implementation based
on the Lukas–Tomasi–Kanade tracker works very well in this scenario.

4. Conclusions

A machine learning model for the color classification and movement detection of chess pieces
was successfully implemented for the game perception of an autonomous chess-playing robot.
Convolutional neural networks are suitable for the recognition of objects with low color contrast; such
is the case for white pieces on white squares. The output feature vector of a convolutional neural
network stage can be used at the same time for class classification and for detection of changes.

A fisheye camera attached to the gripper of a robot can be used successfully for visual servoing
and object manipulation using the Kanade–Lucas–Tomasi algorithm, but problems can arise when
moving blindly to previous positions if the robot mechanism has repeatability problems.

Author Contributions: C.d.T. performed the arm design and programming of the artificial vision system. C.R.-A.
designed the experiments and wrote the manuscript. O.R.-Á. performed the data analysis and the revision and
editing of the manuscript.

Funding: This research was funded by Vicerrectoría de Investigación of the Universidad del Magdalena.

Electronics 2019, 8, 1154 13 of 15

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kovacs, G.; Petunin, A.; Ivanko, J.; Yusupova, N. From the First Chess-Automaton to the Mars Pathfinder.
Acta Polytech. Hung. 2016, 13, 61–81.

2. Crandall, J.W.; Oudah, M.; Tennom; Ishowo-Oloko, F.; Abdallah, S.; Bonnefon, J.F.; Cebrian, M.; Shariff, A.;
Goodrich, M.A.; Rahwan, I. Cooperating with machines. Nat. Commun. 2018, 9, 233. [CrossRef] [PubMed]

3. Reconstructing Turing’s “Paper Machine”. Available online: https://en.chessbase.com/post/reconstructing-
turing-s-paper-machine (accessed on 5 September 2019).

4. Van den Herik, H.J. Computer chess: From idea to DeepMind. ICGA J. 2018, 40, 160–176. [CrossRef]
5. Chakraborty, S.; Bhojwani, R. Artificial intelligence and human rights: Are they convergent or parallel to

each other? Novum Jus 2018, 12, 13–38. [CrossRef]
6. Castellano, G.; Leite, I.; Paiva, A. Detecting perceived quality of interaction with a robot using contextual

features. Auton. Robot. 2017, 41, 1245–1261. [CrossRef]
7. Dehghani, H.; Babamir, S.M. A GA based method for search-space reduction of chess game-tree. Appl. Intell.

2017, 47, 752–768. [CrossRef]
8. Huang, M.-B.; Huang, H.-P. Innovative human-like dual robotic hand mechatronic design and its

chess-playing experiment. IEEE Access 2019, 7, 7872–7888. [CrossRef]
9. Lukač, D. Playing chess with the assistance of an industrial robot. In Proceedings of the 3rd International

Conference on Control and Robotics Engineering, Nagoya, Japan, 20–23 April 2018; pp. 1–5. [CrossRef]
10. Anh, N.D.; Nhat, L.T.; Van Phan Nhan, T. Design and control automatic chess-playing robot arm. Lect. Notes

Electr. Eng. 2016, 371, 485–496. [CrossRef]
11. Wei, Y.-A.; Huang, T.-W.; Chen, H.-T.; Liu, J. Chess recognition from a single depth image. In Proceedings of

the IEEE International Conference on Multimedia and Expo, Hong Kong, China, 10–14 July 2017; pp. 931–936.
[CrossRef]

12. Larregay, G.; Pinna, F.; Avila, L.; Moran, D. Design and Implementation of a Computer Vision System for an
Autonomous Chess-Playing Robot. J. Comput. Sci. Technol. 2018, 18, 1–11. [CrossRef]

13. Xie, Y.; Tang, G.; Hoff, W. Chess Piece Recognition Using Oriented Chamfer Matching with a Comparison to
CNN. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision, Lake Tahoe, NV,
USA, 12–15 March 2018; pp. 2001–2009. [CrossRef]

14. Czyzewski, M.A.; Laskowski, A.; Wasik, S. Chessboard and chess piece recognition with the support of
neural networks. Comput. Vis. Image Underst. 2018, 2, 1–11.

15. Al-Saedi, F.A.T.; Mohammed, A.H. Design and Implementation of Chess-Playing Robotic System. IJCSET
2015, 5, 90–98.

16. Mahmood, N.H.; Long, C.K.M.S.C.K. Smart Electronic Chess Board Using Reed Switch. J. Teknol. 2011, 55,
41–52. [CrossRef]

17. Larregay, G.; Avila, L.; Moran, O. A comparison of classification algorithms for chess pieces detection. In
Proceedings of the 17th Workshop on Information Processing and Control, Mar del Plata, Argentina, 20–22
October 2017; pp. 1–5. [CrossRef]

18. Ómarsdóttir, F.Y.; Ólafsson, R.B.; Foley, J.T. The Axiomatic Design of Chessmate: A Chess-playing Robot.
Procedia CIRP 2016, 53, 231–236. [CrossRef]

19. Pachtrachai, K.; Vasconcelos, F.; Dwyer, G.; Pawar, V.; Hailes, S.; Stoyanov, D. CHESS-Calibrating the
Hand-Eye Matrix with Screw Constraints and Synchronization. IEEE Robot. Autom. Lett. 2018, 3, 2000–2007.
[CrossRef]

20. Luqman, H.M.; Zaffar, M. Chess Brain and Autonomous Chess Playing Robotic System. In Proceedings of
the International Conference on Autonomous Robot Systems and Competitions, Braganca, Portugal, 4–6
May 2016; pp. 211–216. [CrossRef]

21. Wang, X.; Chen, Q. Vision-based entity Chinese chess playing robot design and realization. In International
Conference on Intelligent Robotics and Applications; Springer: Cham, Switzerland, 2015; Volume 9246, pp. 341–351.
[CrossRef]

http://dx.doi.org/10.1038/s41467-017-02597-8
http://www.ncbi.nlm.nih.gov/pubmed/29339817
https://en.chessbase.com/post/reconstructing-turing-s-paper-machine
https://en.chessbase.com/post/reconstructing-turing-s-paper-machine
http://dx.doi.org/10.3233/ICG-180075
http://dx.doi.org/10.14718/NovumJus.2018.12.2.2
http://dx.doi.org/10.1007/s10514-016-9592-y
http://dx.doi.org/10.1007/s10489-017-0918-z
http://dx.doi.org/10.1109/ACCESS.2019.2891007
http://dx.doi.org/10.1109/ICCRE.2018.8376423
http://dx.doi.org/10.1007/978-3-319-27247-4_41
http://dx.doi.org/10.1109/ICME.2017.8019453
http://dx.doi.org/10.24215/16666038.18.e01
http://dx.doi.org/10.1109/WACV.2018.00221
http://dx.doi.org/10.11113/jt.v55.913
http://dx.doi.org/10.23919/RPIC.2017.8214351
http://dx.doi.org/10.1016/j.procir.2016.07.002
http://dx.doi.org/10.1109/LRA.2018.2800088
http://dx.doi.org/10.1109/ICARSC.2016.27
http://dx.doi.org/10.1007/978-3-319-22873-0_30

Electronics 2019, 8, 1154 14 of 15

22. Chen, B.; Xiong, C.; Zhang, Q. CCDN: Checkerboard corner detection network for robust camera calibration.
In International Conference on Intelligent Robotics and Applications; Springer: Cham, Switzerland, 2018; Volume
10985, pp. 324–334. [CrossRef]

23. Kumar, R.V.Y. Target following Camera System Based on Real Time Recognition and Tracking. Master’s
Thesis, National Institute of Technology, Rourkela, India, May 2014.

24. Bennett, S.; Lasenby, J. ChESS-Quick and robust detection of chess-board features. Comput. Vis. Image
Underst. 2014, 118, 197–210. [CrossRef]

25. Matuszek, C.; Mayton, B.; Aimi, R.; Deisenroth, M.P.; Bo, L.; Chu, R.; Kung, M.; Le Grand, L.; Smith, J.R.;
Fox, D. Gambit: An autonomous chess-playing robotic system. In Proceedings of the IEEE International
Conference on Robotics and Automation, Seattle, WA, USA, 9–13 May 2011; pp. 4291–4297. [CrossRef]

26. Koray, C.; Sümer, E. A Computer Vision System for Chess Game Tracking. In Proceedings of the 21st
Computer Vision Winter Workshop, Rimske Toplice, Slovenia, 3–5 February 2016; pp. 1–7.

27. Christie, D.A.; Kusuma, T.M.; Musa, P. Chess piece movement detection and tracking, a vision system
framework for autonomous chess playing robot. In Proceedings of the 2nd International Conference on
Informatics and Computing, Papua, Indonesia, 1–3 November 2017; pp. 1–6. [CrossRef]

28. Chen, A.T.-Y.; Wang, K.I.-K. Robust Computer Vision Chess Analysis and Interaction with a Humanoid
Robot. Computers 2019, 8, 14. [CrossRef]

29. Yıldız, İ.; Tian, P.; Dy, J.; Erdoğmuş, D.; Brown, J.; Kalpathy-Cramer, J.; Ostmo, S.; Peter Campbell, J.;
Chiang, M.F.; Ioannidis, S. Classification and comparison via neural networks. Neural Netw. 2019, 118, 65–80.
[CrossRef]

30. Sun, W.-T.; Chao, T.-H.; Kuo, Y.-H.; Hsu, W.H. Photo Filter Recommendation by Category-Aware Aesthetic
Learning. IEEE Trans. Multimed. 2017, 19, 1870–1880. [CrossRef]

31. Shi, H.B.; Chen, J.L.; Pan, W.; Hwang, K.S.; Cho, Y.Y. Collision Avoidance for Redundant Robots in
Position-Based Visual Servoing. IEEE Syst. J. 2019, 13, 3479–3489. [CrossRef]

32. Pairo, W.; Loncomilla, P.; Del Solar, J.R. A Delay-Free and Robust Object Tracking Approach for Robotics
Applications. J. Intell. Robot. Syst. 2019, 95, 99–117. [CrossRef]

33. Kim, S.; Seo, H.; Choi, S.; Kim, H.J. Vision-Guided Aerial Manipulation Using a Multirotor With a Robotic
Arm. IEEE-ASME Trans. Mechatron. 2016, 21, 1912–1923. [CrossRef]

34. Beckerle, P.; Bianchi, M.; Castellini, C.; Salvietti, G. Mechatronic designs for a robotic hand to explore human
body experience and sensory-motor skills: A Delphi study. Adv. Robot. 2018, 32, 670–680. [CrossRef]

35. Robles, C.A.; Román Ortega, D.J.; Polo Llanos, A.M. Design of an eighteen degrees-of-freedom robotic arm
with teleoperation by an electronic glove [Brazo robótico con dieciocho grados de libertad tele-operado por
un guante electrónico]. Espacios 2017, 38, 22.

36. Robles-Algarín, C.; Echavez, W.; Polo, A. Printed Circuit Board Drilling Machine Using Recyclables.
Electronics 2018, 7, 240. [CrossRef]

37. Covaciu, F.; Filip, D. Design and Manufacturing of A 6 Degree of Freedom Robotic Arm. Acta Tech. Napoc.
Ser.-Appl. Math. Mech. Eng. 2019, 62, 107–114.

38. Timoftei, S.; Brad, E.; Sarb, A.; Stan, O. Open-Source Software in Robotics. Acta Tech. Napoc. Ser.-Appl. Math.
Mech. Eng. 2018, 61, 519–526.

39. Safin, R.; Lavrenov, R.; Martinez-Garcia, E.A.; Magid, E. ROS-based Multiple Cameras Video Streaming for a
Teleoperation Interface of a Crawler Robot. J. Robot. Netw. Artif. Life 2018, 5, 184–189. [CrossRef]

40. Rosa, S.; Toscana, G.; Bona, B. Q-PSO: Fast Quaternion-Based Pose Estimation from RGB-D Images. J. Intell.
Robot. Syst. 2018, 92, 465–487. [CrossRef]

41. Lin, J.P.; Guo, T.L.; Yan, Q.F.; Wang, W.X. Image segmentation by improved minimum spanning tree with
fractional differential and Canny detector. J. Algorithms Comput. Technol. 2019, 13. [CrossRef]

42. Wu, G.H.; Yang, D.Y.; Chang, C.; Yin, L.F.; Luo, B.; Guo, H. Optimizations of Canny Edge Detection in Ghost
Imaging. J. Korean Phys. Soc. 2019, 75, 223–228. [CrossRef]

43. Mazhar, O.; Navarro, B.; Ramdani, S.; Passama, R.; Cherubini, A. A real-time human-robot interaction
framework with robust background invariant hand gesture detection. Robot. Comput. Integr. Manuf. 2019,
60, 34–48. [CrossRef]

44. Winterhalter, W.; Fleckenstein, F.V.; Dornhege, C.; Burgard, W. Crop Row Detection on Tiny Plants with the
Pattern Hough Transform. IEEE Robot. Autom. Lett. 2018, 3, 3394–3401. [CrossRef]

http://dx.doi.org/10.1007/978-3-319-97589-4_27
http://dx.doi.org/10.1016/j.cviu.2013.10.008
http://dx.doi.org/10.1109/ICRA.2011.5980528
http://dx.doi.org/10.1109/IAC.2017.8280621
http://dx.doi.org/10.3390/computers8010014
http://dx.doi.org/10.1016/j.neunet.2019.06.004
http://dx.doi.org/10.1109/TMM.2017.2688929
http://dx.doi.org/10.1109/JSYST.2018.2865503
http://dx.doi.org/10.1007/s10846-018-0840-6
http://dx.doi.org/10.1109/TMECH.2016.2523602
http://dx.doi.org/10.1080/01691864.2018.1489737
http://dx.doi.org/10.3390/electronics7100240
http://dx.doi.org/10.2991/jrnal.2018.5.3.9
http://dx.doi.org/10.1007/s10846-017-0714-3
http://dx.doi.org/10.1177/1748302619873599
http://dx.doi.org/10.3938/jkps.75.223
http://dx.doi.org/10.1016/j.rcim.2019.05.008
http://dx.doi.org/10.1109/LRA.2018.2852841

Electronics 2019, 8, 1154 15 of 15

45. Banerjee, D.; Yu, K.; Aggarwal, G. Object Tracking Test Automation Using a Robotic Arm. IEEE Access 2018,
6, 56378–56394. [CrossRef]

46. Alzarok, H.; Fletcher, S.; Longstaff, A.P. 3D Visual Tracking of an Articulated Robot in Precision Automated
Tasks. Sensors 2017, 17, 104. [CrossRef]

47. Paulo, J.; Asvadi, A.; Peixoto, P.; Amorim, P. Human gait pattern changes detection system: A multimodal
vision-based and novelty detection learning approach. Biocybern. Biomed. Eng. 2017, 37, 701–717. [CrossRef]

48. Costa, M.A.; Wullt, B.; Norrlof, M.; Gunnarsson, S. Failure detection in robotic arms using statistical modeling,
machine learning and hybrid gradient boosting. Measurement 2019, 146, 425–436. [CrossRef]

49. Janke, J.; Castelli, M.; Popovic, A. Analysis of the proficiency of fully connected neural networks in the
process of classifying digital images. Benchmark of different classification algorithms on high-level image
features from convolutional layers. Expert Syst. Appl. 2019, 135, 12–38. [CrossRef]

50. Lu, Z.C.; Yeung, H.W.F.; Qu, Q.; Chung, Y.Y.; Chen, X.M.; Chen, Z.B. Improved image classification with
4D light-field and interleaved convolutional neural network. Multimed. Tools Appl. 2019, 78, 29211–29227.
[CrossRef]

51. Seo, J.H.; Kwon, D.S. Learning 3D local surface descriptor for point cloud images of objects in the real-world.
Robot. Auton. Syst. 2019, 116, 64–79. [CrossRef]

52. Kuai, Y.L.; Wen, G.J.; Li, D.D. Masked and dynamic Siamese network for robust visual tracking. Inf. Sci.
2019, 503, 169–182. [CrossRef]

53. Liu, X.N.; Zhou, Y.; Zhao, J.Q.; Yao, R.; Liu, B.; Zheng, Y. Siamese Convolutional Neural Networks for Remote
Sensing Scene Classification. IEEE Geosci. Remote Sens. 2019, 16, 1200–1204. [CrossRef]

54. Yang, K.; Song, H.H.; Zhang, K.H.; Fan, J.Q. Deeper Siamese network with multi-level feature fusion for
real-time visual tracking. Electron. Lett. 2019, 55, 742–744. [CrossRef]

55. Cheng, C.A.; Huang, H.P.; Hsu, H.K.; Lai, W.Z.; Cheng, C.C. Learning the Inverse Dynamics of Robotic
Manipulators in Structured Reproducing Kernel Hilbert Space. IEEE Trans. Cybern. 2016, 46, 1691–1703.
[CrossRef] [PubMed]

56. Ci, W.Y.; Huang, Y.P. A Robust Method for Ego-Motion Estimation in Urban Environment Using Stereo
Camera. Sensors 2016, 16, 1704. [CrossRef] [PubMed]

57. Tomasi, C.; Kanade, T. Detection and Tracking of Point Features. Int. J. Comput. Vis. 1991, 9, 137–154.
[CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ACCESS.2018.2873284
http://dx.doi.org/10.3390/s17010104
http://dx.doi.org/10.1016/j.bbe.2017.08.002
http://dx.doi.org/10.1016/j.measurement.2019.06.039
http://dx.doi.org/10.1016/j.eswa.2019.05.058
http://dx.doi.org/10.1007/s11042-018-6597-x
http://dx.doi.org/10.1016/j.robot.2019.03.009
http://dx.doi.org/10.1016/j.ins.2019.07.004
http://dx.doi.org/10.1109/LGRS.2019.2894399
http://dx.doi.org/10.1049/el.2019.1041
http://dx.doi.org/10.1109/TCYB.2015.2454334
http://www.ncbi.nlm.nih.gov/pubmed/26316286
http://dx.doi.org/10.3390/s16101704
http://www.ncbi.nlm.nih.gov/pubmed/27763508
http://dx.doi.org/10.1007/BF00129684
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Robotic Arm Design
	Control Stage with Arduino
	Stepper Drivers
	G-Code Commands

	Computer Software
	Image Capture and Preprocessing
	Chessboard Corner Detection and Image Segmentation
	Change Detection and Class Classification
	Move Validation
	Visual Servoing
	Robot Calibration and Kinematics

	Graphical User Interface

	Results and Discussion
	Results for Capture and Image Processing
	Chessboard Detection and Segmentation of the Squares
	Recognition Models
	Manipulation

	Conclusions
	References

