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Abstract: A linear regulator with an input range of 3.9–10 V, 2.5 V output, and a maximal 500 mA load
for use with battery systems was developed and presented here. The linear regulator featured two
modules of a preregulator and a linear regulator core circuit, offering minimized power dissipation
and high-level stability. The preregulator delivered an internal power voltage of 3 V and supplied
internal circuits including the second module (the linear regulator core). The preregulator fitted
with an active, low-pass filter provided a low-noise reference voltage to the linear regulator core
circuit. To ensure operational stability for the linear regulator, error amplifiers incorporating the
Miller compensation technique and featuring a large slewing rate were employed in the two modules.
The circuit was successfully implemented in a 0.25µm, 5 V complementary metal-oxide semiconductor
(CMOS) process featuring 20 V drain-extended MOS (DMOS)/bipolar high-voltage devices. The total
silicon area, including all pads, was approximately 1.67 mm2. To reduce chip area, bipolar rather than
DMOS transistors served as the power transistors. Measured results demonstrated that the designed
linear regulator was able to operate at an input voltage ranging from 3.9 to 10 V and offer a maximum
500 mA load current with fixed 2.5 V output voltage.

Keywords: linear regulator; low noise; wide input range; high voltage (HV); high stability; large
current load; bandgap; protection circuits

1. Introduction

Today, high-voltage (HV) battery-powered systems with wide input ranges play major roles in
energy storage for portable/palm notebook computers, battery chargers, wireless communication
equipment, and so on [1,2]. To ensure safety, long life, and reliable operation of lithium ion batteries,
an integrated circuit (IC) is generally required to manage their charging and discharging process. An IC
must feature a power management circuit converting a high input voltage to a stable low voltage that
supplies other IC circuits. A power management circuit featuring a cascaded DC–DC converter and
low-dropout regulator (LDO) with a high system power efficiency is typically termed as a voltage
regulator; however, a DC–DC converter may create large voltage ripples and, thus, reduce output
voltage accuracy [3,4]. Also, the design complexity of a DC–DC converter is much higher than that
of a linear regulator. The use of a linear regulator for power management affords design simplicity,
less silicon area, low cost, and no ripple [5–12].
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Consequently, an HV linear regulator for power management implemented by an HV-LDO alone,
even with a lower power efficiency, becomes attractive for constructing power management circuits
used in high-accuracy output battery-powered systems. Generally, HV-LDO composed of high-voltage
DMOS or bipolar transistors (BJTs) only has a significantly high power consumption and large silicon
area [13–15]. Additionally, the linear regulator applied in HV battery-powered systems must be capable
of bearing a high current load in a wide input voltage range. Although the HV-LDOs presented
in [13–15] are able to operate in a wide input voltage range, they cannot afford a high current load.

Therefore, we designed a novel, two-module HV-linear regulator based on CMOS, DMOS,
and bipolar transistors, which was able to operate in a wide input voltage range (3.9–10 V) and
achieved a high load current (500 mA) with ensured stability under various conditions. The paper
is organized as follows: Section 2 introduces the configuration of our HV linear regulator circuit,
Section 3 describes the implementation thereof, Section 4 demonstrates the test results, and Section 5
contains conclusions.

2. Configuration of the Proposed HV Linear Regulator Circuit

Figure 1 shows the configuration of the proposed HV linear regulator, consisting of a bandgap
reference, an over-temperature protection (OTP) circuit, an over-current protection (OCP) circuit,
a preregulator, and a linear regulator core circuit. The preregulator and linear regulator core constitute
two distinct modules. The preregulator converts a high input voltage to a stable low voltage (Vdd = 3 V)
used for supplying most other circuits, as shown in Figure 1. High-voltage DMOS transistors were
used as the power transistor in the preregulator and wherever high voltage existed in the circuit
design. All other devices employed were either normal CMOS transistors, for the purposes of easier
control, better matching, and lower quiescent current, or bipolar transistors in the output stage of
the linear regulator for supporting high voltage and delivering a higher power with a smaller chip
area. A high-precision bandgap reference was used to provide reference voltage for the preregulator
circuit [16,17]. The OTP and OCP circuits can be used to safeguard regulator operation [18]. At an
input voltage ranging from 3.9 to 10 V, the design adopted a 0. 25 µm 5 V CMOS process combined with
20 V DMOS/bipolar devices to implement the circuit. To avoid interference between the preregulator
and the core linear regulator, the preregulator featured an active low-pass filter to provide a low-noise,
high-precision reference voltage (Vref 1) to the linear regulator core, as shown in Figure 1. The typical
output voltage of the proposed HV linear regulator was 2.5 V.
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3. Implementation of the Proposed HV Linear Regulator

3.1. The Preregulator Featuring an Active Low-Pass Filter

Figure 2 shows the preregulator consisting of an error amplifier, a start-up circuit, a resistor
network circuit, and the active, low-pass filter. The start-up and resistor network circuits that operate at
high input voltages were implemented by DMOS transistors (DM1–DM5). The start-up circuit ensured
that the preregulator attained the desired operating conditions. As shown in Figure 2, when Vin is
applied with power supply, resistor R1, with proper resistance, forces node Vout1 to increase with Vin.
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Then, a current is generated in DM1, DM3, and R3, which ensures that other components quickly
recover. Finally, a negative feedback loop consisting of the error amplifier, DM1–DM3, and R2–R4
forces the preregulator to work in a stable condition. In addition, diode-connected transistors DM4 and
DM5 were used to reduce fluctuation at node Vout1. With deliberately selected resistance for the resistor
network circuit, a 3 V internal power voltage (Vdd) was obtained, and a low-noise, high-precision
reference voltage (Vref 1) for the linear regulator core was generated after the active filter. Given the
high direct current (DC) gain of the error amplifier, Vref 1 and Vref are ideally identical. The internal
power supply voltage Vdd can be expressed as

Vdd ≈
R2 + R4

R4
∗Vre f + VGS,M1, (1)

where transistors M1 and M2 work in the subthreshold region, and the drain current ID can be expressed
by [19]

ID ≈
W
L

I0exp
(

VGS −VTH

ηVT

)
, (2)

where I0 = µCox(η− 1)V2
T, and µ, VTH, VT, η, and Cox represent the carrier mobility, the threshold

voltage of the transistor, the thermal voltage, the subthreshold slope factor, and the gate-oxide
capacitance, respectively. W and L are width and length of the transistor, respectively. The value of
the resistor Req in M2 is dictated by the current flowing in transistor M2 (ID,M2) and the drain-source
voltage thereof (Vref 1 − Vfb), as follows:

Req =
Vre f 1−V f b

ID,M2
−R5. (3)
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Thus, an active RC low-pass filter implemented using a mirror circuit (NMOS transistors M1 and
M2) is included, as shown in Figure 2. It can effectively reduce noise with significantly reduced chip
area when compared to a real resistive polyresistor with similar resistance, and the cut-off frequency fc
of the active RC low-pass filter is

fc =
1

2πRout, f C1
=

1

2π
(
Rout1 + R5 + Req

)
C1

, (4)
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where Rout1 is the output resistance viewed at point Vfb. Therefore, the final output reference voltage
Vref 1(f) is:

Vre f 1( f ) =
Vre f 1(0)

1 + j f
fc

, (5)

where Vref 1(0) is approximately equal to Vfb. To ensure an appropriate cut-off frequency, the equivalent
resistance of Req is controlled by a simple mirror circuit consisting of NMOS transistors M1 and M2,
as shown in Figure 2. Given the M2:M1 (width/length) ratio of 1:4000, the M2 current (ID) is low.
In other words, high-frequency noise is well filtered from the output reference voltage. Table 1 lists the
size of components used in the preregulator, and the simulated spectral density of noise at the output
reference node (Vref 1) versus frequency is shown in Figure 3, where an approximately 625 nV/

√
Hz of

noise density at 100 Hz is obtained.

Table 1. Component sizes of the preregulator.

Components Value Components Value

DM1(W/L) 40 µm/0.4 µm M1(W/L) 200 µm/0.5 µm

DM2(W/L) 600 µm/0.4 µm M2(W/L) 1 µm/10 µm

DM3 (W/L) 20 µm/0.45 µm C1 (pF) 5.3

DM4, DM5(W/L) 20 µm/5 µm R1/R2/R3/R4/R5 (kΩ) 1800/320/1/400/75
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As shown in Figure 2, drain currents I1 I1 and I2 I2 flow through DM1 and DM2, respectively,
and Isub Isub is the supply current for other subsequent circuits. So (I2 − Isub) (I2 − Isub) is the current
flowing through network resistors (R2, R5, and R4). Since DM1 and DM2 are matched in a current
mirror, and I2 ≈ (W/L)DM2/(W/L)DM1I1 I2 ≈ (W/L)DM2/(W/L)DM1I1, the total current consumption
of the resistor network can, therefore, be calculated as (I1 + I2 − Isub) (I1 + I2 − Isub).

3.2. The Core Linear Regulator

Figure 4 shows the linear regulator core circuit featuring an error amplifier and a feedback resistor
network circuit. The low-noise reference voltage Vref 1 is provided by the preregulator described
in the previous section. Rload is the load resistor, and a 22 µF off-chip capacitor with an equivalent
series resistance (ESR) of 10 mΩ was used to ensure linear regulator core stability and to reduce
over-under-shoot voltage. R4 and R5 form the feedback resistor network, and DMOS transistors
(DM1–DM3) constitute the driver to provide the base current for the power transistor Q1. Supplied by
the preregulator, the error amplifier with PMOS/NMOS-input pairs and an output push–pull stage
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significantly improved the transient response speed of the linear regulator core. As shown in Figure 4,
the tail current (M6) in the NMOS differential–input pair was biased by the current–mirror transistor
M4 of the PMOS differential–input pair; this improved the speed of the linear regulator core as well. For
supplying a maximum load current of 500 mA, a power DMOS transistor would require a significantly
large area of silicon. Thus, we used a smaller-sized and high-voltage NPN bipolar transistor Q1 as
the power transistor, which enhanced the driving ability of the linear regulator and improved areal
efficiency. The width/length ratio k between DM2 and DM1 was set to 400 to ensure efficient driving
of power transistor Q1 in this study. Table 2 lists the sizes of the main components of the linear
regulator core.Electronics 2019, 8, x FOR PEER REVIEW 5 of 14 
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Table 2. Main component sizes of the linear regulator core circuit.

Components C0,1/R2,3
(pF)

R0,1/R2,3
(kΩ)

DM1
(Width/Length) k DM3

(Width/Length)
Q1

(Number)

Value 1.3/3.0 45/22.5 40 µm/800 nm 400 400 µm/450 nm 984 (5 µm × 5 µm)

To ensure the stability of the linear regulator core circuit, we used the Miller compensation
technique in the design. As can be seen from Figure 4, C0 − C3 and R0 − R3 are Miller capacitors
and resistors, respectively. Figure 5a is a small-signal model of the linear regulator core. Both the
PMOS and NMOS input pairs could be taken as separate, single-stage operational amplifiers and,
thus, exhibited single dominant poles at output nodes Vop and Von, respectively. Rop and Ron are the
equivalent output resistances of the PMOS and NMOS input pairs, respectively. Cop and Con are the
equivalent output parasitic capacitances of the PMOS and NMOS input pairs, respectively. Cop was
derived principally from the CGS of M12, whereas Con was attributable mainly to the CGS of M11.
Given the small sizes of transistors M11 and M12, Cop and Con had minimal capacitances. Gmp and
Gmn are the transconductances of PMOS and NMOS input pairs, respectively, where Gmp = gmp2,3

and Gmn = gmn7,8 [16]. gmp2,3 is the transconductance of M2 and M3 (assuming that M2 and M3 are
matched), and gmn7,8 is the transconductance of M7 and M8 (assuming that M7 and M8 are matched),
as shown in Figure 4. At an appropriate bias current, correct sizes of the PMOS and NMOS input
pairs ensured that gmp and gmn were equivalent: Gmp,n = gmp,n = gmp2,3 = gmn7,8. Cp1 is the parasitic
capacitance of the push–pull stage output, attributable principally to CGS of DM3.
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As the DMOS transistor DM3 (width = 400 µm, length = 450 nm) was large, the capacitance of Cp1

was greater than that of both Cop and Con. The transconductances of M11 and M12 are gmp and gmn,
respectively. gdmn is the transconductance of DM3, whereas DM2 and DM1 generate a transconductance
of kgdmp due to their width/length ratio of k. 1/gdmp and Cp3 are the equivalent output resistance
and the parasitic capacitance of the mirror node between DM1 and DM2, respectively. Therefore,
the DM1–DM3 combination could be considered to exhibit a large Gm = kgdmngdmp/

(
1 +ωp

)
, as shown

in the simplified small-signal model of Figure 5b. The frequency of ωp was high given its low resistance
(1/gdmp) and capacitance (Cp3); thus, it did not affect the loop stability of the linear regulator core. gmQ
is the transconductance of Q1; rq1 is the equivalent output resistance viewed at the emitter node of Q1;
Co is the off-chip capacitor; and Rload is the load resistor. As shown in Figure 5, Vop and Von of Figure 5a
can be merged into the single node Vop,n of Figure 5b, where Rop//Ron and Cop + Con are the lumped
resistance and capacitance. Thus, the DC gain of the core linear regulator is:

Av ≈
[
Gmp,nRop//Ron

]
×

[
gmp,n

(
rop//ron

)]
×

(
Gmreq

)
×

(
gmQRout

)
, (6)

where the equivalent output resistor Rout = rq1//Rload//(R4 −R5) Obviously, four principal poles
were produced at nodes Vop,n (ωp1), Vout1 (ωp4), Vout2 (ωp3), and Vout (ωp2) of the stability loop. Miller
capacitors C0 and C1 with identical capacitances (C0, 1) split the poles between nodes Vout1 and Vop,n;
the two poles can be expressed as [16]

ωpM1 ≈
1(

1/gmp,n
)[

Cp1 + C0, 1
] ,

ωpM2 =
1(

Rop//Ron
)
C0, 1gmp,n

[
rop//ron

] .
(7)
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Similarly, Miller capacitors C2 and C3 with identical capacitances C2, 3 split the poles between
nodes Vout2 and Vop,n; the two poles can be expressed as [16]

ωpM3 ≈
1(

1/gmQ
)[

Cp2 + C2, 3
] ,

ωpM4 ≈
1(

Rop//Ron
)
C2, 3gmp,n

[
rop//ron

]
Gmreq

.
(8)

A low-frequency pole developed at node Vop,n given the chosen Miller compensation; this is the
dominant pole ωp1 of the stability loop, expressed as:

ωp1 ≈
1

coutp,nroutp,n
, (9)

where the equivalent capacitor coutp,n and the resistor routp,n at node Vop,n can be expressed as:

coutp,n ≈ C0, 1gmp,n
(
rop//ron

)
+ C2, 3gmp,n

(
rop//ron

)
Gmreq, (10)

routp,n ≈ Rop//Ron. (11)

The equivalent capacitor coutp,n was amplified by the inter amplifiers of the stability loop.
As transistor DM3 had a smaller parasitic capacitor than that of power transistor Q1, the pole at node
Vout1 was of higher frequency than the pole at node Vout2 (ωp4 = ωpM2 > ωp3 = ωpM3). As the off-chip
capacitor Co had a capacitance of 22 µF, a second dominant pole was generated at output node Vout,
given by

ωp2 ≈
1

coRout
≈

1

co
[
rq1//Rload//(R4 + R5)

] . (12)

Thus, the four poles may be ordered as ωp4 > ωp3 > ωp2 > ωp1. Also, two left half-plane (LHP)
zeros, ωz1 and ωz2, featuring appropriate resistors and capacitors, were used to compensate for phase
shifts caused by the poles of the stability loop [16].

The external ESR and output off-chip capacitor (Co) generated a third LHP zero to compensate for
the negative phase shift caused by the low-frequency nondominant pole [20]. Consequently, four poles
and three LHP zeros were generated in the loop of the linear regulator core. Appropriate sizing of
the compensation resistors and capacitors ensured that the linear regulator core was stable in various
operating conditions.

Figure 6 shows the simulated loop response results at different current loads (0, 10, 100, 250, and
500 mA) under different input supply voltages (3.9 and 10 V). As the current load changes, the output
equivalent resistor values vary, slightly affecting the DC gain of the linear regulator core loop. Figure 7
shows the simulated phase margins (PMs) and unity gain frequencies versus load current under
various conditions of different input voltages (3.9 and 10 V), process corners (TT, SS, and FF), and
temperatures (−40 to 85 ◦C). It is clearly seen that the PMs were over 30◦ in all simulated cases. In most
cases, the PMs were over 50◦, ensuring linear regulator core stability over large input voltage and
current load ranges.
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3.3. Bandgap and Protection Circuits

Figure 8a shows the bandgap core circuit in this study, which provided reference voltages and bias
currents for other subsequent circuits. The operational amplifier forced nodes Vp and Vn on virtual
ground, and the resistor R4 and the capacitor C1 formed a low-pass filter for the output reference
voltage. The output reference voltage Vre f ≈ ln(N)∆VBER1, 3/R2 + VBE, where R1, 3 = R1 = R3,
and Vref has a low-temperature coefficient (TC). The simulated temperature coefficient (TC) of the
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bandgap reference voltage is shown in Figure 8b, where an approximate 3.4 ppm/◦C TC under different
CMOS processes over temperatures ranging from −40 to 85 ◦C was achieved.
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and a higher voltage V1 was generated. The linear regulator core circuit will be shut down by the 

Figure 8. (a) Bandgap core circuit; (b) simulated temperature coefficient of Vref.

Figure 9 shows protection circuits including an OCP circuit and an OTP circuit. As shown in
Figure 9a, Vref was provided by the bandgap circuit, the operational amplifier (OP) with R1, and M1–M3
produced a low TC bias current for M4. Transistors M4–M7 with the same sizes were in current mirror.
DMOS transistors DM1–DM3 were used to avoid damage to transistors M5–M7, due to the high supply
voltage Vin. Bipolar transistor Q0 mirrored with Q1 was adopted to sense the load current, where Q1
with R4 and R5 was a part of linear regulator core, and the ratio of Q0 and Q1 was 1/984. When the
load current was too high (in an over-current condition), the mirrored current flowing Q0 generated a
larger voltage difference on R6. In this case, the drain current in DM5 will be smaller than the drain
current in DM4, so that M7 with the same size of M6 is forced to work in the linear region. In other
words, an over-current signal Vocp was generated, and it was used to lower the base current for both
Q0 and Q1, leading to a reduced output current and, thus, over-current protection.
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Figure 9. Protection circuits; (a) over-current protection (OCP) circuit; (b) over-temperature protection
(OTP) circuit.

Figure 9b presents the OTP circuit, where the bias current Ibias is provided by the bandgap
circuit. The base-emitter voltage of Q2 (VBE,Q2 = Vtemp) was applied to the positive input node of the
comparator (Comp), while a reference voltage V1 generated by M11, R7, and R8 was applied to the
negative input node of the comparator. By selecting a proper V1, the comparator can keep a high
output (Votp) in a wide temperature range. As the base-emitter voltage of Q2 (Vtemp) decreased versus
an increasing temperature, Vtemp became lower than V1 at a high temperature “T1”, which was the
critical temperature. The comparator produced a low-output Votp, which turned off the switch M12,
and a higher voltage V1 was generated. The linear regulator core circuit will be shut down by the signal
of Votp. Until the temperature drops to a certain value “T2”, a high Votp enables the linear regulator
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core again. “T1−T2” is the temperature window, which can be well defined by selecting proper M11,
R7, and R8. The temperature window can effectively avoid a constantly changing condition near the
critical temperature.

4. Measurements

Figure 10 shows the layout of the linear regulator circuit fabricated via a standard 0.25 µm CMOS
process with 20 V DMOS and bipolar devices. The CMOS transistors operated at a supply voltage of
5 V, and the DMOS devices could correctly work at a maximum drain-source voltage of 20 V. The total
chip area including the BGR, OCP, and OTP circuits (and all pads) was approximately 1.67 mm2

(1140 × 1485 µm). To minimize process mismatching, we used the common-centroid technique to
layout the active MOS and bipolar transistors of the bandgap circuit. Additionally, we added dummy
transistors to improve matching. As the load current was large, two pads were employed for the
connection of Q1 to the output to reduce the parasitic resistance in the current paths.
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Figure 10. Layout of the proposed regulator with pads.

Figure 11 shows the measured output voltages as the input supply voltage increased under different
loads. Figure 11a shows the output voltages at different current loads (0–500 mA), and Figure 11b
shows the output voltages at different resistance loads (0–100 kΩ). The regulator operated well as the
supply voltage varied from 3.9 to 10 V with a fixed output voltage of 2.5 V. Figure 12 shows the line
transient performance; Figure 12a shows that the output voltage was 2.5 V under a load current of
10 mA and an input supply voltage ranging from 4 to 10 V. Figure 12b shows the results with a load
current of 50 mA and an input supply voltage ranging from 6 to 10 V. In two cases, overshoot voltages
were 100 and 60 mV, respectively.
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Figure 12. Measured transient line performance of the proposed linear regulator. (a) load current is
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Figure 13 shows the transient load performance of the output voltage. Figure 13a demonstrates
the measured results under transient loads from 0 to 400 mA, and Figure 13b presents the results
under transient loads from 0 to 100 mA at a supply voltage of 4 V. Figure 14 gives further details on
transient load performance. Figure 14a shows the results as the transient load changed from 0 to
450 mA, and Figure 14b shows the results as the transient load varied from 0 to 200 mA at a supply
voltage of 6 V. A figure of merit FOM1 was adopted to compare the transient response of different
regulators, and it is defined as [6]

FOM1 = CL
∆Vout
IL,max

×
Iq

IL,max
, (13)

where CL is the load capacitor, ∆Vout is the maximum transient output-voltage variation, Iq is the
quiescent current, and IL,max is the maximum load current. Considering the transient response induced
by input supply voltage variation, a new figure of merit (FOM2) was defined to express the performance
of different regulators, and it is given by

FOM2 = FOM1
× LineR, (14)

where LineR is line regulation [21]. Table 3 summarizes the performance of the proposed regulator;
the results were compared to those of other studies. At a quiescent current of 350 µA and a supply
voltage of 3.9 to 10 V, our proposed linear regulator including bandgap and protection circuits delivered
a maximum current of 500 mA. The proposed linear regulator without voltage ripples achieved
competitive load regulation, line regulation, current efficiency, FOM1, and FOM2.
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Table 3. Performance summary and comparisons of other studies.

Research. Ref. [3] Ref. [6] Ref. [12] Ref. [13] Ref. [15] Ref. [22] This Work

Input voltage
range Vin (V) 6–18 1.4–1.8 1.8–2.2 4–40 3.5–24 1.2–1.8 3.9–10

Typical output
voltage Vout (V) 1.8–3.3 1.2 1.6 2.5–5 3 1.0 2.5

Dropout voltage
(mV) - 200 200 >200 >200 200 >200

Quiescent
current (µA) - 1.6–200 71–101 8 3.7 135.1 350 (Including BGR,

OCP and OTP)

Load Regulation
(mV/mA) - 0.1 - 5.3 0.067 0.075 0.0328 @ (0-450 mA)

Line Regulation
(mV/V) - 5.5 131 10 0.88 @ 5 V 22.7 0.2 @ (5–10 V)

Max. load
current (mA) 450 50 100 30 150 100 500

Current
Efficiency (%) - 99.6 99.9 99.9 99.9 99.8 99.9

FOM1 (ns) - 1.92 0.21 0.182 0.592 0.439 3.388

FOM2 (ns) - 10.56 27.51 1.82 0.521 0.935 0.6776

Topology DC–DC
converter+LDO LDO LDO HV-LDO HV-LDO LDO Two-module linear

regulator

System ripple 10 mV no no no no no no

Technology 0.35 µm HV
CMOS

0.18 µm
CMOS

0.18 µm
CMOS

0.6 µm CMOS
with DMOS

device

0.35 µm
Bi-CMOS

0.18 µm
CMOS

0.25 µm CMOS with
DMOS device

Chip area (mm2)
6.4 (including

BGR and pads) 0.0285 0.033 0.3 (including
pads)

0.7912
(including
BGR pads)

0.024
1.67 (including

pads, BGR, OCP
and OTP)

CMOS—complementary metal-oxide semiconductor; FOM—figure of merit; HV-LDO—high-voltage,
low-dropout regulator.

5. Conclusions

We designed a linear regulator for battery systems; the input voltage ranged from 3.9 to 10 V,
and the maximum load current was 500 mA. The regulator featured a preregulator and a linear regulator
core for minimizing power dissipation and maximizing operation stability. The error amplifiers with
the Miller compensation technique were adopted to ensure the stability of both the preregulator and
the linear regulator core circuit. The circuit was implemented in a 0.25 µm 5 V CMOS process with
20 V DMOS devices, and the total silicon area was 1.67 mm2. The linear regulator was able to afford a
stable output voltage of 2.5 V under a maximum load current of 500 mA over a supply voltage range
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of 3.9–10 V. Measurements showed that a load regulation of 0.0328 mV/mA and a line regulation of
0.2 mV/V were obtained. FOM1 and FOM2 were 3.388 and 0.6776 ns, respectively.
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