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Abstract: Software Defined Networking (SDN), as a cutting-edge network, splits control and
management planes from the data plane for simplifying network manageability as well as
programmability. In SDN, network policies change with the passage of time due to changes in
the application environment, topology or user/admin requirements. As a result, modifications at the
control plane take place. In existing research works, packet violations occur due to already installed
flow rules at the data plane (switches) that are not modified in case of a change of the Access Control
List (ACL) policies at the SDN controller. There has been no research carried out that identifies
packet violations and network inefficiencies in case of policy change. Our novel approach stores
generated flow rules at the SDN controller and detects policy change, along with conflicting flow
rules, to resolve the identified problem of policy change. Afterwards, the conflicting flow rules are
removed from switches and new flow rules are installed along the new path according to new ACL
policies. It helps to minimize packet violations, which increases network efficiency. In this research
work, we deal with the inefficiencies of policy change detection with respect to access time, cost and
space. In this regard, we used abstractions to formalize and detect network policies with the help of
multi-attributed graphs. We utilized intent-based policies for the representation and implementation
of our proposed approach. In addition, we used extended performance metrics for the analysis of
our proposed approach. The simulation results show that our proposed approach performs better as
compared to the existing approach, by varying the number of policy change and packet transmission
rate. The results clearly indicate that our proposed approach helps to increase network performance
and efficiency.

Keywords: Policy Change Detection; Graph Matching; SDN; Shortest Path; Flow Rule Caching; Hash
Table; Flow Rule Installation

1. Introduction

Traditional networks are distributed in nature where control, management, and data planes are
tightly and vertically coupled in each forwarding device. In traditional computer networking, the
forwarding of data packets is controlled by using a control plane (for example, routing protocols) or
by installing Access Control List (ACL) policies on the interfaces of data plane (for example, routers
and switches). The ACL policies are manually installed at forwarding devices by using low-level
commands which are often device-specific. SDN is a centralized architecture that separates both
control and management planes from the data plane of the forwarding devices (routers and switches)
by shifting both control and management planes at a centralized logical entity, called controller. As
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ACL policies are specified at the controller, therefore, the controller computes the shortest path for a
data packet based on both network topology and ACL policies. Moreover, the controller computes
and installs flow rules in the flow table of switches along the shortest path. Network management
is greatly simplified in SDN and efficiently implements ACL policies [1,2] due to this centralization.
Based on the flow rules, subsequent data packets of the flow are forwarded to different hosts. There
are two types of timeouts attached to a flow rule; soft timeout and hard timeout. The soft timeout
is the amount of time after which a flow rule is erased from the switches, if not used for the defined
amount of time period, while the hard timeout is the amount of time after which a flow rule is deleted
from the flow table of switches [3]. The default values of soft and hard timeouts differ in various
controller platforms and can be set by the administrator as per the requirements and specifications
of a certain application [4]. In our research work, we used a POX SDN controller and assumed static
timeout values in both soft and hard cases for each flow rule. The ACL policies in communication
networks are often changed, either to restrict/allow communication between hosts or because of a
change in the network topology. Moreover, these policies help in implementing access control which
restrict/allow communication as per source/destination Internet Protocol (IP)/Media Access Control
(MAC) addresses, port numbers, protocols, priority, etc. to the users/applications [5]. The high-level
languages, Pyretic [6] and Frenetic [7] help to implement ACL policies via parallel and sequential
composition operators in an efficient manner. Multiple policies are allowed by these composition
operators for the communication of a specific set of packets. Moreover, one policy is allowed to process
packets after another policy. These languages also address the problem of policy implementation based
on an abstraction of the topology and packet model. It becomes beneficial for programmers who can
build large and refined network applications out of small and independent modules. In SDN, the ACL
policies are implemented at controller and flow rules are computed and installed at switches on the
basis of these policies. However, this change in policies results in packet violations due to the existing
flow rules installed at the switches based on old policies as discussed in [8].

Currently, SDN implementation is getting much popularity due to its ease of management and
centralization, for example, Google and Facebook are already using SDN for Wide Area Network
(WAN) interconnectivity. It also improves hyperscale data center connectivity [9]. In such kinds of data
center internetworking and campus area networking, ACL policies change rapidly to restrict/allow
communication between hosts or due to change in the network topology. In addition, these policies
can be changed as per the requirements of users and applications. In such kinds of networks, packet
violations due to the already installed flow rules result in delivering important data to invalid hosts
that may cause security issues along with the loss of precious data. Our proposed mechanism first
detects policy change via graph matching and then deletes conflicting flow rules from the data plane
in addition to the installation of new flow rules as per new policies to resolve the problem of packet
violations. In this way, it helps to minimize packet violations. As packets do not pass to invalid
interfaces, therefore, it increases network efficiency and throughput. The policy change detection
can be implemented via matrices, however, matrix computations take longer execution time and
increase the number of packets violating the policies, this is formally proved in Section 4.6. Thus, the
existing approach [8] cannot be implemented in real networks where there are frequent changes in ACL
policies [10]. In this paper, we suggest to store ACL policies using multi-attributed graphs and detect
the change in policies by using the graph matching algorithm. Moreover, we have used abstractions
to represent ACL policies which help network operators to easily specify, debug and manage these
policies. We also show that our proposed approach reduces the computation time through theoretical
proof and simulation results as compared to the existing approach. The rest of this paper is organized
as follows: Section 2 explains the related work, Section 3 includes the problem statement. In Section 4, a
proposed solution is discussed. Section 5 describes the performance analysis on the basis of simulation
results. Finally, in Section 6, the conclusion and future work are presented.
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2. Related Work

This section includes a detailed survey of existing approaches related to our research problem.
These approaches, along with their limitations and relevance to our research problem, are described in
detail.

A prototype Network Debugger (NDB) [11] provides breakpoints and packet backtraces as two
primitives to debug SDN for black holes, loops, and other network-wide invariants. Backtrace outlines
a breakpoint that exhibits an order of events which leads towards the specific breakpoint as per
specific flow. NDB is based on two major components that are proxy and collector. Proxy works at
the data plane as follows: when the data plane (router/switch) takes an action for a data packet, the
proxy creates a postcard message and sends the postcard message to the controller. The postcard
message is the truncated copy of the packet’s header which contains matching flow rule, switch, and
output port. After receiving the postcard message, the collector at the controller saves postcards and
produces backtrace for the listed data packets. The collector keeps the postcards in a hash table data
structure, from where these can be recovered effectively. Veriflow [12] attempts to detect network-wide
invariants (like loops and reachability issues) in real-time and notifies or blocks those invariants
to occur. The flow rules generated by the controller are passed through Veriflow for checking the
network-wide invariants. In case, if network-wide invariants exist, then either a notification is sent to
the network operator and the flow rules are installed at the data plane, or flow rules are blocked. There
are also similar other works to debug traditional as well as SDN environments as [13,14] and [15]
which can detect network anomalies, ensure consistency of data forwarding plane [16,17] and allow
several applications to run parallel in a non-conflicting way [18,19]. Network-wide invariants like
loops and black holes are detected in No bug In Controller Execution (NICE) [20] via model checking
and symbolic execution. It proactively tests the SDN applications under diverse kinds of events by
automatically generating streams of packets. It checks network-wide invariant conditions like loops or
black holes, etc. Therefore, the space of possible system behavior and network invariants are explored
by NICE orderly. Another tool, named Header Space Analysis (HSA), [21] is beneficial for system
administrators, as they can statistically examine their networks for the invariants, for example, ACL
violations, black holes, loops, traffic isolations, etc. Although these approaches have the ability to
check network-wide invariants in different scenarios, yet, these cannot auto-detect the network-wide
invariants due to policy change.

PyResonance [22] implements state-based network policies by using Pyretic [6]. Pyretic has
several composition operators to build a complex network control program by combining several
modular control programs. Moreover, it utilizes composition operators to express state-based policies
to compose multiple tasks via finite state machine and corresponding network application which
determines the forwarding behavior of the state. Another mechanism, named Policy Graph Abstraction
(PGA) [23], provides automatic and conflict-free policies, for example, ACLs, load balancing [24], etc.
Considering an example, there may be multiple policy implementors, like network admin, system
engineer, network manager etc., in a big organization. In such a scenario, network policy change
consumes a large amount of time, as it needs extra attention to implement network policy to avoid
conflict of existing and new policies. The focus of PGA is to avoid conflicts at the controller that
are caused by implementing various policies. The OpenFlow Rules Placement Problem (ORPP)
[25] describes how to define and place flow rules in SDN at an appropriate place while following
all technical and non-technical requirements (like ACL policies). It proposes two rules placement
frameworks; OFFICER and aOFFICER. OFFICER uses optimization techniques to place the flow
rules for the requirements whose flow rules are known and stable in a specific time interval, for
example, ACL policies. aOFFICER utilizes adaptive control mechanisms to place the flow rules for
the requirements whose flow rules are unknown and vary over a specific time interval (like load
balancing requirements). Both OFFICER and aOFFICER techniques help to place flow rules efficiently.
However, these works lack the ability to detect policy change and have no capacity to delete previously
installed affected flow rules. vCRIB: virtualized rule management in the cloud [26] facilitates data
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center operators by offering an abstraction for specifying and managing various rules. It automatically
partitions and places the flow rules on hypervisors and switches to achieve the best trade-off of
performance and scalability. DevoFlow [27] provides a mechanism to modify OpenFlow model
by breaking the coupling between control and global visibility. It allows operators to target only
those flows which are important with respect to the network management. In this way, it minimizes
switch-internal communication between the control and data planes. Infinite CacheFlow [28] resolves
the problem of limited number flow rules at switches by proposing a hybrid switch design (hardware
and software) that relies on flow rule caching to provide large flow rule tables at low cost. When
more flow rules are stored at the data plane, the probability of packet violation becomes higher for the
packets whose ACL policies change at the controller after the corresponding flow rules are installed
at the data plane. SwitchReduce [29] proposes an approach that reduces switch state and controller
involvement in SDN. It assumes that the number of match flow rules at any switch should not be more
than the set of unique processing actions. Moreover, flow counters for each unique flow may also be
maintained at only one switch in the network. The proposed approach can reduce flow entries up to
49% on first-hop switches, and up to 99.9% on interior switches. In addition to that, flow counters are
also reduced by 75% on average. A flow entry management scheme for reducing controller overhead
[30] proposes a cache algorithm strategy "Least Recently Used (LRU)" for flow rules stored at the data
plane to minimize the communication overhead between controller and data plane. By using this
strategy, a switch can keep the recently used flow entries in the table to avoid the cache-miss problem.
This, in turn, increases the flow entry matching ratio. These approaches not only ignore the case of
ACL policies change and flow rules deletion from the data plane but also the installation of flow rules
as per changed policies.

The authors in [31] propose a new flow rule multiplexing mechanism that jointly optimizes
the flow rule allocation and traffic engineering (like Quality-of-Service parameters) in SDN. The
proposed mechanism states that the same set of flow rules, which are installed at each switch, may
be applied by using different paths to the whole flow of a session. The mechanism is tested by using
ITALYNET topology and results show that the proposed scheme saves Ternary Content Addressable
Memory (TCAM) resources and guarantees high QoS satisfaction. It guarantees performance within a
specific range of bandwidth resources. DomainFlow [32] proposes a solution of flow level control and
granularity in ethernet switches via OpenFlow by splitting the network into different slices and exact
matches are used to enable practical flow management via OpenFlow protocol for Ethernet switches.
The proposed mechanism can only be implemented with commodity switches with a small number of
flows, which is not practical with respect to current trends that require an extensive number of flows,
especially in case of change of policies and deletion and installation of rules. Another mechanism,
called source flow [33], proposes a solution to handle a large number of flows without effecting flow
granularity. This scheme helps to minimize the problem of expensive and power-consuming search
engine devices from the core nodes, and in turn, it helps to expand networks in a scalable way. This
scheme is time-consuming in a sense that hosts produce millions of flows simultaneously and these
flows are controlled on a per-flow basis. In [34] an innovative SDN-based network architecture
is proposed which guarantees exclusive access of network resources to a certain flow with the
help of token-based authorization for the intended users/apps. The proposed system automates
the reservation process and creates a strong binding between the end users/apps who request the
reservation and flows. This, in turn, resolves the reservation problem of dedicated bandwidth of
certain resources in high-speed networks for the transfer of data in distributed science environments.
The research work in [35] addresses the problem of verifying networks that contain middleboxes, such
as, caches and firewalls. This work explores the possibilities of verifying the reachability properties for
networks based on the ACL policies. In order to do that, the complex networks are sliced into small
networks as per the network-wide verifications for the correctness properties. The results show that
the time required to verify a network invariant in a complex network is independent of its size due to
slices. This work is quite good for verifying network invariants in an efficient way. However, all these
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approaches do not consider the case when access rights (ACL policies) are changed and flow rules that
are already installed at data planes are deleted.

In [36] a security problem of priority-based flow rules is highlighted and the solution of the
identified problem is presented. The problem is that the low priorities malicious flow rules can
manipulate the whole OpenFlow network by making the high priority flow rules to fail. The authors
proposed a solution which is called switch-based rules verification (SRV) to solve the identified
problem. It works by leveraging the SDN controller to obtain the overall network view of the whole
topology and detects malicious flow rules. This solution helps to detect a large number of flow rules
in an efficient way. In [37], actor-based modeling framework is proposed to investigate the problem
of network verification. In this architecture, actors are basic units of computation that hold their
own memory and can communicate via asynchronous messages. The paper shows how network
applications are modeled by using Actors and how existing model checking mechanisms verify various
properties (loops, policy violations, flow table consistencies) in SDN, so that network behaviors can be
predicted to increase network efficiency. In [38], the SDN-based simulation environment is created
in the mininet emulator by utilizing the floodlight controller platform. In this environment, the flow
table is assumed to be of six tuples, as per the information retrieved from the controller. After that,
the distributed DOS attack model is constructed by combining the Support Vector Machine (SVM)
classification algorithms. The results show that the average accuracy rate of detecting Distributed
DoS (DDoS) attack of the proposed approach is 95.24% with a limited number of flow rules which are
extracted from the controller. Ample research, as discussed above, on the verification of correctness
properties of communication networks exist. However, none of these touches our identified problem
to avoid packet violations by detecting policy change and installation/deletion of rules as per the
change of ACL policy. Similarly, other works like [14,15] are helpful in debugging networks and
detecting network anomalies and [39] is helpful to run several applications on the same network in
parallel without interfering with each other while maintaining the performance of each application.
The above-cited works lack in the detection of the change of network policy as well as packet violations
analysis due to the already installed conflicting rules on the data plane.

In [40], a flow-rule placement mechanism called FlowStat is proposed which provides per-flow
statistics to the SDN controller in addition to improve the performance of the network. The results
suggest that the proposed approach provides per-flow statistics and improves network performance
as compared to existing approaches, like ReWiFlow [41] and ExactMatch. In [42], a novel flow rule
placement algorithm called hybrid flow table architecture is proposed which exploits the benefits of
both hardware and software flow table implementations. The decision of placement of flow rules
in the flow tables (hardware (expensive) or software (cheap)) of switches is handled dynamically to
increase software-based flow tables utilizations which are non-TCAM modules. This mechanism helps
to save expensive TCAM memory of switches without degrading network performance in terms of
packet delay and packet loss. In [43], a packet classification mechanism is proposed on the basis of
lossy compression to create packet classifiers whose representations are semantically equivalent. The
aim of this research was to find a limited size classifier that can classify a high portion of traffic to
implement at switches of optimal TCAM size. The proposed approach can be implemented in a wide
range of classifiers within different modules. The results based on diverse performance metrics in
campus-based traffic reflect that it provides a significant reduction in real classifier size. In [44] the
fundamental capacity region of TCAMs is discussed by presenting fundamental analytical tools based
on independent sets and alternating paths. This helps to validate the optimality of previous coding
schemes. In [45] a novel compression mechanism is proposed based on random access for forwarding
tables. The system evaluation of this mechanism in real-life scenarios from different vendors and
country locations shows that it provides much better results as compared to the existing mechanisms
with respect to compression of forwarding tables. In [46] formal approach to specify and verify Service
Function Chain policies is presented. The aim of this research is to identify the presence of anomalies
in the network policies before deployment. These approaches help to utilize the TCAM resources
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of switches efficiently, however, these research works do not consider policy change mechanisms in
addition to analyze packet violations. The authors in [8] state that changing or modifying network
policies at the controller can lead to policy violations by the data packets for the flows whose flow rules
are already installed at the data plane. They solve this problem as follows. The copies of flow rules
generated by the controller are also stored at the controller. When their proposed approach detects the
change in network policies at the controller, it removes those flow rules installed at the SDN switches
that conflict with the changed network polices. This approach takes a longer time to detect the change
in policy and subsequently leads to more number of packets violating the network policy. The detail is
presented in the following section.

3. Problem Statement

The ACL policies change with the passage of time due to changes in the application environment
or network topology. It is always difficult for network administrators to detect and implement this
network policy change in the network. It is normally implemented manually which takes time to
translate and implement these policies in an efficient and effective manner to avoid policy conflicts. In
SDN, these policies are configured at controller which computes flow rules and installs them at the
data plane along the shortest path between source and destination. Whenever there is a change in
policies, it is not reflected immediately for already installed flow rules at the data plane. This results in
packet violations due to the already installed flow rules at the data plane. In this regard, there is a need
to have a fast detection of policy change approach at controller which can detect policy change and
delete the conflicting flow rules in addition to installing new flow rules as per new policies. The policy
change detection approach should be efficient with respect to cost, time, space and complexity. In
addition, it can be implemented in a real-time networking environment where frequent policy change
occurs. Moreover, the network policies should be defined in abstract form, so that, it becomes easy for
network administrators to configure, debug and manage these policies.

We assume that the policies are 6 tuple <Source, Destination, Protocol, Ports, Service Function
Chain, Action>. Here, Source includes Faculty (FCL) and Staff (STF) which consists of multiple IP
subnets. The Destination comprises of the Learning Management System (LMS) and Web Server
(WBS) and these consist of IP subset of servers on which multiple applications are implemented to
achieve desired functionalities. The Protocol includes Transmission Control Protocol (TCP) or User
Datagram Protocol (UDP) or ANY. Here, ANY represents both TCP and UDP traffic. The Ports include
destination port numbers of applications which are assumed to be a set of ports = {port1, port2, ...,
portn}, where |Ports| ≥ 0 represents integer values or ANY. The service function chain (S) sequence
field specifies that communication between source and destination should be via Firewall (FW) or
Load Balancing (LB) or ANY. Here, ANY represents both FW and LB from where traffic should pass. In
addition, the Action field consists of Permit or Deny. This means that communication between Source
and Destination is permitted or denied due to destination port numbers along with the specified
protocol and S sequences. Finally, the detection and implementation of network policy change need to
be implemented in such a way so that it reduces packet violations and increases network efficiency.

4. Proposed Solution

In this research work, the ACL policies are represented in 6 tuple <Source, Destination, Protocol,
Ports, Service Function Chain, Action>. These policies are traversed into the policy implementation
file, which is then passed to the controller. The controller computes a multi-attributed graph, G = (V, E,
α, β). Here:

• V is a finite set of vertices that consists of three types, that is, Source, Destination and S sequence.
• An edge in G is represented by E, which consists of a communication link (v1 , v2) between two

vertices (v1 and v2 ∈ V).
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• α consists of two types of attributes of vertices, namely, the EndPoint group (Eg) and S sequence.
Here, α = Eg ∪ S, where Eg denotes an Endpoint Group (EPG) and S denotes service function chain
sequence. An EPG comprises of collection of EndPoints (EPs). An EP is a minimum abstraction
unit for which a policy is implemented, for example, server, subnet, network, or end-user. An
EPG consists of all EPs which satisfies all conditions of membership predicate. Each membership
predicate is assigned a label, for example, FCL, STF, LMS, WBS as shown in Figure 1. The
membership predicate is the boolean expression over all labels. In addition, there is S sequences
for the network function boxes, for example, FW and LB to handle network communication. The
composed graph shows which communication is allowed between network endpoints and what
S sequence is required for the communication.

• β consists of two attributes of an edge, namely, βProtocol and βPorts. The βProtocol represents an
attribute of an edge that comprises of values of TCP or UDP or its value can be ANY (which
consists of both TCP and UDP traffic). The βPorts represents another type of edge attribute that
comprises a set of destination port numbers of applications, that is, βPorts represents a set of
integer values or ANY for a policy.

Figure 1. Input Label Namespace Hierarchy.

The system model of this research work is whitelisting, it means that by default no communication
is allowed between the EPs. Moreover, in this work, reactive mode of flow installation mechanism is
assumed in which controller computes flow rules in an on-demand fashion. More specifically, when a
flow is generated, the controller computes the flow rules for that flow by using the network topology
and ACL policies. It then installs flow rules at switches along the shortest computed path and caches
a copy of flow rules in a Hash Table data structure. Suppose, later on, policy change is triggered,
then controller computes the multi-attributed graph and policy change is detected via our proposed
graph matching algorithm (that is, Algorithm 1). If there is no change, then no action is required, it
means that the network is running as per the latest policies. Otherwise, the proposed approach finds
out whether changed policies are conflicting with the flow rules cached at the controller or not. If
matching is found then these are called conflicting flow rules. Contrarily, the flow rules are called
non-conflicting. In this case, we can say that a new policy is added for the Source and Destination
other than the existing ones. Thus, if there is no conflict, it means that a new policy is added for hosts
other than the existing ones or else the proposed approach deletes all those flow rules from the flow
tables of switches along the shortest path and from the controller cache that are conflicting with the
changed policies. Finally, new flow rules and shortest paths are computed as per new policy and
these newly computed flow rules are installed along the shortest path at switches and cached at the
controller for further processing.

The proposed solution is discussed in four steps. In the first step, we list down the network
policies as per our network scenario in a policy file, say at time t1 and pass the policy file to the
controller. We represent these policies via a multi-attributed graph (say G1), where, G1 = (V1, E1,
α1, β1). Here, V1 is finite set of vertices at time t1 which consists of Source1, Destination1 and S1
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sequence. An Edge in G1 is represented by E1 that consists of a communication link (v11 , v21 ) between
two vertices (v11 and v21 ∈ V1). α1 consists of two types of attributes, namely, EndPoint group (Eg1)
and S1 sequence. β1 consists of two attributes of an edge, namely, βProtocol1 and βPorts1 . The βProtocol1
represents the attribute of an edge that comprises of values of TCP or UDP or ANY, where ANY
represents both TCP and UDP traffic. Moreover, the βPorts1 represents another type of attribute of the
edge that comprises a set of destination port numbers of applications. Here, βPorts1 consists of a set
of integer values or ANY for a policy. In the second step, it installs flow rules in flow tables of the
switches along the shortest computed path. In the third step, it caches a copy of flow rules in a hash
table data structure at the controller. In fourth step, suppose, later say at time t2, policy change triggers,
then controller computes the multi-attributed graph (say G2), where, G2 = (V2, E2, α2, β2). Here, V2 is
finite set of vertices at time t2 which consists of Source2, Destination2 and S2 sequence. An Edge in G2

is represented by E2 which consists of a communication link (v12 , v22) between two vertices (v12 and
v22 ∈ V2). α2 consists of two types of vertex attributes, namely, EndPoint Group (Eg2 ) and S2 sequence.
β2 consists of two attributes of an edge, namely, βProtocol2 and βPorts2 . The βProtocol2 represents the
attribute of an edge that comprises of values of TCP or UDP or ANY, where ANY represents both TCP
and UDP traffic. Moreover, the βPorts2 represents another type of an edge attribute that consists of a set
of destination port numbers of applications. Here, βPorts2 consists of a set of integer values or ANY
for a policy. In the fifth step, new flow rules and shortest paths are computed between Source2 and
Destination2 as per new policies. Moreover, the newly computed flow rules are installed along the
path in flow tables of switches and cached at the controller for further processing.

4.1. Policy Representation

In our proposed solution, we represent network policies in 6 tuple < Source, Destination, Protocol,
Ports, Service Function Chain, Action > and construct the multi-attribute graph with the help of PGA
for the composition of these policies. In traditional networking environment, the network policy
implementation process is largely manual and network administrator translates high level policies into
low level commands to implement these policies on network devices. Policy change takes large amount
of time and suffers inefficiencies, like, policy overlapping, policy conflicts etc. due to the distributed
and manual policy implementation process. These issues become worse in automated network
environments, for example, SDN applications in Enterprise networking environments, Network
Function Virtualization (NFV), cloud infrastructures etc.

Let us take an example of three ACL policies to understand the above mentioned policy
composition issues. Suppose that we have three network policies to be defined at controller as
follows:

Policy-1 (P1):
Faculty has access to LMS server via TCP Port 20 through FW and LB Service Function Chain
Policy-2 (P2):
Employees (Faculty and Staff) have access to the servers via TCP Ports 20, 25, 80 through FW
Service Function Chain
Policy-3 (P3):
Faculty can communicate with Staff via TCP Ports 20, 25, 80, 587, 993 through FW
Service Function Chain

The above three ACL policies (P1, P2, P3) are represented in 6 tuple as:
P1 = <Faculty, LMS, TCP, 20, (FW, LB), Permit>
P2 = <Employees, Servers, TCP, (20, 25, 80), FW, Permit>
P3 = <Faculty, Staff, TCP, (20, 25, 80, 587, 993), FW, Permit>

There is conflict between policies P1 and P2, because, through P1, only Faculty can access the LMS
server while staff cannot access it. However, through P2, Staff can access all servers including LMS. So,
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there is policy conflict between P1 and P2, as access is denied through P1 and is permitted through
P2. Similarly, both policies P1 and P2 also overlap, because by using P1, Faculty access is permitted to
LMS via TCP port 20 and in P2, Employees (including Faculty) access is permitted to LMS including
all Servers via TCP ports 20, 25, 80. The third policy P3 is conflict-free and non-overlapping, as it has
no conflict and overlapping with the other two policies. We need a human operator who manually
composes these policies into a composite policy to implement these policies correctly via if-then-else.
This is shown in an SDN program as follows:

If_match(SRC = Faculty, DEST = LMS, TCP, DEST_PORT=20)
FW>>LB Service Function Chain

Else If_match(DEST = LMS)
Deny

Else If_match (SRC = Employees, DEST = Servers, TCP, DEST_PORT=20,25,80)
FW Service Function Chain

Else If_match (SRC = Faculty, DEST = Staff, TCP, DEST_PORT=20,25,80,587,993)
FW Service Function Chain

The above three policies are expressed correctly via graph composition as shown in Figure 2. It
shows that faculty can access LMS via two function boxes forming correct service chains required
by both policies. As there is no relationship between staff and LMS, therefore, it aptly implements
exclusive access to LMS which is required by P1. The other servers excluding LMS are denoted by set
operator diff (‘-’), which allows communication with all employees along with faculty.

Figure 2. Graph Composition of Policies (P1, P2, P3).

It implies that graph abstraction is very useful to express policies naturally and we can leverage
graph structure to do automatic composition. PGA [23,47] has implemented this concept which enables
users to easily specify and naturally draw some diagrams to capture network policies. In addition,
it expresses policies via graph-based abstractions. Different stakeholders (users/tenants/admins)
in addition to SDN applications produce network policies as graphs. These graph-based policies
are further sent to the graph composer through a PGA User Interface (UI) which gets additional
information from external sources for efficient policy formulation. After that, the graph composer
provides a conflict-free graph after fixing all errors/conflicts. The conflict-free graph is composed of
two steps. In the first step, input policy graphs are normalized by transforming their EPGs into an
equivalent set of disjoint EPGs for the identification of policy overlappings. In the second step, the
union of the normalized graphs is computed to obtain the final policy that can be implemented to the
EPs. In the normalized form of graphs, EPGs in two different graphs are either disjoint or equal but
do not partially overlap. This property helps multiple normalized graphs to be composed together
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using a simple union operation. Thus, the composed graph consists of the union of all the EPGs of
individual graphs.

4.2. Flow Rule Caching

As we are using reactive mode for flow installation, therefore, the controller installs the flow rules
at the data plane when a flow is generated in an on-demand fashion. The controller computes flow
rules based on network topology, ACL policies, and other application requirements after receiving a
request from the data plane to compute the flow rules for the flow. After this, as per our proposed
approach, it caches one copy of the flow rules at the controller and installs the flow rules at the
corresponding switches along the shortest path. We have used the hash table data structure [48] for
caching flow rules at controller which maps keys to unique buckets/slots. It uses a hash function
to compute an index into an array of buckets/slots which helps to retrieve the desired flow rule.
In our proposed approach, we express keys and buckets/slots as tuples. The key tuple consists of
ACL policies in 6 tuple <Source, Destination, Protocol, Ports, Service Function Chain, Action> while
the bucket/slot tuple comprises of flow rules in 5 tuple, that is <Source, Destination, Shortest path
between Source and Destination, Action, Timeout>. In our simulation, we have chosen the hash table
length of 10,000 (0 to 9999) slots due to a limited number of nodes (hosts/switches). Moreover, we
have used a consistent hash function [49] as it produces the same output for a specific input, every
time when the hash function is executed. It, in turn, helps to track specific flow rules against a defined
network policy accurately. Whenever any change in policy is detected via Algorithm 1, then as per
key tuple, the hash function is executed which points to a specific bucket/slot. Respective flow rule
is deleted from the hash table of the controller on the basis of the hash function result. Moreover, as
per the new policy, new flow rules are computed and installed along the shortest path in addition to
caching these flow rules at the controller. Figure 3 shows that the hash function is applied based on the
key tuple, which points to a specific bucket/slot for caching flow rules at a specific index in the hash
table.

Figure 3. Flow Rule Caching.

4.3. Detecting Policy Change via Graph Matching

ACL policies change with the passage of time, as per requirements of different stakeholders, for
example, network admins, system admins, application admins, etc. We computed the multi-attributed
graphs for the policies at different instances of time (say t1 and t2) with the help of PGA. The whole
graph composition process is explained in Section 4. The composed graphs at different time instances
are compared based on Source, Destination, Protocol, Ports, Service Function Chain and Action. The
Source, Destination and Service Function Chain are represented by vertices in the graphs and edges
define relationship/connectivity between the vertices. The edges are attributed by protocol and a set of
ports according to the implementations of network policies. The comparison is made for graphs by the
exact graph matching algorithm to detect policy change. For the policy change detection, at first, the
graph at time t1 is computed which is shown in Figure 4a. The graph is composed on the basis of three
network policies (P1, P2, P3) which are described in Section 4.1. Suppose, at time t2 policy changes
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that state LMS is also accessible via port 80, then the composed graph is shown in Figure 4b. After
this, we compare these two graphs by using Graph Matching Algorithm, “Algorithm 1”, to detect that
whether the policies are changed/modified or otherwise. By change, we mean whether the polices are
modified or deleted or new policies are added. The matching is performed as follows.

Suppose, a directed multi-attributed graph G = (V, E, Rv, Re). Here V is a finite set of vertices
and E is a finite set of edges. These vertices and edges are associated with attributes that define their
properties. In graph G, Rv is a set of vertex attributes and Re is set of edge attributes. The vertex
attributes in our network scenario are faculty, staff, LMS, and WBS. The edge attributes are protocol
and ports as explained in Section 4. Here:

• V is a finite set of vertices
• E ⊆ V x V is a set of directed edges
• Rv ⊆ V x Av is a relation associating attributes to vertices, that is, Rv is the set of couples (vi, A)

such that vertex vi is attributed by A
• Re ⊆ V x V x Ae is a relation associating attributes to edges, that is, Re is the set of triples (vi, vj, A)

such that edge (vi, vj) is attributed by A.

The graph similarity is defined for two multi-attributed graphs G1 = (V1, Rv1, Re1) and
G2 = (V2, Rv2, Re2) over the same sets of vertices Av and edge attributes Ae, such that V1 ∩ V2 = Ø and
E1 ∩ E2 = Ø. At first, vertices matching is checked to measure the graph similarity via matching each
vertex with an empty set of vertices of the other graph. After that, a collection of common features of
both graphs are identified to measure the similarities between both graphs [50,51]. The graph matching
is applied on the features, like, Source, Destination, Protocol, Ports, Service Function Chain and Action
in our network scenario. The following definitions are used in graph matching via graph isomorphism
with the help of exact graph matching which is used in detection of change in network policies. In
our scenario the graphs are generated based on ACL policies at time t1 and at time t2. We intend to
find instances of graph at time t1 within graph at time t2 by allowing additional edges which is called
graph monomorphism. Finding instances with no additional edges is called subgraph isomorphism
and finding one-to-one mapping for all nodes and edges is called graph isomorphism. Our intention is
to exploit concept of graph isomorphism for detection of policy change at different instances of time.

(a) Composed Graph Based on Label Namespace at Time t1

(b) Composed Graph Based on Label Namespace at Time t2

Figure 4. Composed Graph Based on Label Namespace at Different Time Instances.
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Definition 1. Suppose G = (V, E, α, β) which represents directed and multi-attributed graph for communication
at time t1 where:

• V is a finite set of vertices
• E ⊆ V x V is set of edges and e(i,j) shows a directed edge which is communicating from vertex i to j.
• α: v→Av is a function which assigns unique attributes to each vertex in G such that α(i) 6= α(j)
• β: E→Ae is a function which assigns unique attributes to each edge in G.

Definition 2. A subgraph of G with V1 ⊆ V is represented by S(V1) = (V1, E ∩ V1 x V1, α, β).

Definition 3. A function f: V1 →V2 is a graph monomorphism from graphs G1 = (V1, E1, α1, β1) to G2 =
(V2, E2, α1, β2), iff:

• α(v) = α(f(v)), for all v ∈ V
• β(e) = β(e1), for all edges e = (v1, vj) ∈ E and e1= (f(vi), f(vj)) ∈ E1.

Definition 4. A function f: V1 →V2 is a subgraph isomorphism from graphs G1 to G2, if it satisfies Definition 3
and additionally it holds following conditions for every edge.

• e2 = (v2i, v2 j) ∈ E2 ∩ f(V) x f(V) exists an edge
• e1 = f−1(v2i) x f−1(v2 j) ∈ E with v(e2) = v(e1).

Definition 5. A function f: V1 →V2 is a graph isomorphism from graphs G1 to G2, iff, f is bijective function
and it satisfies Definition 4.

In our implementation, we adopt an exact subgraph isomorphism approach [51] which is based
on the divide-and-conquer principle. We have taken two graphs G1 (input graph) and G2 (model
graph) that are generated on the basis of three policies, P1, P2 and P3. These policies are explained
in Section 4.1. Moreover, the polices are implemented at times t1 and t2 respectively and represented
with the help of graphs as shown in Figure 4. The model graph is partitioned into disjoint subgraphs
and subgraph isomorphism is checked for those disjoint subgraphs within the input graph. These
graphs are merged to provide subgraph isomorphism of the full graph. Starting from full model graph
G2, we divide set V into two disjoint sets such that V = V1 ∪ V2. The matching module is applied to
both subsets S(V1) and S(V2). The outputs of partial matching modules are sent to the merge module
for subgraph isomorphism, if possible. The V1 and V2 are further subdivided until we reach a single
vertex. In this way, the hierarchy of partial matches is formed with respect to a binary tree.

The overall matching algorithm works on the basis of four categories of nodes as given in Algorithm 1.
At the top, most of the hierarchy in nodes is the input-node, the second one is Attribute-Vertex-Monitor, the
third one is Edge-Sgraph-Monitor and the fourth one is M-Model-Nodes. The input-node is the entry point
of the matching algorithm. There are multiple edges from the Input-Node to the Attribute-Vertex-Monitor.
At the time of execution, the input graph is forwarded to Attribute-Vertex-Monitor, that are quite simple
matching mechanisms. Every Attribute-Vertex-Monitor characterizes a specific attribute of a vertex in the
model graph which is attributed by an Attribute-Vertex-Monitor, if α(v) = A. An Attribute-Vertex-Monitor
takes vertices of input graph from the input-node. If the input vertex has attribute “A” then it is locally
stored and forwarded to all descendant nodes. Every Attribute-Vertex-Monitor has single/multiple
outgoing edges which leads to M-Model-Nodes or Edge-Sgraph-Monitors. The third type of nodes
are Edge-Sgraph-Monitors which contain a minimum of two vertices and one edge. These nodes have
two parents of either Attribute-Vertex-Monitor or Edge-Sgraph-Monitor. Each Edge-Sgraph-Monitor
has two parent nodes which are either Attribute-Vertex-Monitor or Edge-Sgraph-Monitor types. The
graph denoted by Edge-Sgraph-Monitor consists of two graphs of its parent nodes (ni, nj), which are
represented by gi (Vi, Ei, αi, βi) and gj (Vj, Ej, αj, βj) graphs respectively. Moreover, graph denoted in
Edge-Sgraph-Monitor nk can be expressed as gk (Vk, Ek, αk, βk) with Vk = Vi ∪ Vj ; Ek = Ei ∪ Ej ∪ E.
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Here “E” denotes set of edges which are connected to nk and any edge “e ∈ E” is the edge between
gi and gj or between gj and gi. During the execution time, the Edge-Sgraph-Monitor “nk” receives
instances Arr of graphs (gi and gj). These instances are received from its parent node and merged in
the graph “gk” for instance “Arrk”. The two instances are combined on the basis of two conditions.
Firstly, these should be disjointed, and secondly, the edges should belong to both instances. Every new
instance is saved in local memory and further forwarded to all successor nodes. Finally, last types of
nodes are M-Model-Nodes, these are connected to a single parent node. Here, the graph representation
is like model M. If any instance of the graph is detected in the parent node, it is forwarded to the
M-Model-Node, where it is stored as an instance of model M. The exact graph matching is shown in
Algorithm 1.

4.4. Checking the Flow Rules that Violate New Policies

In case of detection of policy change at time t2, the controller searches for those flow rules in its
cache that are conflicting with modified policies. If there is no conflict, then no action is required because
the network is running as per the changed ACL policies. Otherwise, the proposed approach deletes all
those flow rules from both the flow tables at the switches and from the cache at the controller that is
conflicting with the changed policies. More specifically, the controller keeps policies in hash table keys
and forwarding rules along with the path in the respective bucket/slot. When bucket/slot is traversed to
check flow rules installed by the conflicting policy, it returns all paths along with flow rules. If the source
and destination of the path are matched with a flow rule in path’s switch flow table then respective flow
rules are deleted both from the flow tables of the switches (as discussed in Section 4.5) and from the cache
of controller.

4.5. Deleting Flow Rules that Violate New Policies

As per the policy violation mechanism in Section 4.4, the controller starts flow rules deletion from
the flow tables of the switches as follows. We iterate over switches in the path and forward a flow
deletion command via flow table modification message (OFPFC_DELETE) [52] and append egress
switch port number for flow rule deletion from the switch flow table.

4.6. Complexities of Existing and Proposed Approaches

We compare the complexities of both the Proposed and Existing approaches in order to show the
improvement of our proposed approach theoretically. Suppose “n” represents the number of times a
statement is executed. Then the execution frequency of existing approach [8] is “n2 + 34n − 29” and
the worst case complexity is O(n2). Similarly, the complexity of proposed approach is calculated which
is “n2 + 6n + 27” and worst case complexity is O(n2) which shows improvement of complexity in our
proposed approach.
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Algorithm 1 Detecting Policy Change via Graph Matching.

1: Procedure GraphMatch (G = (V, E, α, β))
2: GE = E /*E are the edges of the Input-graph which are accessible globally*/

STEP-1
3: for all Attribute-Vertices v in V do /*Input nodes of the graph*/
4: for all Attribute-Vertex-Monitor do
5: Call Attribute-Vertex-Monitor (v)
6: end for
7: end for

STEP-2
8: Procedure Attribute-Vertex-Monitor (Vertex v) /*Checking vertices for matching*/
9: if α(v) = A then

10: Arr[0] = v
11: store A in the Local-Memory
12: for all Descendent Nodes n do
13: if n is an Edge-Sgraph then
14: Call Edge-Sgraph-Monitor
15: end if
16: if n is M-Model-Node then
17: Call M-Model-Node (Arr)
18: end if
19: end for
20: end if

STEP-3
21: Procedure Edge-Sgraph-Monitor (instance Arr) /* Checking Edge Subgraphs for matching*/
22: if called by Left-Parent-Node then
23: for all instances ArrR ∈ local memory of Right-Parent do
24: if Arr and ArrR are disjoint AND edge ‘e’ exists, such that e=(A[i], Arr[j] ∈GE

AND v(e) = A AND there exists no additional edge, otherwise then
25: Anew = Arr + ArrR /* The instance is concatenated*/
26: Save Anew in Local-Memory
27: for all Descendant-Nodes n do
28: if n is Edge-Sgraph-Monitor then
29: Call Edge-Sgraph-Monitor (Anew)
30: end if
31: if n is M-Model-Node then
32: Call M-Model-Node (Arr)
33: end if
34: end for
35: end if
36: end for
37: end if
38: if called by Right-Parent-Node then
39: for all instances Arr L ∈ local memory of Left-Parent do
40: if Arr and Arr L are disjoint AND edge ‘e’ exists, such that e=(A[i], Arr[j] ∈GE

AND v(e) = A AND there exists no additional edge, otherwise then
41: Anew = Arr + Arr L /*The instance is concatenated*/
42: Save Anew in Local-Memory
43: for all Descendant-Nodes n do
44: if n is Edge-Sgraph-Monitor then
45: Call Edge-Sgraph-Monitor (Anew)
46: end if
47: if n is M-Model-Node then
48: Call M-Model-Node (Arr)
49: end if
50: end for
51: end if
52: end for
53: end if

STEP-4
54: Procedure M-Model-Node (instance Arr) /* Storing instance of Model Graph*/
55: Save A in local-memory
56: Print the new instance Arr of the Model M
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5. Performance Evaluation

We used Mininet 2.2 EEL version [19] with the POX SDN controller [53] for the simulation
to evaluate the performance of our graph-based proposed approach in comparison to the existing
matrix-based approach. Our network scenario is setup on HP Probook 450 G5 with Intel Core i5-8250U
CPU@ 1.60 GHz (8 CPUs), 8 GB RAM and 1 TB Sata HDD, running Linux operating system, Ubuntu
16.04. We took a segment of an educational university’s network topology. The topology has 9
OpenFlow switches and 30 hosts along with one SDN POX controller. Moreover, we have chosen a
hash table length of 10,000 (0 to 9999) slots due to the limited number of nodes (Hosts/Switches) for
caching the flow rules at the controller. We transmitted 1000 to 80,000 packets randomly from different
source hosts to various destination hosts based on our network topology and ACL policies. The total
simulation time in our experimental evaluation is set to 100 s which is selected randomly for the fair
analysis of results. We analyze our proposed approach, Graph-Based Policy Enforcement (GPE) with
the existing approach, Efficient Policy Enforcement (EPE) [8] with the help of the following parameters,
by varying the number of policy changes and by varying packet transmission rate.

(a) Policy Change Detection Time (PCDT): It is the time taken by controller to detect change in
network policies and to delete the flow rules from the data plane that conflict with new policies.
This is because our proposed approach attempts to reduce the computation time of policy
change detection.

(b) Policy Violation Percentage (PVP): It is the percentage of total number of packets that violate the
policy to the total number of packets initiated from source nodes. This parameter shows that how
the reduced computation time for policy change detection significantly impacts the number of
packets violating the policies.

(c) Successful Packet Delivery (SPD): It is the percentage of total number of packets that are delivered
as per policy to the total number of packets initiated from source nodes.

(d) Normalized Overhead (NOH): It is the total number of packets transmitted from source nodes
divided by total number of packets received successfully at the destination nodes as per policy.
The significance of this parameter is that our proposed approach introduces the traffic by deleting
the flow rules installed in the switches that violate the new policy and install the new flow rules
as per new policies.

(e) Average End-to-End Delay (AED): It is the time taken by a packet traversing from the source host
to the destination host. We compute the average delay for all the received packets successfully as
per policy. By presenting the policies in multi-attributed graph and detecting the policy change
through graph difference, we show the significance improvement of our proposed approach by
analyzing the average end-to-end delay.

(f) Average Verification Time (AVT): It is the time taken by controller to interpret network policies
and to detect change in policies.

5.1. Simulation Results by Varying Number of Policy Change

The simulation results are based on static and dynamic parameters. The static parameters include,
packet transmission rate which is set to 0.6 milliseconds (ms) and default time-out value of flow rules
is also set. The dynamic parameter is chosen as the number of policy change, and it is chosen as 1–8
policies, that changes randomly. Based on the above parameters, simulation was run and results are
shown in Figure 5.
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(a) Policy Change Detection Time (b) Packet Violation Percentage (c) Successful Packet Delivery

(d) Normalized Overhead (e) Average End-to-End Delay (f) Average Verification Time

Figure 5. Simulation Results by Varying Number of Policy Change.

The simulation results by varying the number of policy change are shown in Figure 5a which
indicate that PCDT in existing approach (EPE) is always greater than our proposed approach (GPE),
especially at a higher rate of policy change. It is also observed that in EPE, PCDT increases abruptly,
while in GPE, it increases gradually at a higher rate of policy change. It is due to that our proposed
approach detects and implements policy change mechanisms earlier than the existing approach.
Figure 5b shows that PVP in the case of GPE is always less than its competitor EPE due to the smaller
number of packet violations during the policy implementation process. The results indicate that our
proposed approach performs well at all number of the policy change and outshines at a higher rate
of policy change. It shows that our proposed approach can be more beneficial in the data center and
campus networks where policy change frequencies are quite higher and frequent. Simulation results
in Figure 5c show that GPE always provides better performance with respect to SPD in the network.
However, its competitor EPE provides lower SPD at all frequencies of policy change. This is due to
that the detection of policy change mechanism is quite efficient in case of our proposed approach
and accordingly old flow rules are deleted and new flow rules are computed/installed at data planes
in a very effective manner. So, we can say that our proposed approach can be implemented in a
network where higher reliable communication is desired. Figure 5d shows that NOH is increasing
with the increase in the number of policy changes in both approaches. However, our proposed
approach provides lower NOH throughout the simulation due to the higher SPD ratio. Figure 5e
reflects that AED in the case of our graph-based proposed approach (GPE) is always less than the
existing matrix-based approach (EPE). This is due to the fast detection of policy change with the help
of multi-attributed graphs. Simulation results show that GPE performs well in all instances of policy
change. However, AED at higher frequencies of policy change is higher due to the higher policy
change detection time of multiple policies in addition to the installation and deletion of more flow
rules. Figure 5f represents AVT by varying the number of policies. It is observed from simulation
results that when the number of policy changes increases, AVT also increases due to the verification
of a greater number of policies. However, it is clear that our proposed approach detects and verifies
policy change in less amount of time at all instances as compared to the existing approach.
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5.2. Simulation Results by Varying Packet Transmission Rate

To see the results by varying the packet transmission rate, static parameters include; the number
of policy change is set to 5 and default timeout values of flow rule on data plane are set. The dynamic
parameter is chosen as packet transmission rate that is set to 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8 ms
randomly. The simulation was run on the basis above parameters and results are shown in Figure 6.

(a) Policy Change Detection Time (b) Packet Violation Percentage (c) Successful Packet Delivery

(d) Normalized Overhead (e) Average End-to-End Delay (f) Average Verification Time

Figure 6. Simulation Results by Varying Packet Transmission Rate.

Figure 6a shows simulation results with respect to PCDT by varying packet transmission rates. By
decreasing the packet transmission rate of source hosts, the results indicate that PCDT is much lower
in the case of our proposed approach (GPE) as compared to the existing approach (EPE). It is due to
the fact that our graph-based proposed approach detects policy change more efficiently as compared
to the existing matrix-based approach. Moreover, by decreasing the packet transmission rate, the
values of PCDT decreases in both the approaches. It is due to the reason that by decreasing the packet
transmission rate, a small number of flow requests arrive at the controller thus the controller has more
free time to compute the policy change detection. Figure 6b shows PVP is increasing with the decrease
in packet transmission rate in both approaches. The reason is that the chances of flow rules expiry
increase and the new flow rules arrive at the controller, subsequently, the controller computes the flow
rules as per new ACL policies. However, it is quite clear that with this decrease in packet transmission
rate, our proposed approach has less number of packets that violate the ACL policies as compared to
the existing approach. The logic for this is that our proposed approach takes a shorter time to detect the
policy change as compared to the existing approach. Figure 6c shows SPD is consistently better in the
case of our proposed approach as compared to the existing matrix-based approach by varying packet
transmission rates. It is due to the reason that our proposed approach early detects the policy change
and implements new policy early. This, in turn, results in a larger value of SPD. It is also noted that
our proposed approach is quite consistent in case of a high data rate, however, the existing approach is
not consistent, and more packets are violated in case of a high data rate. Figure 6d shows that NOH is
decreasing with the increase in packet transmission rate. However, our proposed approach provides
lower NOH due to the less percentage of packet violations. Figure 6e shows lower AED in case of
GPE, due to its lesser policy change detection time as compared to the existing matrix-based policy
change detection mechanism by varying packet transmission rate. This shows that by varying packet
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transmission rate, our proposed approach also performs well. The reason is that flow rule computation
as per the new policy, along with their installation at the data plane and deletion of old flow rules
as per the old policy, takes less time in case of GPE as compared to the existing approach. Figure 6f
represents that AVT in the case of our proposed approach is relatively lower due to its graph-based
policy verification and detection as compared to the existing approach. The simulation results indicate
that varying packet transmission rate between source and destination also affects AVT. However, it is
quite clear from the results that GPE provides less AVT as compared to EPE. It shows that our proposed
approach is quite effective in communication networks where frequent changes in policies occur.

6. Conclusions and Future Work

This paper proposes an efficient graph-based approach for the detection and implementation
of policy change in SDN which is based on multi-attributed graphs. The proposed approach detects
policy change automatically by comparing multi-attributed graphs that are generated at different time
instances. It also computes new flow rules as per changed policies. In addition, it deletes old installed
flow rules that conflict with the new policies from data and control planes. Furthermore, it installs
new flow rules along the shortest path between source and destination. Additionally, the computed
flow rules are cached at the controller in the hash table data structure which helps to trace flow rules
in an efficient way whenever a policy change event occurs. In our proposed approach, the policies
are represented in six-tuple form via high-level abstractions instead of low-level commands. Due to
the efficient handling of policy change, our proposed approach can be implemented in data center
networking where frequent policy changes occur to avoid packet violations and improve network
efficiency. To verify the performance of our proposed approach, We compared it with the existing
matrix-based approach [8]. The simulation results show that our proposed approach outperforms
the existing approach based on policy change detection time, policy violation percentage, successful
packet delivery, normalized overhead, average end-to-end delay and average verification time by
varying number of policy change and packet transmission rate. In the future, we will use a combination
of proactive and reactive flow installations and take into account link/node failures to detect and
implement policy change to improve network performance, efficiency, and availability.
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