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Abstract: Spin-stabilized projectiles with course correction fuzes actuated by fixed canards have
the problem of great coupling in both the normal and lateral directions due to intensive gyroscopic
effects, which leads to inconsistent maneuverability in different directions. Due to the limited
correction ability, which results from the miniaturization of the fuze and fixed canards, a target-aiming
method is proposed here to make full use of the correction ability of the canards. From analysis on
how the canards work and building an angular motion model, the correction characteristics of a
spinning projectile with fixed canards have been studied, and the inconsistent maneuverability in
different directions of the projectile has been explained and used to help establish the proposed target
aiming method. Hardware-in-the-loop simulation based on a 155 mm howitzer shows that when
the correction ability of fixed canards is unchanged, the proposed method can improve the striking
accuracy by more than 20% when compared to the traditional method.

Keywords: spin-stabilized projectile; fixed canards; course correction fuze; dynamic control;
correction features

1. Introduction

With the development of modern warfare, improving the precision of conventional gun-launched
projectiles has been a popular research area in recent years. Especially, compared to high-cost missiles
and low-precision unguided shells, projectile trajectory correction based on two-dimensional course
correction fuze (2-D CCF) technology has the advantages of being low-cost, with high-precision, and
no need to make shape modifications to the original unguided artillery shell.

There are two kinds of projectiles with which 2-D CCF technology has been applied. One is the
fin-stabilized projectile, which rotates with a low speed or does not spin in flight, and it is statically
stable for the mass center, which is in front of the center of pressure. The other projectile is the
spin-stabilized projectile, which has a high spin rate in flight to keep it stable with a great gyroscopic
effect, also requiring a much more complicated control system [1,2]. Some 2-D CCFs have been
successfully developed [3–5].

In the application of spin-stabilized projectiles, course correction fuzes (CCF) with fixed canards
have been more widely applied than other actuators, such as pulse engines [6,7], movable canards [8–10],
and inertial loads [11–13], as they are able to simplify the control system, reduce the space occupancy,
and provide the required stable forces. Here, only the roll angle of fixed canards is required to be
adjusted, such that control over the pitch and yaw motions of a projectile can be realized.

However, the high spinning rate of the projectile results in great coupling between the correction
forces on the normal and lateral directions, as well as an inconsistent correction ability in different

Electronics 2019, 8, 1135; doi:10.3390/electronics8101135 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
http://dx.doi.org/10.3390/electronics8101135
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/8/10/1135?type=check_update&version=2


Electronics 2019, 8, 1135 2 of 20

directions of the projectile, particularly when the roll angle of the fixed canards varies from 0 to
360 degrees. To deal with these problems, Costello has employed linearization theory to establish
a dynamic model of a projectile, and the coupling effects have been analyzed [14,15]. Luis Cadarso
has analyzed the coupling of high dynamic rotating artillery rockets [16]. Xu Nuo has established a
non-homogeneous model of angular motion according to the seven degrees of freedom dynamic model
and has analyzed the dynamic equilibrium angle produced by fixed canards [17]. Ahmed Elsaadany
has found that canard-based correction fuzes have a higher effect on projectile drift because of their
roll rate [18]. Yi Wang and Wei-dong Song [19] have found via simulation that the control angles of
fixed canards in the vertical and horizontal planes can make projectiles move to opposite directions.
In the research of Wernert [20], wind tunnel experiments and open-loop trajectory simulations were
carried out for 155 mm gun-launched projectiles with fixed canards, and the correction ability of the
canards was discussed.

In recent years, many decoupling methods in flight control have been proposed. A novel linear
parameter-varying (LPV) system to resolve nonlinear dynamic equations has been proposed by
Theodoulis et al. [21,22] for high-spin rate projectiles with movable canards. Florian [23] has applied
robust and gain-scheduling control methods to realize control in the yaw and pitch directions. The
mathematical model of a missile has been divided into kinematic and dynamic parts by Mcfarlang [24],
and the corresponding decoupling rule was designed by using the dynamic inverse design method.
Liangyu Zhao [25] designed an acceleration autopilot via adaptive output feedback, thus building a
multi-input/multi-output system, thus achieving decoupling.

However, the methods mentioned above to resolve coupling are better applied to the control
systems of missiles rather than low-cost spin-stabilized projectiles with fixed canards, where the
decoupling methods of spin-stabilized projectiles should be simpler. Zhong [26] proposed a method to
obtain the prefix angle between the real velocity and ideal velocity by building the angular motion
equations to achieve decoupling, however, the method lacks the study of the correction characteristics
of the projectile.

There are very few references about the aiming methods of the spin-stabilized projectile that have
been published. Thus, the angular motions of high-spin rate projectiles with fixed canards and the
decoupling of the transverse and longitudinal directions is also discussed in this paper. A novel aiming
method to make full use of the limited correction ability of fixed canards is proposed.

In the following sections, firstly, based on the 155 gun-launched projectiles with fixed canards,
a correction model is designed by analyzing the forces of the projectile. Then, the angular motion
equations are established, and the correction characteristics are analyzed. The relationship between
the maximum correction range and the distribution of the impact points is obtained as well. Moreover,
a novel aiming method based on a virtual target is proposed. At last, experiments were carried out, and
the simulation results show that the proposed aiming method can significantly improve the precision
of guided projectiles.

2. Model of External Ballistics Based on Fixed Canards

A dynamic model of spin-stabilized projectiles with fixed canards is studied in this section.
The model is based on the analysis of the transformation of different coordinate systems and how the
fixed canards work.

2.1. Description of Different Coordinate Systems

As shown in Figure 1a, the origin (denoted by A) of the launch reference coordinate system
AXYZ(E) is located at the mass center of the projectile. AX points to the intersection of the ballistic
plane and the horizontal plane, AY is orthogonal to AX and points upward, and AZ is orthogonal to
AX and AY, with the usual right-hand rule. By moving the launch coordinate system to the center of
mass of the projectile, the launch-fixed reference coordinate system ANXNYNZN is obtained.
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In Figure 1b, OX2 points toward the velocity of the projectile, OY2 is orthogonal to OX2 and points
upward, and OZ2 is orthogonal to OX2 and OY2, with the usual right-hand rule.

In Figure 1c, Oξ points to the head of the projectile and is parallel to the axis of projectile,
Oη is orthogonal to Oξ and points upward, and Oζ is orthogonal to Oξ and Oη, with the usual
right-hand rule.
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Figure 1. Reference frame of the projectile. (a) Description of the launch-fixed reference coordinate
system, with launch reference coordinates. (b) Description of the launch-fixed reference coordinate
system, velocity coordinate system, and projectile axis coordinate system. (c) Description of the
projectile axis coordinate system and fixed canard coordinate system.

The difference between O1ξηγcζγc(B) and Oξηζ(A) is γc, which is the roll angle of the fixed canards.
The transformations of the different coordinate systems are expressed as follows:
The relationship between the velocity coordinate system and the launch-fixed reference coordinate

system can be expressed as:

L(V, N) = LT(N, V) =


cosψ2 cosθa cosψ2 sinθa sinψ2

− sinθa cosθa 0
− sinψ2 cosθa − sinψ2 sinθa cosψ2

. (1)
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The relationship between the projectile axis coordinate system and the launch-fixed reference
coordinate system can be expressed by:

L(A, N) = LT(N, A) =


cosϕ2 cosϕa cosϕ2 sinϕa sinϕ2

− sinϕa cosϕa 0
− sinϕ2 cosϕa − sinϕ2 sinϕa cosϕ2

. (2)

The relationship between the fixed canard coordinate system and the projectile axis coordinate
system can be expressed as:

L(A, B) = LT(B, A) =


1 0 0
0 cosγc sinγc

0 − sinγc cosγc

. (3)

2.2. Model of Fixed Canards

The front view of the projectile is shown in Figure 2a. As shown in Figure 2b, there are two pairs
of canards with fixed deflection angles. One pair of them produces the required rotational forces to
halt the spinning of the projectile. Another pair of them provides the steering forces to control the
attitude of the pitch and yaw angles of the projectile. The roll angle of the fixed canards is defined as
0◦ (from 0◦ to 360◦) when the canards provide upward steering forces from the view of the top of the
fixed canards, and the roll angle increases as canards rotate counterclockwise, as shown in Figure 2b.
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Figure 2. Diagram of the projectile. (a) Front view of projectile. (b) Diagram of the canards (top view).

Without the steering control, the average steering forces are nil while the fixed canards rotate freely.
When the relative spin rate between the fixed canards and the projectile is the same to the self-spin rate
of projectile, the fixed canards are stationary to the ground and can give sustained steering forces to
correct the trajectory course.

The velocity of the projectile, v, in the fixed canard coordinate system can be expressed as:

vr = L(V, A)L(A, B)v, (4)

where
L(V, A) = LT(A, V) = L(V, N)L(N, A). (5)
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This is the transformation matrix between the velocity coordinate system and the projectile axis
coordinate system.

The projection of
→
v
′

r on the canards does not produce steering forces. The projection of
→
v
′

r on the
orthogonal direction of canards, which can be expressed by v′rp, enables the fixed canards to correct the
course of the projectile. The steering force, Fcy, and the drag force, Fcx, in the fixed canard coordinate
system can be expressed as:

Fcx = −
1
2

Qv′rp
2c′xcδe, Fcy = −

1
2

Qv′rp
2c′ccδe. (6)

The produced force, Fc, in the velocity coordinate system can be expressed as:

Fc =


Fcξ
Fcη

Fcζ

 = L(A, B)Fcy + L(A, V)


Fcx

0
0

. (7)

The steering moment, Mc, in the projectile axis coordinate system can be expressed as:

Mc =


Mcς

Mcη

Mcξ

 =


1 0 0
0 0 −1
0 0 1

L(A, B)Fcyl. (8)

2.3. Control Model Based on Fixed Canards

A seven degrees of freedom (7-DOF) control model was established based on the uncontrolled
rigid body trajectory model. The kinematic and dynamic equations in the velocity coordinate system
and projectile axis coordinate system are given respectively as follows:

Kinematic equations: 
dx
dt = v cosθa cosψ2
dy
dt = v sinθa cosψ2
dz
dt = v sinψ2

, (9)


dγ
dt = ωaξ −ωζ tanϕ2
dϕ2
dt = −ωη

dϕa
dt =

ωζ
cosϕ2

. (10)

Dynamic equations: 
dv
dt = Fx2 /m
dθa
dt = FY2 /(mv cosψ2)

dψ2
dt = FZ2 /(mv)

, (11)



dω fξ
dt = (M fξ + M f xzξ + Meξ + Msξ)/C fξ

dωaξ
dt = (Maξ −Meξ −Msξ)/Caξ

dωη
dt = 1

Aa+A f
Mη −

Caωaξ+C fω fξ
Aa+A f

ωζ + tanϕ2ωζ
2

dωζ
dt = 1

Aa+A f
Mζ +

Caωaξ+C fω fξ
Aa+A f

ωη −ωηωζ tanϕ2

. (12)

The resultant force in the velocity coordinate system and the resultant moment in the projectile
axis coordinate system can be expressed as follows, respectively:

F = Fx + Fy + Fz + FG + Fc =


FX2

FY2

FZ2

, (13)
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M = Mz + Mzz + Mxz + Mxw + My + Mc =


Maξ
Mη

Mζ

. (14)

These equations of forces and moments can be inferred by [27].

3. Correction Characteristics of Fixed Canards on Trajectory

In this section, the angular motion of fixed canards is analyzed and the coupling of forces on
the normal and lateral directions are analyzed and resolved. Then, the trajectory correction range is
elucidated based on the analysis of the correction abilities of the canards.

3.1. Control Model Based on Fixed Canards

To further study the angular motion of the fixed canards as well as the correction ability, the
control model established in Section 2 is simplified.

Referring to the methods in [27], it is defined that:

bx = Fx
mv2 , by =

Fy

mv2 , bz =
Fz

mv2 , kz =
Mz
Av2 ,

kzz =
Mzz
Av2 , kxz =

Mxz
Av2 , kxw = Mxw

Av2 , ky =
My

Av2 , kc =
Mc
Av2

. (15)

Additionally,

bc =
Qc′yδe

2m
, kc = bc

lm
A

. (16)

The pitch angles of the projectile axis and velocity, which are relative to the ideal trajectory, can be
expressed as:

θa = θi +ψ1,ϕa = θi + ϕ1. (17)

ψ1,ψ2, δ1, δ2, as mentioned above, are considered small variables.
Here, we define the complex wing angle as Φ and the complex deflection angle as Ψ.

Φ =ϕ1 + iϕ2, Ψ = ψ1 + iψ2. (18)

Thus, the angle of attack, ∆, in complex, can be presented by:

∆ =δ1 + iδ2 = Φ −Ψ. (19)

Additionally,

.
∆ =

.
Φ −

.
Ψ,

..
∆ =

..
Φ −

..
Ψ. (20)

In the ideal trajectory,
.
θ = −

g cosθ
v , the second and third equation in Equation (10) can be combined

and simplified as:
dΨ
dt

= byv∆ − ibzγ∆ +
g sinθ

v
Ψ + bcveiγc , (21)

where this is the equation of the complex deflection angle.
According to small-perturbation theory, waξ =

.
γ, wζ =

.
ϕa =

.
ϕ1 +

.
θ, wη = −

.
ϕ2, and the third and

fourth equation in Equation (12) can be combined and simplified as:

..
Φ + (kzzv− i

Ca + C f

Aa + A f
γ)Φ − (kzzv2

− ikyv
.
γ)∆ = i

(Ca + C f )
.
γ

Aa + A f

.
θi −

..
θi − kzzv

.
θi + kcveiγc , (22)

where this is the equation of complex wing angle.
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Combine Equations (21) and (22), then

..
∆ + (kzz + by − i

(Ca+C f )γ

(Aa+A f )v
)v

.
∆ − (kz + i

(Ca+C f )γ

(Aa+A f )v
(by −

(Aa+A f )

(Ca+C f )
ky))v2∆

= −
..
θ− kzzv

.
θ+i

(Ca+C f )γ

(Aa+A f )v
v

.
θ+ kcveiγc − bc

.
veiγc − (kzzv− i

(Ca+C f )

(Aa+A f )

.
γ)bcveiγc

. (23)

When the independent variable is defined as s, the length of arc, and according to v′ =
.
v/v,

d∆
dt

=
d∆
ds

ds
dt

= v∆
′

,
d2∆

dt
= ∆′′v2

− ∆′(bx +
g sinθ

v2 )v2. (24)

Thus, the equation of angle of attack can be expressed as:

∆′′+(H − iP)∆′−(M + iPT)∆

= −
..
θ−kzzv

.
θ+ i

(Ca+C f )γ

(Aa+A f )v
v

.
θ+ kceiγc + bceiγc(

g sinθ
v2 + bx − kzz + i

(Ca+C f )

(Aa+A f )v
.
γ)

, (25)

where

H = kzz + by − bx −
g sinθ

v2 , M = kz, T = by −
(Aa + A f )

(Ca + C f )
ky, P =

C fω fξ + Caωaξ

(Aa + A f )v
. (26)

According to the frozen coefficient method,
.
θ,

..
θ, v, H, P, M, T are regarded as constants in every

small part of the trajectory, such that Equation (27) can be resolved with the nonhomogeneous
differential equation with a constant coefficient, and the general solution of the equation, ∆, can be
described as:

∆ = ∆1 + ∆2 + ∆3, (27)

where ∆1 is the general solution in Equation (27), ∆2 is dynamic equilibrium angle caused by gravity,
and ∆3 is the dynamic equilibrium angle caused by the fixed canards.

∆1 can be expressed as:
∆1 = C1eiw1s + C2eiw2s, (28)

where coefficient C1 and C2 depend on the initial condition and ω1,ω2 are the eigenvalues of the
homogeneous equation.

For H << P, M2 >> P2T2, ∆2 can be expressed as:

∆2 = ∆2real + i∆2img= −(
P2

M2v2 −
P4T2

M4v2
−

1
Mv2 )

..
θ−

P2T2

M2v

.
θ+ i(−

P
Mv

.
θ−

PT
M2v2

..
θ+

2P3T
M3v2

..
θ). (29)

When the angular motion caused by the fixed canards is the only variable considered, the equation
can be expressed as:

∆′′+(H − iP)∆′−(M + iPT)∆ = kceiγc + (
g sinθ

v2 + bx − kzz + i
(Ca + C f )

(Aa + A f )v
.
γ)bceiγc . (30)

In Equation (30), when γc is a constant, the special solution ∆3 can be expressed as:

∆3 =
kceiγc + bceiγc(

g sinθ
v2 + bx − kzz + i

(Ca+C f )

(Aa+A f )v
.
γ)

−(M + iPT)
. (31)

Additionally, according to Equation (31), this can be simplified as:

∆3 = ∆3real+i∆3img = bc
−(M2+P2T2)

((E1M + P2T) cosγc − (PM− E1PT) sinγc+

i((PM− E1PT) cosγc + (E1M + P2T) sinγc))
, (32)
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where E1 = lm
A +

g sinθ
v2 + bx − kzz.

3.2. Correction Characteristics of Fixed Canards on Trajectory

After figuring out the angular motion of the fixed canards, the correction characteristics of the
fixed canards on the trajectory of the projectile were studied as follows, including the analysis of the
decoupling of the correction directions, as well as the correction ability of the fixed canards.

3.2.1. Decoupling of the Correction Directions

The dynamic equilibrium angle, ∆3, produced by the fixed canards, is a complex angle of attack,
where the argument of which can be represented using Equation (32):

arg∆3 = γc+atan(
PM− E1PT
E1M + P2T

)+π. (33)

According to Equation (33),

∆κ = arg∆3 − γc= atan(
PM− E1PT
E1M + P2T

)+π. (34)

∆κ hardly changes in flight. This is because in a small part of the trajectory, P, M, T, H, E1 can be
regarded as constant. There is a constant difference between the argument of ∆3 produced by the fixed
canards and the roll angle of the fixed canards. The orientation of the angle of attack generated by
the fixed canards is exactly the direction of the projectile that needs to be corrected to. Therefore, the
control equation, Equation (34), of the projectile is obtained according to the relationship between
the roll angle of the fixed canards and the correction direction, such that the projectile can be easily
controlled by the fixed canards to correct its trajectory to the target.

Figure 3 shows ∆κ changes, along with roll angle of the fixed canards, γc, when the angle of fire is
51◦. The correction process is carried out at the vertex of the trajectory. ∆κ in Figure 3 hardly changes
when γc changes, indicating a corresponding linear relationship between arg∆3 and γc, such that their
directions are opposite (the difference of the argument of them is approximately 180◦).
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Figure 3. Analysis of ∆κ with different γc when angle of fire is 51◦.

Similarly, this conclusion can be drawn from the analysis of the forces. Because ωaξ � ωη and
ωaξ � ωζ in the flight, the moment of momentum of the projectile is parallel to the axial direction.
As shown in Figure 4, when γc= 0o, fixed canards produce an upward steering force, generating
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the pitch moment Mc1 pointing to the right (defined in Figure 4). According to the theorem of the
momentum moment, under the action of this moment, the projectile produces a downward swing
angular velocity, ωc1, inducing the correct angle of attack. On the other hand, the right lift force,
Fc2, induced by the right angle of attack, produces the downward moment Mc2, which could form
a downward swing in the angular velocity, ωc2, thus producing a downward angle of attack. In
conclusion, under the action of the upward steering force, the projectile would produce the angle of
attack in downward and right directions. The final lift force, FA, is shown in Figure 4.
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As analyzed above, the direction of ∆3 is not the same as the roll angle of the fixed canards but
is instead almost opposite. Referring to Equation (34), the decoupling of the correction directions
is achieved.

3.2.2. Features of Correction Ability

As shown in Figure 5, without the consideration of ∆2 caused by gravity,
→
v
′

r is parallel to the axis
of the projectile, and the deflection angle of the fixed canards is δ. In Figure 5a, for the coupling effects
analyzed in last section, when the projectile corrects to the right, the fixed canards provide a steering
force pointing to the left (δe = δ). Then, for the influence of the steering force, the axis of the projectile
swings to the right and δe = δ− ∆3img. Similarly, in Figure 5b, when the projectile corrects to the left,
the fixed canards provide a steering force pointing to the right (δe = δ). Then, for the influence of the
steering force, the axis of the projectile swings to the left and δe = δ− ∆3img.

Electronics 2019, 8, 1135 10 of 20 

As shown in Figure 5, without the consideration of 2Δ  caused by gravity, rv′
  is parallel to the 

axis of the projectile, and the deflection angle of the fixed canards is δ . In Figure 5a, for the coupling 
effects analyzed in last section, when the projectile corrects to the right, the fixed canards provide a 
steering force pointing to the left ( eδ δ= ). Then, for the influence of the steering force, the axis of the 
projectile swings to the right and e 3imgδ δ= − Δ . Similarly, in Figure 5b, when the projectile corrects 
to the left, the fixed canards provide a steering force pointing to the right ( eδ δ= ). Then, for the 
influence of the steering force, the axis of the projectile swings to the left and e 3imgδ δ= − Δ . 

 

(a) 

 

(b) 

Figure 5. Force analysis when correcting to different orientations. (a) Correcting to right. (b) 
Correcting to left. 

From the analysis above on the change of eδ , without the consideration of 2Δ , it is difficult for 
spinning-stabilized projectiles to achieve correction to any direction with fixed canards, for they have 
a great coupling effect. 

The intensive gyroscopic effect of spinning-stabilized projectiles would lead to a relatively 
bigger 2realΔ , the dynamic equilibrium angle caused by gravity, especially in the right direction. A 
simulation of 2realΔ  is shown in Figure 6. It indicates that 2imgΔ  is much greater than 2realΔ , and that 
their time evolution maps are almost the same for different angles of fire. The greater the angle of fire 
is, the greater they are, and they reach a maximal value at the vertex of the trajectory. 

 

Figure 6. Time evolution of 2realΔ  and 2imgΔ  at angles of fire of 27°, 33°, 39°, 45°, and 51°. 

Figure 5. Force analysis when correcting to different orientations. (a) Correcting to right. (b) Correcting
to left.



Electronics 2019, 8, 1135 10 of 20

From the analysis above on the change of δe, without the consideration of ∆2, it is difficult for
spinning-stabilized projectiles to achieve correction to any direction with fixed canards, for they have a
great coupling effect.

The intensive gyroscopic effect of spinning-stabilized projectiles would lead to a relatively bigger
∆2real, the dynamic equilibrium angle caused by gravity, especially in the right direction. A simulation
of ∆2real is shown in Figure 6. It indicates that ∆2img is much greater than ∆2real, and that their time
evolution maps are almost the same for different angles of fire. The greater the angle of fire is, the
greater they are, and they reach a maximal value at the vertex of the trajectory.
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As shown in Figure 7a, with the consideration of ∆2 caused by gravity, δe = δ+ ∆2img, the
fixed canards produce a force pointing to the left, while the projectile swings to the right and
δe = δ+ ∆2img −∆3img. Similarly, in Figure 7b, when the fixed canards produce a force pointing to right,
δe = ∆2img − δ. With the steering force, the projectile swings to the left, and δe = ∆2img − δ+ ∆3img.
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From the analysis above, δe decreases when correcting to right and increases when correcting to
left, which indicates that it is more difficult for a spinning projectile with fixed canards to correct to the
right in the correction process, while correcting to the left is relatively easier.
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3.2.3. Analysis of the Correction Range

The dispersion of impact points corrected by fixed canards is like an ellipse when the roll angle of
the canards varies from 0◦ to 360◦. The correction ability with different roll angles of the fixed canards
will be discussed as follows.

As for the 155 mm gun-launched guided projectile with fixed canards, the simulation of the
distribution of impact points at different roll angles of fixed canards is carried out henceforth. The
parameters of the simulation are listed in Table 1.

Table 1. Parameters of the simulation.

Atmosphere Altitude Angle of Fire Spin Rate Muzzle Velocity

Standard 0 m 51◦ 300 r/s 930 m/s

In the simulation, the correction process begins after the projectile reaches the vertex of the
trajectory. In Figure 8, the ellipses in red, blue, black, and green present different groups of simulations,
where the correction start times of which are 45, 55, 65, 75, and 85 seconds after the projectile reaches
the vertex point, respectively. The roll angles of the fixed canards of each group vary from 0◦ to 360◦,
with a pace of 15◦.
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Figure 8 indicates that with the increase of the start time of the trajectory correction, the distance
of correction decreases and the correction distance on the left is larger than the right. The distribution
of the corrected impact points can be regarded as an ellipse obtained by the ellipse fitting method,
where the center of which does not overlap with the target point O1 (also called the aiming point under
uncontrolled conditions). Here, the ellipse is the basis with which to analyze the aiming method.

When the canards are fixed with a certain deflection angle, and other factors, such as the muzzle
velocity and spin rate are almost consistent, the correction results mainly depend on the angle of fire.
The corrected impact points with different angles of fire are shown in Figure 9, where the start time of
trajectory correction is the time when the projectile is at the vertex of the trajectory.

In Figure 9, the distribution of the corrected impact points can be regarded as an ellipse obtained
by the ellipse fitting method. Here, the center of correction of the ellipse is O2. The deviations between
O2 and O1 in the range and lateral directions are −104 m and −159 m, respectively, which indicates
correcting to the left is easier than correcting to the right for fixed canards. As for the dynamic
equilibrium angle from gravity, ∆2, when ∆2 > 0, correcting to nearer places is easier than correcting
further. The length of the axis of the ellipse in the range direction is 420 m and length of the axis of the
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ellipse in lateral direction is 450 m, which indicates almost the same correction ability for fixed canards
in both the range and lateral directions.
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As analyzed above, the correction ability with different roll angles of fixed canards differs, and the
correction ability of fixed canards cannot be taken full advantage of by aiming directly at the real target
directly, for the fixed canards have a different correction ability in different directions. So, a novel
aiming method is proposed based on the analysis of the characteristics of the ellipses generated by the
corrected and uncontrolled impact point dispersions.

4. Virtual Target Aiming Method

The traditional aiming method is not the optimum choice for trajectory correction, and in order to
make full use of the correction ability of fixed canards in all directions, a virtual target aiming method
is proposed as follows. Based on the conclusion in Section 3, that correction ability varies with different
roll angles of fixed canards, the determination of the virtual target position is discussed.

4.1. Comparison of Traditional and Virtual Target Aiming Method

As shown in Figure 10, the conventional aiming method takes the real target position, denoted
by the purple dot, as the aiming point. The dispersion area of the uncontrolled impact points is
represented by the ellipse in yellow. The ellipse in blue is the area called the correction area, where
the uncontrolled impact points can be corrected to the target, which means as long as the projectile is
delivered to any part of this area, its in-air trajectory can eventually be corrected to reach the real target.

For instance, when the impact point of an uncontrolled projectile is located in the yellow area, but
not covered by the blue area (correction area), the fixed canards are not able to correct the projectile to
reach the real target position. Taking the impact points in Figure 10 as an example, when the location
of the uncontrolled impact point denoted by the red dot is in the yellow area, the course correction
projectile is unable to be corrected to the real target position denoted by the purple dot, where its
actual impact point after trajectory correction is denoted by the green dot. The schematic diagram in
Figure 10 shows us that the non-overlapped yellow area is part of the area that the trajectory correction
projectile with fixed canards is not able to be corrected to the real target position.

Thus, in order to make the yellow and blue areas overlap as much as possible, a virtual target
is proposed to make full use of the correction ability of the fixed canards. The virtual target aiming
method takes the ellipse center of the blue area (correction area) as the actual aiming point, so that the
impact points under uncontrolled conditions are mostly located in the blue area. Therefore, the new
impact point area of the uncontrolled projectiles is of the same shape as the yellow area, but with the
ellipse center at the virtual target point (the ellipse center of the blue area). In this way, the yellow and
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blue area overlap to the greatest extent, where most of the impacts point can be corrected to the real
target point when they are controlled by the fixed canards.
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4.2. Determination of the Virtual Target

The dispersion of the uncontrolled projectile fits a normal distribution, and σx, σz are the variances
in the range and lateral directions, respectively. As shown in Figure 11, according to the 3σ rule of
thumb, the uncontrolled impact points are mostly located within the distribution curve γ1, taking the
real target position O1 as the origin, where the equation of which can be expressed by:

zt
2

(3σz)
2 +

xt
2

(3σx)
2 = 1. (35)

The biggest distribution ellipse of the corrected impact point is γ2, where its ellipse center is O2,
and its equation can be expressed by:

(zt − z0)
2

a2 +
(xt − x0)

2

b2 = 1, (36)

where (z0, x0) is the coordinate of its ellipse center O2, a, b is the length of the elliptical axis, and a,b > 0.

Electronics 2019, 8, 1135 14 of 20 

4.2. Determination of the Virtual Target 

The dispersion of the uncontrolled projectile fits a normal distribution, and ,x zσ σ  are the 
variances in the range and lateral directions, respectively. As shown in Figure 11, according to the 
3σ  rule of thumb, the uncontrolled impact points are mostly located within the distribution curve 

1γ , taking the real target position O1 as the origin, where the equation of which can be expressed by: 

2 2

2 2 1
(3 ) (3 )

t t

z x

z x
σ σ

+ =
.

(35)

The biggest distribution ellipse of the corrected impact point is 2γ , where its ellipse center is O2, 
and its equation can be expressed by: 

2 2
0 0

2 2

( ) ( ) 1t tz z x x
a b
− −

+ =
,

(36)

where 0 0( , )z x  is the coordinate of its ellipse center O2, ,a b  is the length of the elliptical axis, and 
a,b > 0. 

 

Figure 11. Aiming point schematic diagram. 

The projectile can eventually be corrected to the target, so as long as the predicted uncontrolled 
impact point of this projectile is located in 2γ . If the virtual target is set at a place where the 
uncontrolled impact point area and the area of correction ellipse mostly overlaps, then the 
uncontrolled impact points can be corrected to the target as much as possible. Here, we define the 
coordinate of the virtual target as ( , )virtual virtualx z . Because of the uncertainty of the correction ellipse 
and the uncontrolled impact point area, two different aspects are discussed. 
• Aspect 1: 

When 3 , 3z xa bσ σ> > , there are three possibilities: First, the area of the uncontrolled impact 
points 1γ  is covered by the correction ellipse 2γ . Second, 1γ  is not covered by 2γ . Third, 1γ  is 
partly covered by 2γ . Although the location of 1γ and 2γ  are not the same in these three cases, the 
relative size of 1γ  and 2γ  is definite. Therefore, the result of the three cases is the same. Taking the 
third case as an example, the virtual target can be set in any location of the ellipse with the red outline, 
as shown in Figure 11. The red outline of the ellipse is produced by the centers of the yellow ellipses 
when the yellow and blue ellipses are cut. 

2 2
0 0

2 2

( ) ( ) 1
( 3 ) ( 3 )
virtual virtual

z x

z z x x
a bσ σ

− −
+ =

− −
(37)

• Aspect 2: 
When 3 , 3z xa bσ σ≤ > , 3 , 3z xa bσ σ> ≤  or 3 , 3z xa bσ σ≤ ≤ , the area of the uncontrolled impact 

points cannot be fully covered by the correction ellipse. To make the correction ellipse cover the 

Figure 11. Aiming point schematic diagram.

The projectile can eventually be corrected to the target, so as long as the predicted uncontrolled
impact point of this projectile is located in γ2. If the virtual target is set at a place where the uncontrolled
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impact point area and the area of correction ellipse mostly overlaps, then the uncontrolled impact
points can be corrected to the target as much as possible. Here, we define the coordinate of the virtual
target as (xvirtual, zvirtual). Because of the uncertainty of the correction ellipse and the uncontrolled
impact point area, two different aspects are discussed.

• Aspect 1:

When a > 3σz, b > 3σx, there are three possibilities: First, the area of the uncontrolled impact
points γ1 is covered by the correction ellipse γ2. Second, γ1 is not covered by γ2. Third, γ1 is partly
covered by γ2. Although the location of γ1 and γ2 are not the same in these three cases, the relative
size of γ1 and γ2 is definite. Therefore, the result of the three cases is the same. Taking the third case as
an example, the virtual target can be set in any location of the ellipse with the red outline, as shown in
Figure 11. The red outline of the ellipse is produced by the centers of the yellow ellipses when the
yellow and blue ellipses are cut.

(zvirtual − z0)
2

(a− 3σz)
2 +

(xvirtual − x0)
2

(b− 3σx)
2 = 1 (37)

• Aspect 2:

When a ≤ 3σz, b > 3σx,a > 3σz, b ≤ 3σx or a ≤ 3σz, b ≤ 3σx, the area of the uncontrolled impact
points cannot be fully covered by the correction ellipse. To make the correction ellipse cover the
uncontrolled impact points area as much as possible, the virtual target is set to the center O2 of the
correction ellipse γ2, as shown in Figure 12.
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Therefore, the range of the coordinates of the virtual target is given by:
(zvirtual−z0)

2

(a−3σz)
2 +

(xvirtual−x0)
2

(b−3σx)
2 ≤ 1, a > 3σx, b > 3σz

zvirtual = z0, xvirtual = x0, others
. (38)

In conclusion, the uncontrolled impact point area and the correction area can be obtained by
experience, and the fitting of the correction range, respectively, and the area of the virtual target can be
determined according to Equation (38).

5. Validation of Hardware-In-Loop Simulation

Hardware-in-the-loop simulation was conducted to verify the proposed aiming method, where
Monte Carlo simulations were also carried out.

5.1. Description of Simulation

The block diagram of hardware-in-the-loop simulation is shown in Figure 13.
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As shown in Figure 13, The simulation environment consists of six parts: The trajectory generator,
GPS generator, trajectory calculation circuit, basic data module, Monte Carlo simulation module, and
data processing module. The trajectory generator simulates the real trajectory of projectile in real time.
The GPS generator obtains the trajectory data from the trajectory generator, and updates the satellite
signals with a frequency of 100 Hz to the trajectory calculation circuit. The trajectory calculation circuit
sends the control signal of the fixed canards to the trajectory generator, where the trajectory generator
generates the corrected trajectory after that. The PC is used to input the parameters of the trajectory
to the trajectory generator, as well as deal with the processing of the data. The environment of the
hardware-in-the-loop simulation experiment is shown in Figure 14.
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The experimental procedure is given as follows. First of all, after the trajectory generator receives
the respective parameters, including the initial trajectory elements, target position, and Monte Carlo
simulation data, the simulation starts with the control of the PC. Then, the trajectory generator sends
real-time information, including the position and velocity of the projectile, to the GPS generator, and
sends the spin rate to the trajectory calculation circuit within a period of 0.1 s. The GPS receiver
processes the satellite signals from GPS generator and sends the navigation data to the trajectory
calculation circuit. The trajectory calculation circuit calculates the roll angle of the fixed canards with
the inputs of the navigation data and spin rate, sends this angle to the trajectory generator. The
trajectory generator uses the roll angle of the fixed canards to generate the corrected real-time trajectory.
When the process above ends at a trajectory height of 0 m, the trajectory generator sends the data of
the impact point to the PC, and the next simulation starts immediately. When all of the simulations
were finished, the data were processed by the PC.
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5.2. Set of Initial Parameters and Determination of Virtual Target

Taking the 155 mm gun-launched projectile as an example, the ideal uncontrolled impact point
is (29886, 0, 1390.8) (m) in the launch reference coordinate system in a standard condition when the
angle of fire is 51◦. There are 9 kinds of error resources in the trajectory correction procedure, which
are shown in Table 2.

Table 2. Errors settings.

Number Error Items Gauss Distribution

1 angle of fire (rad) (0,0.07)
2 direction of fire (rad) (0,0.04)
3 cross wind (m/s) (0,2)
4 range wind (m/s) (0,2)
5 initial yaw rate (rad/s) (0,0.001)
6 initial pitch rate (rad/s) (0,0.001)
7 initial pitch angle (rad) (0,0.001)
8 initial yaw angle (rad) (0,0.01)
9 muzzle velocity (m/s) (0,2)

The Monte Carlo simulations were carried out 500 times, and the variances in the range and
lateral directions, σx, σz, in Equation (27) are given as σz = 68 m, σx = 138.5 m.

The parameters in Table 2 were applied in the Monte Carlo simulation and the angle of fire was
set as 51◦. Correction was conducted when the projectile was at the vertex of the trajectory.

Different deflection angles of the fixed canards were set to validate the claim that the proposed
novel aiming method is able to improve the accuracy of spinning stabilized projectile with fixed canards.
One of the deflection angles was 6◦, the other was 3◦. According to Equation (38), the parameters of
these two kinds of correction ellipses and positions of virtual targets are given in Table 3.

Table 3. The correction ellipses and virtual targets.

Parameter (m) Type 1:
Deflection Angle of Rudder Is 6◦

Type 2:
Deflection Angle of Rudder Is 3◦

a 450 235
b 420 210

(x0, z0) (104,159) (67.1,87.24)
(xvirtual, zvirual) (104,159) (67.1,87.24)

5.3. Results of the Simulations

The Monte Carlo simulations of the uncontrolled and corrected impact points were carried out to
compare the striking accuracy of the traditional and virtual target aiming methods.

Figure 15a shows the impact points of uncontrolled and controlled projectiles around the target.
The results in Figure 15a indicate that the correction area does not cover all of the uncontrolled impact
points, though the correction ability of the fixed canards was greater than 3◦. As show in Table 4,
the CEP (circular error probable) of the virtual target aiming method was 31 m, while the CEP of the
traditional aiming method was 46 m. As we can see, the virtual target aiming method improves the
accuracy by 32%.
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Figure 15. Type 1 Monte Carlo simulation results. (a) Traditional aiming method. (b) Virtual target
aiming method.

Table 4. Simulation results of Type 1.

Type Aiming Method Traditional Virtual Target

Downrange Dispersion 138.5 37.21 25.48
Cross-range Dispersion 68 16.04 11.64

CEP (m) 180.32 46 31.67

The simulation results of Type 2 are shown in Figure 16. Compared with the traditional aiming
method, there were more uncontrolled impact points located within the correction range when using
the virtual target aiming method, which indicates that there are more uncontrolled impact points that
can be corrected to the real target with this method. As show in Table 5, the CEP of the virtual target
aiming method was 69.3 m, while the CEP of traditional aiming method was 90.75 m. The virtual
target method can improve the striking accuracy by more than 20%.
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Table 5. Simulation results of Type 2.

Type Aiming Method Traditional Virtual Target

Downrange Dispersion 138.5 72.2 55.14
Cross-range Dispersion 68 31.75 25

CEP (m) 180.32 90.75 69.33

In conclusion, when the correction range is not large enough to cover all of the uncontrolled
impact points, the application of virtual target point aiming method can improve the projectile’s CEP
with limited fixed canard correction ability to a large degree.

6. Conclusions

Here, a novel aiming method for spin-stabilized projectiles with course correction fuze actuated by
a fixed canard is proposed. The method has been verified based on the analysis of the decoupling and
correction characteristics of spinning projectiles. Unlike the conventional aiming method, this study
takes full advantage of the correction ability of fixed canards to improve the precision of trajectory
correction. This method only needs to determine the virtual target by the analysis of the area of the
uncontrolled impact points and the correction area.

From the analysis of the fixed canards’ mechanism, the fixed canard model was set up. Combining
the uncontrolled rigid body trajectory model, the correction model of spinning projectiles was
established. The angular motion of fixed canards was analyzed based on the linearized correction
model by small disturbance theory and the frozen coefficient method. By analyzing the dynamic
equilibrium angle produced by the fixed canards, the trajectory correction characteristics of fixed
canards, including the correction direction and the correction features, were studied. There is a
corresponding linear relationship between the direction of the dynamic equilibrium angle produced
by the fixed canards and roll angle of fixed canards, and directions between them are opposite. When
the projectile needs to be corrected to the left, fixed canards have the ability to provide a steering
force pointing to the right and vice versa. Also, due to the existence of the dynamic equilibrium
angle from gravity, it is more difficult for spinning projectiles with fixed canards to correct to the right
when compared correcting to the left in the correction process. Based on the analysis of the area of
uncontrolled impact points and the correction ellipse, the virtual target aiming method is proposed.

At last, hardware-in-the-loop simulation was carried out. Monte Carlo simulations, with different
correction ability, have shown that the novel aiming method can improve the striking accuracy of the
course-corrected projectile by more than 20% when compared with the traditional aiming method.
Further research, such as the theoretical derivation of the correction ellipse and simulation in actual
weather conditions, will be conducted.
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