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Abstract: One major difficulty of parameter extraction for an equivalent circuit lies in applying an
optimization algorithm to efficiently approach the global minimum. Traditional genetic algorithm
(GA) is able to find the global minimum but it has very low convergence rate. On the other hand,
direct search method may be easily trapped in local minima. In this work, an improved parameter
extraction method which is capable of effectively performing the global minimum search is proposed.
This method combines GA and Powell’s method to efficiently determine circuit elements of an
equivalent circuit model. A spiral inductor and an interdigital capacitor are used as design examples
to illustrate the extraction procedure and validate the proposed hybrid method.

Keywords: parameter extraction; Powell’s method; genetic algorithm; equivalent circuit; spiral
inductor; interdigital capacitor

1. Introduction

Radio-frequency (RF) devices such as spiral inductors and microstrip interdigital capacitors
have been widely used in low noise amplifiers, power amplifiers and voltage-controlled oscillators;
and many other RF devices are used in silicon-based radio-frequency integrated circuits (RFICs) [1].
Accurate equivalent circuit models for these components are highly desirable for RFIC designs.

For a given device layout, an equivalent circuit can be constructed by a parasitic extraction tool.
In general, the parasitic extraction tool is based on quasi-static analysis, which makes the equivalent
circuit inaccurate at high frequencies. To improve the accuracy of the equivalent circuit model, it is
a common practice to adjust the circuit elements of the equivalent circuit model by using accurate
full-wave simulation results [2,3].

In practice, some RF devices can use simple T-, π- or ladder models as their equivalent circuits.
For relatively complex RF designs, however, one may build better but more complex equivalent
circuits based on their layouts with physical insights. For example, the equivalent circuits of the
aperture-coupled resonator frequency-selective surface (FSS) [4], spiral inductors [5,6], and interdigital
capacitors [7] have been constructed with physical insights. Once the equivalent circuit for a RF device
is determined, the element parameters of the equivalent circuit can be extracted based on the full-wave
results by optimization methods [8].

In order to build accurate equivalent circuit models, reliable and effective parameter extraction
methods are required. In general, the values of circuit element parameters can be determined by genetic
algorithm (GA) [9,10], which is an effective global and gradient-free optimization method. However,
for the optimization problem of continuous function (e.g., the parameter extraction), the convergence
rate of GA is slow, and particularly it is very ineffective for local optimization. More seriously, it is
highly reliant on initial population [11]. If the initial population is not set appropriately, GA may
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be unable to find appropriate results. If a small population is used, the solution set will have small
population diversity, and it may tend to cause the premature convergence problem [12]. As a result,
the optimization solution may be inaccurate. Although some methods have been proposed to handle
the premature convergence problem [13], the convergence rate of GA is hardly improved. In addition,
if a large population is used, the optimization results may be more accurate, but the convergence rate
becomes very slow. On the other hand, a conjugate gradient (CG) optimization algorithm, such as
Powell’s method [14] combined with a one-dimensional search method (e.g., golden section search [15]),
has strong local optimization ability and fast convergence rate [16], but the drawback of trapping in
local minima restricts its applications.

In this work, a parameter exaction method based on a hybrid GA–Powell’s method is proposed.
The solution can be close to the global minimum after applying GA. Then, the best individual of GA
is set as the start point of the local optimization process of Powell’s method. Determining when to
start the local optimization process is important. If the local optimization process starts too early, the
hybrid optimization method may easily trap at a local minimum. On the other hand, if it starts too
late the hybrid optimization method may waste some unnecessary time on the global search process.
To save the time on the global search process, the iteration number of the global search process is
brutally reduced from 500 to 100 in a handbook [17]. However, it cannot be guaranteed that the result
from 100 iterations of GA is an appropriate starting point of the local optimization process since the
convergence rate differs from case to case. To effectively determine the appropriate starting point of the
local optimization process, the variance of the fitness of population is used as a criterion. Using this
hybrid optimization algorithm, an accurate solution of the global minimum is achievable. This method
combines the merits of the global search ability of GA and the local search capability of Powell’s
method with good accuracy and rapid convergence. Hence, this hybrid method is very effective in the
parameter extraction of equivalent circuits.

To efficiently obtain the full-wave simulation results for a given device layout, a highly-efficient
full-wave EM simulation tool, called UltraEM® [18], is employed to generate the Y-parameters of the
device layout. These full-wave Y-parameters are set as the optimization objectives for the proposed
hybrid GA–Powell’s method to adjust values of the circuit elements so that the difference between the
full-wave Y-parameters and the Y-parameters of the equivalent circuit (which can be calculated by a
circuit simulation tool [19]) is globally minimized.

The proposed method may have some limitations: Firstly, although this hybrid optimization
method accelerates the parameter extraction of RF devices, it still cannot solve the problem of parameter
extraction in a very wide frequency band, since RF devices may have different properties in different
frequency bands [20]. That is, one specific equivalent circuit model may not be able to match the
physical model of a certain RF device in its entire frequency band. Secondly, the efficiency of the
hybrid optimization method is affected by its initial population of GA. If the initial population is
inappropriately set, the proposed method may not be able to find the appropriate global minimum.

The rest of this paper is organized as follows. In Section 2, the hybrid optimization method
based on GA and Powell’s method is introduced. The efficiency of this hybrid method is then tested
and verified by modeling a planar spiral inductor and a microstrip interdigital capacitor in Section 3.
A brief conclusion is given in Section 4.

2. Hybrid Optimization Method

The proposed hybrid optimization method can be applied for modelling components of RFICs.
For example, as shown in Figure 1, the layout of a planar spiral inductor is synthesized using technique
files, constrains files and so on. The EM simulation results (Figure 1c) of the planar spiral inductor is
used as the target of the equivalent circuit. The value of every equivalent circuit (Figure 1d) element is
able to be extracted from the proposed method effectively, and the model of the equivalent circuit can
be applied for circuit design.
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The process of the proposed hybrid GA–Powell’s method can be divided into two parts: global
search process and local optimization process.

1 
 

 
Figure 1. Parameter extraction application of hybrid optimization method.

2.1. Global Search Process

GA is able to search in multiple regions among a solution space simultaneously. Thus, it reduces
the possibility of the algorithm falling into local minima, and makes the GA have better global
search ability.

Roulette wheel selection [21] is herein used as the selection method of GA. Assuming the
population size is N and the fitness of the individual xi is f (xi), the probability of selection of individual
xi is defined as:

P(xi) =
f (xi)∑N

j=1 f (xi)
, (1)

and the cumulative probability is calculated by:

qi =
∑i

j=1
P(xi). (2)

Then, a random number r with a uniform distribution of 0–1 is generated. If qi−1 ≤ r ≤ qi,
the individual xi is selected to enter a new group of the next generation. This process will be repeated
until the number of individuals in the new group is equal to the size of the parent group.

The crossover process [22] is based on the following two formulas: xt+1
A = αxt

B + (1− α)xt
A

xt+1
B = αxt

A + (1− α)xt
B

(3)

where xt+1
A and xt+1

B are individuals after the crossover process, xt
A and xt

B are two individuals randomly
selected, and α is a constant of the crossover with a value between 0 and 1 (α is herein set as 0.8).
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The mutation process [23] is based on:

xt+1
A =

 xt
A + k(xmax − xt

A)r, pick > 0.5

xt
A − k(xt

A − xmin)r, pick ≤ 0.5
(4)

where xt+1
A is the individual after the mutation, xt

A is the individual before the mutation, k is a constant
of the variation with a value between 0 and 1 (herein, k is set as 0.1 to maintain the diversity of
population), xmax is the upper limit of the individual, xmax is the lower limit of the individual, and r is a
random number. Note that pick is a random number with a uniform distribution in the range of 0 to 1.
When pick > 0.5, choose the first formula; when pick ≤ 0.5, choose the second formula [24].

With the iterations of GA, the solution can gradually converge to the global minimum. To accelerate
the convergence, a local optimization process is applied when the convergence rate of GA slows down.
To determine when to start the local optimization process, the variance of the fitness of population is
defined as:

var( f it) =
1

n− 1

∑n

i=1
( f iti − f it) (5)

When the optimization converges to an optimum solution, the variance of the fitness for a
population is small. Otherwise, the population is scattered in the solution space, and the variance
of the fitness is large. When the variance of the fitness is small, the convergence rate consequently
slows down, in which it may take many iterations for the mutation process of GA to generate a new
individual that has a better fitness than the previous generations. Hence, the local optimization is
applied, once the variance of the fitness defined by Equation (5) is small. The CG search method is the
most effective way to solve a local optimization problem.

2.2. Local Optimization Process

After global search of GA, the individual with best fitness is chosen as starting point of Powell’s
method, which is defined as X(1)

0 .

(1) Set an optional initial point X(0) = X(1)
0 , and set the convergence thresholds as ε1 and ε2 (herein,

ε1 and ε2 are both set as 1 × 10−4). Use the initial basic direction group as the unit coordinate
vector, which can be defined as:

S(k)
i = ei (i = 1, 2, . . . , n) (6)

where ei is the i-th unit coordinate vector, and Si represent the i-th search direction, and k denotes
the k-th iteration round.

(2) Implement one-dimensional search along S(k)
i (i = 1, 2, . . . , n), and generate X(k)

i (i = 1, 2, . . . , n)

from X(k)
i−1 (i = 1, 2, . . . , n) at each direction search. The final point X(k)

n will make the function of

f (X(k)
n ) have the minimum value. Construct a new search direction:

S(k)= X(k)
n −X(k)

0 . (7)

Then, perform a one-dimensional search in direction S(k) to generate a minimum point X(k)
n+1.

(3) If ∣∣∣∣X(k)
n+1 −X(k)

0

∣∣∣∣ < ε1, (8)

or ∣∣∣∣ f (X(k)
n+1) − f (X(k)

0 )
∣∣∣∣< ε2| f (X

(k)
n+1)|, (9)

stop the iteration and export the optimal solution X(k)
n+1 and f (X(k)

n+1). Otherwise, go to step 4.
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(4) Calculate

f (X(k)
i ) (i = 1, 2, . . . , n), (10)

∆(k)
m = max{ f (X(k)

i−1) − f (X(k)
i )}, (i = 1, 2, . . . , n), (11)

where m denotes the corresponding index at which f (X(k)
m−1) − f (X(k)

m ) is the maximum one

among { f (X(k)
i−1) − f (X(k)

i )} (i = 1, 2, . . . , n). Then, the direction that contributes the most in the
k-th iteration round is:

S(k)
m = X(k)

m −X(k)
m−1. (12)

(5) To ensure that the search direction group for each iteration is linearly independent, it is needed to
determine whether the original search direction group can be directly used as the search direction
group in the next iteration. Firstly, determine mapping points:

X(k) = 2X(k)
n −X(k)

0 , (13)

then calculate f (X(k)) and set:

f1 = f (X(k)
0 ), f2 = f (X(k)

n ), f3 = f (X(k)). (14)

If f3 < f1 and

( f1 − 2 f2 + f3)( f1 − f2 − ∆(k)
m )

2
< 0.5∆(k)

m ( f1 − f3)
2, (15)

go to step 6, and replace the most contributing search direction from Equation (12) with the new
search direction. Otherwise, go to step 7.

(6) Set the starting point and the search direction group of the (k + 1)-th iteration as follows:

X(k+1)
0 = X(k)

n+1, (16)

Si
(k+1)(i = 1, 2, . . . , n) =

{
S1

(k), . . . , Sm−1
(k), S(k), Sm+1

(k), . . . , Sn
(k)

}
, (17)

and replace the most contributing search direction S(k)
m with the new search direction S(k). Then,

set k = k + 1 and go to step 2.
(7) Set the starting point and the search direction group of the (k + 1)-th iteration as follows: If f2 < f3,

X(k+1)
0 = X(k)

n . (18)

Otherwise
X(k+1)

0 = X(k), (19)

Si
(k+1) = Si

(k) (i = 1, 2, . . . , n). (20)

Set k = k + 1, and go to step 2 [14].

After the local optimization process, the solution is able to converge to an appropriate and accurate
global minimum. This hybrid method combines the advantages of the global search ability of GA and
the high accuracy and fast convergence of Powell’s method in the local search.

2.3. RF Device Modeling

The modeling process is shown in Figure 2. The full-wave simulation result of the layout of an RF
component is obtained by UltraEM®, and the corresponding Y-parameters are labeled as YEM. By using
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a Spice simulator, the Y-parameters of the equivalent circuit can be obtained from the calculated port
voltage and current, viz:

I = YV, (21)

where Y is an N × N matrix, and V and I are the port voltage vector and the port current vector,
respectively. The entry of the Y-matrix is defined as:

Ynm =
In

Vm
|Vk=0 f or k,m. (22)

If the voltage of the excited port is set as 1 volt, the Y-parameters are equal to the port currents, viz:

Ynm = In. (23)

Label the Y-parameters simulated from the equivalent circuit as Yspice. In order to fit the result of
the equivalent circuit with the accurate EM simulation, the objective function to be optimized can be
defined as:

obj(Yspice, YEM) =
∑ f e

i= f s

∑N

m=1

∑N

n=1

∣∣∣(YEMmn)i − (Yspicemn
)i

∣∣∣, (24)

where N is the port number of the device; fs and fe represent the start and the end frequencies of
simulation, respectively. To verify the effect of the method proposed in Section 2, a planar spiral
inductor and a microstrip interdigital capacitor were tested.
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3. Results and Discussions

In order to illustrate the effectiveness of this hybrid method, a planar spiral inductor and a
microstrip interdigital capacitor are used as examples. The interested frequency range is assumed
to be from 0.1 GHz to 2.3 GHz. Both examples are modeled by (1) pure GA with 500 individuals;
(2) pure GA with 1000 individuals; and (3) Hybrid GA–Powell’s method (including 500 individuals of
GA). In order to ensure accuracy and efficiency of the global search process in the hybrid optimization
method, the initial population of GA in the hybrid optimization is set as 500. In order to validate
accuracy and efficiency of the hybrid optimization method, the initial population of the pure GA is set
as 500 and 1000 for comparison. For all these three cases, the local optimization process is started after
var( f it) < v (0.001) herein.
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3.1. Planar Spiral Inductor

The planar spiral inductor is fabricated on a substrate with dielectric constant of 11.9 and thickness
of 750 microns. The thickness and conductivity of the metal are 2 microns and 2.8 × 107 S/m respectively.
The layout of the planar spiral inductor is shown in Figure 3, where the geometrical parameters are
shown in Table 1.
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Table 1. Parameters of planar spiral inductor.

Name Values Units

W Conductor width 13 um
S Conductor spacing 7 um
N Number of turns 3 integer
L1 Length of second outermost segment 300 um
L2 Length of outermost segment 300 um

The lumped equivalent circuit of the planar spiral inductor [6] to be modelled by hybrid
GA–Powell’s method is shown in Figure 4.
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Figure 4. Equivalent circuit of the planar spiral inductor.

With the three aforementioned settings, the errors of objective function for the planar spiral
inductor are plotted in Figure 5, whereas the final errors and time costs are listed in Table 2. The initial
population of the global search process in the hybrid GA–Powell’s method is the same as the pure GA
method with 500 individuals. From Figure 5, one can see that the convergence rate of the pure GA
optimization gradually slows down after 22 iterations. For the hybrid GA–Powell’s method, the local
optimization is applied after the global search.

In Table 2, it can be observed that for the hybrid GA–Powell’s method with seven iterations of the
local optimization process after the global search, the error finally drops to 1.4157 × 10−2. In contrast,
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when using 50 iterations of pure GA with 500 and 1000 individuals, the errors are still 1.7347 × 10−1

and 2.03798 × 10−2, respectively. Moreover, the total times costed by the aforementioned process for
the three settings are 574 s, 1197 s and 378 s, respectively.

To validate the accuracy of the proposed method, the S-parameters calculated by the full-wave
simulation of the layout using UltraEM® and the circuit simulation of the equivalent circuit extracted
by the three optimization methods are compared in Figure 6, while the extracted parameters are shown
in Table 3. The circuit simulation results using setting 1 cannot match the full-wave results, but the
results using setting 3 agree very well with the full-wave results.
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Table 3. Result of planar spiral inductor parameters extraction.

Circuit
Components

Pure GA with
Population of 500

Pure GA with
Population of 1000 Hybrid Method Units

Rs 6.4598 6.4770 6.4896 ohm
Ls 7.7692 7.7662 7.7860 nH
Cs 5.0782 12.7123 15.161 fF

Cox1 0.1271 0.0496 0.0436 pF
Csi1 11.5294 10.9931 0.0503 pF
Rsi1 18.3767 14.0226 353.17 ohm
Cox2 0.4024 0.0557 0.0243 pF
Csi2 15.6328 6.3849 0.000668 pF
Rsi2 22.0197 22.8286 1104.1 ohm

3.2. Microstrip Interdigital Capcitor

The microstrip interdigital capacitor is fabricated on a substrate with dielectric constant of 12.9,
loss tangent of 0.001, and thickness of 100 microns. The conductivity of the metal is 2.8 ×107 S/m.
The layout of microstrip interdigital capacitor is shown in Figure 7, where the geometrical parameters
of the parameters are shown in Table 4.
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Table 4. Parameters of microstrip interdigital capacitor.

Name Values Units

W Finger width 30 um
G Gap between fingers 30 um
Ge Gap at end of fingers 30 um
L Length of overlapped region 600 um

Np Number of finger pairs 3 integer
Wt Width of interconnect 30 um

The lumped equivalent circuit of the microstrip interdigital capacitor [25] to be modelled by
hybrid GA–Powell’s method is shown in Figure 8a,b. The equivalent circuit in Figure 8a is used for
lower frequency applications, while the equivalent circuit in Figure 8b is used for higher frequency.
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The interdigital capacitor is also modelled using the aforementioned three settings. The errors of
objective function are shown in Figure 9. It is observed that after 31 iterations the convergence of the
global search becomes slow, where the hybrid method starts the local optimization process and can
rapidly converge to a small error.

The final errors and time costs are shown in Table 5. In the hybrid GA–Powell’s method, eight
iterations of the local optimization process are implemented after 30 iterations of the global search
process, and the error finally drops to 1.45255 × 10−4. Compared with the pure GA in which the errors
using 50 iterations with 500 and 1000 individuals are 8.324 × 10−3 and 1.16 × 10−3, respectively, the
results of the proposed method are much better. In regard to the total time cost, because the proposed
method only spends 38 iterations to converge, it costs only 412 s. In contrast, the pure GA methods
using 50 iterations with 500 and 1000 individuals spend 529 s and 1079 s, respectively, yet still have
larger errors than the proposed method.

The extracted parameters using these three methods are listed in Table 6. The full-wave results
and the circuit simulation results are both shown in Figure 10. The circuit simulation results using
setting 1 cannot match the full-wave results. For the results of setting 2, the amplitude of S11 cannot
match the full-wave results. In sharp contrast, the results using setting 3 agree very well with the
full-wave results. The accuracy of the hybrid GA–Powell’s method is validated once again.
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Table 5. Error after optimization, number of iterations and time cost of optimization algorithm with
the example of planar spiral inductor.

Optimization Algorithm Error after
Optimization

Number of Iterations
Time Cost

GA Powell’s Method

Pure GA with population of 500 8.324 × 10−3 50 NA 529 s
Pure GA with population of 1000 1.16 × 10−3 50 NA 1079 s

Hybrid GA–Powell’s method 1.45255 × 10−4 30 8 412 s
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simulation and equivalent circuit simulation modeled by pure GA with population of 500, pure GA with
population of 500 and hybrid GA–Powell’s method. (a) Amplitude comparison of S-parameters S11;
(b) amplitude comparison of S-parameters S21; (c) phase comparison of S-parameters S11; (d) phase
comparison of S-parameters S21.

Table 6. Results of microstrip interdigital capacitor parameters extraction.

Circuit
Components

Pure GA with
Population of 500

Pure GA with
Population of 1000 Hybrid Method Units

Cs1 0.1929 0.1831 0.1829 pF
L 11.5672 1.2317 0.5412 nH
C 0.1030 0.1289 0.1304 pF
R 8.3133 5.3290 1.4035 ohm

Cs2 0.1952 0.1821 0.1831 pF
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3.3. More Discussions

To determine the appropriate starting point of the local optimization process, the variance of
the fitness of population is used. The error of objective function and the variance of the fitness of
population in each generation are recorded. It is clearly shown in Figure 11, when the variance of the
fitness of population becomes small, the convergence rate of GA slows down. After the variance of the
fitness of the population drops to 0.001, the error reduction of the objective function becomes very
slow. Hence, the variance of the fitness of the population can be employed to effectively determine the
starting point of the local optimization process. As is shown in Figure 12, after a full 50 iterations of
GA, the local optimization process successful finds the appropriate global minimum for both examples.
However, if only 10 iterations of GA are used, the local optimization process is trapped at a local
minimum. For the proposed method, the local optimization process starts when var( f it) < v (0.001).
By so doing, this proposed method can successfully achieve the global minimum (i.e., without being
trapped in a local minimum) and yet save much time from unnecessary iterations of the global search
process. The errors of the objective function by the three different hybrid optimization methods stated
above are shown in Table 7.
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Table 7. Error of the objective function by three different hybrid optimization methods.

Hybrid Optimization Method Error after Optimization

Planar Spiral Inductor Microstrip Interdigital Capacitor

Local optimization process started
when var(fit) < 0.001 1.27055 × 10−2 2.01342 × 10−4

Local optimization process started
after 50 iterations of GA 1.42699 × 10−2 1.66245 × 10−4

Local optimization process started
after 10 iterations of GA 0.22868 × 10−1 1.24562 × 10−2

4. Conclusions

In order to efficiently determine the circuit elements of the equivalent circuit model, a hybrid
GA–Powell’s method has been proposed. This method combines the merits of the global search ability
of GA and the local search capability of Powell’s method with good accuracy and rapid convergence.
The variance of the fitness of population has been introduced as a key criterion to effectively determine
the starting point of the local optimization process. This hybrid method is able to effectively search
the global minimum of a parameter extraction problem. The planar spiral inductor and microstrip
interdigital capacitor have been used as design examples to validate the accuracy and efficiency of
this method. Some problems, such as very wide-band parameter extraction, may not be tackled by
the proposed method. In our ongoing research, the equivalent circuit topology could be adjustable
adaptively (e.g., increasing the order of ladder model) so as to maintain the modeling accuracy in a
very wide frequency band, which will be reported sometime in the near future.
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