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Abstract: Harris hawk optimization (HHO) is one of the recently proposed metaheuristic algorithms
that has proven to be work more effectively in several challenging optimization tasks. However, the
original HHO is developed to solve the continuous optimization problems, but not to the problems
with binary variables. This paper proposes the binary version of HHO (BHHO) to solve the feature
selection problem in classification tasks. The proposed BHHO is equipped with an S-shaped or
V-shaped transfer function to convert the continuous variable into a binary one. Moreover, another
variant of HHO, namely quadratic binary Harris hawk optimization (QBHHO), is proposed to
enhance the performance of BHHO. In this study, twenty-two datasets collected from the UCI machine
learning repository are used to validate the performance of proposed algorithms. A comparative
study is conducted to compare the effectiveness of QBHHO with other feature selection algorithms
such as binary differential evolution (BDE), genetic algorithm (GA), binary multi-verse optimizer
(BMVO), binary flower pollination algorithm (BFPA), and binary salp swarm algorithm (BSSA).
The experimental results show the superiority of the proposed QBHHO in terms of classification
performance, feature size, and fitness values compared to other algorithms.

Keywords: feature selection; binary optimization; classification; Harris hawk optimization; quadratic
transfer function

1. Introduction

In recent days, the data representation has become one of the essential factors that can significantly
affect the performance of classification models. To date, more and more high dimensional data are
gathered from the process of data acquisition, which introduces the curse of dimensionality to the data
mining tasks [1]. In addition, the presence of redundant and irrelevant features is another issue that
degrades the performance of the system and brings additional computational cost. Therefore, feature
selection has become a critical step in the data mining process. The main goal of feature selection is to
select the best combination of potential features that offers a better understanding of the classification
model. Feature selection not only improves the prediction accuracy but also reduces the dimension of
data [2,3].

Generally, feature selection can be categorized into two classes: filter and wrapper. The filter method
is simple, and it can obtain the results faster. However, the filter method does not dependent on the
learning algorithm, thus resulting in unsatisfactory performance [4,5]. As compared to the filter method,
the wrapper method can usually provide higher classification accuracy. The wrapper method includes a
machine learning algorithm as part of the evaluation, which enables it to achieve better classification results
than the filter method. Thus, wrapper methods have more widely used in feature selection works [6–8].
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Wrapper feature selection is also known as an NP-hard combinatorial optimization problem
in which the possible solutions increase exponentially with the number of features. To date, many
researchers adopt metaheuristic algorithms (wrapper methods) to tackle the feature selection problem
in classification tasks. From the previous works, metaheuristic algorithms were showing excellent
performance when dueling with the feature selection problem. For instance, the binary grey wolf
optimization (BGWO) was developed to resolve this problem in [9] as a wrapper feature selection
method. Additionally, an enhanced version of grey wolf optimizer, namely multi-strategy ensemble
grey wolf optimizer (MEGWO) was designed to solve the feature selection problem on real-world
applications [10]. The authors proposed the enhanced global best lead strategy, adaptable cooperative
strategy, and disperse foraging strategy to boost the performance of GWO. Sindhu et al. [11] introduced
an improved sine cosine algorithm (ISCA) that integrated an elitism strategy for feature selection.
Jude Hemanth and Anita [12] developed the modified genetic algorithms to evolve the usage of genetic
algorithm for tackling the feature selection issue in brain image classification. Moreover, the binary
versions of spotted hydra optimizer and multi-verse optimizer were proposed to solve the feature
selection problems as the wrapper methods [13,14]. Recently, a chaotic dragonfly algorithm (CDA)
was developed for wrapper feature selection [15]

In this paper, we propose the binary version of Harris hawk optimization (HHO) to tackle
the feature selection problem in classification tasks. HHO is a recently proposed metaheuristic
algorithm in 2019. Generally, HHO mimics the concepts of Harris hawks to explore the prey, surprise
pounce, and different attack strategies of hawks in nature. According to the literature, HHO showed
superior performance for several benchmark tests compared to other well-established metaheuristic
algorithms [16]. Among the competitors, HHO is highly capable of maintaining a well stable balance
between exploration (global search) and exploitation (local search), which allows it to score the best
properties in optimization tasks. As a bonus, HHO utilizes a series of search strategies in exploitation
that enables it to provide a constructive impact on local search. Thus, HHO can be considered as a
powerful algorithm for optimization problems. However, HHO is originally designed to solve the
continuous optimization problems, which cannot directly apply to binary optimization problems such
as feature selection. To the best of our knowledge, there is no binary version of HHO has proposed to
solve the feature selection problems in the literature. Moreover, according to the No Free Lunch (NFL)
theorem, no universal metaheuristic algorithm was good at solving all the optimization problems [17].
This motivates us to propose a new binary version of HHO in this work.

In this study, we integrate the S-shaped and V-shaped transfer functions into the algorithm to
convert the continuous HHO into the binary version (BHHO). Furthermore, we propose another
new variant of HHO, namely quadratic binary Harris hawk optimization (QBHHO) for performance
enhancement. Unlike BHHO, QBHHO integrates the quadratic transfer function for the conversion.
The proposed BHHO and QBHHO algorithms are used to solve the feature selection problems as
wrapper methods. Twenty-two datasets collected from UCI machine learning repository are employed
to test the performance of proposed algorithms in this work. Moreover, five state-of-the-art methods
include binary differential evolution (BDE), genetic algorithm (GA), binary multi-verse optimizer
(BMVO), binary flower pollination algorithm (BFPA), and binary salp swarm algorithm (BSSA) are
applied to examine the effectiveness of the proposed algorithm in feature selection. The experimental
results reveal the superiority of QBHHO not only in the optimal classification performance but also the
minimal number of selected features.

The remainder of this paper is organized as follows: Section 2 introduces the standard Harris hawk
optimization (HHO) algorithm. Section 3 presents the proposed binary Harris hawk optimization
(BHHO) algorithms. In Section 4, the detailed on the quadratic binary Harris hawk optimization
(QBHHO) algorithms is outlined. Section 5 demonstrates the application of proposed BHHO and
QBHHO algorithms for feature selection. Section 6 discusses the finding of the experiments. Section 7
concludes the findings of this research.
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2. Harris Hawk Optimization

Harris hawk optimization (HHO) is a recent metaheuristic algorithm proposed by Heidari and
his colleagues in 2019 [16]. HHO mimics the concepts of Harris hawks to explore the prey, surprise
pounce, and different attack strategies of Harris hawks in nature. In HHO, the candidate solutions are
represented by hawks, while the best solution (nearly optimal solution) is known as prey. The Harris
hawks try to track the prey by using their powerful eyes and then perform the surprise pounce to catch
the prey detected.

Generally, HHO is modeled into exploitation and exploration phases. The HHO algorithm can be
transferred from exploration to exploitation, and then the exploration behavior is changed based on
the escaping energy of prey. Mathematically, the escaping energy of prey can be computed as [16]:

E = 2E0

(
1−

t
T

)
(1)

E0 = 2r− 1 (2)

where t is the current iteration, T is the maximum number of iterations, E0 is the initial energy randomly
generated in [−1, 1], and r is a random number in [0, 1]. Figure 1 shows an illustration of escaping
energy of prey over 300 iterations. As can be seen, the escaping energy was showing a decreasing trend.
When the escaping energy of prey |E| ≥ 1, HHO allowed the hawks to search globally on different
regions. On the contrary, HHO tended to promote the local search around the neighborhood of the
best solutions when the escaping energy of prey |E| < 1.
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2.1. Exploration Phase

In the exploration phase, the position of the hawk is updated via random location and other
hawks as follow [16]:

X(t + 1) =
{

Xk(t) − r1
∣∣∣Xk(t) − 2r2X(t)

∣∣∣ q ≥ 0.5
(Xr(t) −Xm(t)) − r3(lb + r4(ub− lb)) q < 0.5

(3)

where X is the position of the hawk, Xk is the position of randomly selected hawk, Xr is the position of
prey (global best solution in the entire population), t is the current iteration, ub and lb are the upper
and lower boundaries of search space, r1, r2, r3, r4, and q are the five independent random numbers in
[0, 1]. The Xm is the mean position of the current population of hawks, and it can be computed using
Equation (4).

Xm(t) =
1
N

N∑
n=1

Xn(t) (4)
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where Xn is the n-th hawk in the population, and N is the number of hawks (population size).

2.2. Exploitation Phase

In the exploitation phase, the position of the hawk is updated based on four different situations.
This behavior is manipulated based on the escaping energy of prey (E), and the chance of prey in
successfully escaping (r < 0.5) or not successfully escaping (r ≥ 0.5) before surprise bounce.

2.2.1. Soft Besiege

The soft besiege happens when r ≥ 0.5 and |E| ≥ 0.5. In this situation, the hawk updates its position
using Equation (5):

X(t + 1) = ∆X(t) − E
∣∣∣JXr(t) −X(t)

∣∣∣ (5)

where E is the escaping energy of prey, X is the position of the hawk, t is the current iteration, ∆X is the
difference between the position of the prey and current hawk, and J is the jump strength. The ∆X and J
are defined as follows [16]:

∆X(t) = Xr(t) −X(t) (6)

J = 2(1− r5) (7)

where r5 is a random number in [0, 1] that changes randomly in each iteration.

2.2.2. Hard Besiege

The HHO performs the hard besiege when r ≥ 0.5 and |E| < 0.5. In this situation, the position of
the hawk is updated as follow [16]:

X(t + 1) = Xr(t) − E
∣∣∣∆X(t)

∣∣∣ (8)

where X is the position of the hawk, Xr is the position of prey, E is the escaping energy of prey, and ∆X
is the difference between the position of the prey and current hawk.

2.2.3. Soft Besiege with Progressive Rapid Dives

The soft besiege with progressive rapid dives is occurred when r < 0.5 and |E| ≥ 0.5. The hawk
progressively selects the best possible dive to catch the prey competitively. In this circumstance, the
new position of the hawk is generated as follows [16]:

Y = Xr(t) − E
∣∣∣JXr(t) −X(t)

∣∣∣ (9)

Z = Y + α× Levy(D) (10)

where Y and Z are two newly generated hawks, E is the escaping energy, J is the jump strength, X is
the position of the hawk, t is the current iteration, Xr is the position of prey, D is the total number of
dimensions, α is a random vector with dimension D, and Levy is the levy flight function that can be
computed as:

Levy(x) = 0.01×
µ× σ

|v|1/β
(11)

where u, v are two independent random numbers generated from the normal distribution, and σ is
defined as:

σ =

 Γ(1 + β) × sin
(πβ

2

)
Γ
( 1+β

2

)
× β× 2(

β−1
2 )


1
β

(12)
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where β is a default constant set to 1.5. In this phase, the position of the hawk is updated as in
Equation (13).

X(t + 1) =
{

Y if F(Y) < F(X(t))
X if F(Z) < F(X(t))

(13)

where F(.) is the fitness function, Y and Z are two new solutions obtained from Equations (9) and (10).

2.2.4. Hard Besiege with Progressive Rapid Dives

The last situation is hard besiege with progressive rapid dives, which is performed when r < 0.5
and |E| < 0.5. In this condition, two new solutions are generated as follows [16]:

Y = Xr(t) − E
∣∣∣JXr(t) −Xm(t)

∣∣∣ (14)

Z = Y + α× Levy(D) (15)

where E is the escaping energy, J is the jump strength, Xm is the mean position of the hawks in current
population, t is the current iteration, Xr is the position of the prey, D is the total number of dimensions,
α is a random vector with dimension D, and Levy is the levy flight function. Afterward, the position of
the hawk is updated as:

X(t + 1) =
{

Y if F(Y) < F(X(t))
X if F(Z) < F(X(t))

(16)

where F(.) is the fitness function, Y and Z are two new solutions obtained from Equations (14) and (15).

3. The Proposed Binary Harris Hawk Optimization

Previous work indicates that HHO can usually offer significantly superior results than other
well-established optimizers in several benchmark tests. Among rivals, HHO showed highly competitive
performance concerning the quality of exploration and exploitation [16]. The main reason for the
excellent exploration is due to the different diversification mechanisms that facilitate a high global
search capability of HHO in the initial iterations. As for the exploitation, HHO utilizes different Levy
flight-based patterns with short length jump and a series of searching strategies to boost the exploitative
behavior. Moreover, HHO benefits from the dynamic randomized escaping energy parameter that
allows it to retain a smooth transition between local search and global search [16]. These attractive
behaviors of HHO motivate us to apply it in the feature selection problem.

3.1. Representation of Solutions

Feature selection is considered as a combinatorial binary optimization problem that represents the
solutions on the binary search space. However, HHO is designed to solve the continuous optimization
problems, which is not suitable for the feature selection problem. To develop the binary version of
HHO, the solutions should be representing in binary form (either 0 or 1). Thus, several modifications
are needed to meet the requirement.

3.2. Transformation of Solutions

According to literature, the utilization of transfer function is one of the effective ways to convert
continuous optimizer into a binary one. In comparison with other operators, the transfer function is
cheaper, simple, and faster, which leads to the ease of implementation [18,19]. In most of the previous
studies, researchers employed either S-shaped or V-shaped transfer function to convert the continuous
optimizer to binary. Therefore, in this study, we use four S-shaped (S1–S4) and V-shaped (V1–V4)
transfer functions to change the continuous HHO into the binary version. Table 1 shows the S-shaped
and V-shaped transfer functions with mathematical definitions. The illustrations of S-shaped and
V-shaped transfer functions are demonstrated in Figure 2.
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Table 1. The utilized S-shaped and V-shaped transfer functions.

S-Shaped Family Transfer Function V-Shaped Family Transfer Function

S1 T(x) = 1
1+e−2x V1 T(x) =

∣∣∣∣∣erf
( √

π
2 x

)∣∣∣∣∣
S2 T(x) = 1

1+e−x V2 T(x) =
∣∣∣tanh(x)

∣∣∣
S3 T(x) = 1

1+e(−x/2) V3 T(x) =
∣∣∣∣(x)/√1 + x2

∣∣∣∣
S4 T(x) = 1

1+e(−x/3) V4 T(x) =
∣∣∣∣ 2
πarc tan

(
π
2 x

)∣∣∣∣
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By integrating the transfer function into binary HHO (BHHO), the algorithm is able to perform
the search on the binary search space. In BHHO, the position of the hawk is updated in two stages.
In the first stage, BHHO updates the position of the hawk (Xi

d(t)) into a new position (∆Xi
d(t + 1))

similar to HHO. Note that the new position (∆Xi
d(t + 1)) is presenting in continuous form. In the

second stage, the S-shaped or V-shaped transfer function is used to transform the new position into
probability value. The new position of the hawk is then updated using Equation (17) or Equation (18).
In this way, the position of the hawk can be expressed in binary form.

In S-shaped family, BHHO updates the new position of the hawk as follow [20]:

Xd
i (t + 1) =

 1 if rand(0, 1) < T
(
∆Xd

i (t + 1)
)

0 otherwise
(17)

where T(x) is the S-shaped transfer function, rand(0,1) is a random number in [0,1], X is the position of
the hawk, i is the order of hawk in the population, d is the dimension, and t is the current iteration.

Unlike the S-shaped transfer function, V-shaped transfer function does not force the search agent
into 0 or 1. In V-shaped family, the new position of the hawk is updated as [21]:

Xd
i (t + 1) =

 ¬Xd
i (t) if rand(0, 1) < T

(
∆Xd

i (t + 1)
)

Xd
i (t) otherwise

(18)
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where T(x) is the V-shaped transfer function, rand(0,1) is a random number in [0,1], X is the position of
the hawk, i is the order of hawk in the population, d is the dimension, t is the current iteration, and ¬X
is the complement of X.

3.3. Binary Harris Hawk Optimization Algorithm

The pseudocode of BHHO is demonstrated in Algorithm 1.

Algorithm 1. Binary Harris hawk optimization.

Inputs: N and T
1: Initialize the Xi for N hawks
2: for (t = 1 to T)
3: Evaluate the fitness value of the hawks, F(X)
4: Define the best solution as Xr

5: for (i = 1 to N)
6: Compute the E0 and J as shown in (2) and (7), respectively
7: Update the E using (1)

// Exploration phase //
8: if (|E| ≥ 1)
9: Update the position of the hawk using (3)
10: Calculate the probability using S-shaped or V-shaped transfer function
11: Update new position of the hawk using (17) or (18)

// Exploitation phase //
12: elseif (|E| < 1)

// Soft besiege //
13: if (r ≥ 0.5) and (|E| ≥ 0.5)
14: Update the position of the hawk as shown in (5)
15: Calculate the probability using S-shaped or V-shaped transfer function
16: Update new position of the hawk using (17) or (18)

// Hard besiege //
17: elseif (r ≥ 0.5) and (|E| < 0.5)
18: Update the position of the hawk using (8)
19: Calculate the probability using S-shaped or V-shaped transfer function
20: Update new position of the hawk using (17) or (18)

// Soft besiege with progressive rapid dives //
21: elseif (r < 0.5) and (|E| ≥ 0.5)
22: Update the position of the hawk using (13)
23: Calculate the probability using S-shaped or V-shaped transfer function
24: Update new position of the hawk using (17) or (18)

// Hard besiege with progressive rapid dives //
25: elseif (r < 0.5) and (|E| < 0.5)
26: Update the position of the hawk using (16)
27: Calculate the probability using S-shaped or V-shaped transfer function
28: Update new position of the hawk using (17) or (18)
29: end if
30: end if
31: next i
32: Update Xr if there is a better solution
33: next t
Output: Global best solution

4. The Proposed Quadratic Binary Harris Hawk Optimization

In the previous section, the BHHO algorithms have discussed. However, in the experiment, we
found that the performance of BHHO was still far from perfect. It shows that BHHO cannot efficiently
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solve the feature selection problems. From the aforementioned, transfer function is one of the simplest
and effective ways to convert the HHO into a binary one. However, the BHHO with S-shaped or
V-shaped transfer function might not work effectively in feature selection tasks. In this regard, we
propose the new quadratic binary Harris hawk optimization (QBHHO) to enhance the performance of
BHHO in current work. Unlike BHHO, QBHHO utilizes the quadratic transfer function to convert the
HHO into a binary one. In this work, we propose four quadratic transfer functions (Q1–Q4), as shown
in Table 2. Figure 3 presents the illustrations of quadratic transfer functions.

Table 2. The utilized quadratic transfer functions.

Name Transfer Function

Q1 T(x) =


∣∣∣∣ x
(0.5xmax)

∣∣∣∣ , if x < 0.5xmax

1 , otherwise

Q2 T(x) =


(

x
(0.5xmax)

)2
, if x < 0.5xmax

1 , otherwise

Q3 T(x) =


(

x
(0.5xmax)

)3
, if x < 0.5xmax

1 , otherwise

Q4 T(x) =


(

x
(0.5xmax)

)1/2
, if x < 0.5xmax

1 , otherwise
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The QBHHO first updates the position of the hawk and then converts the new position into
probability value using the quadratic transfer function. Afterward, the following rule is used for
updating the hawk’s position [22]:

Xd
i (t + 1) =

 ¬Xd
i (t) if rand(0, 1) < T

(
∆Xd

i (t + 1)
)

Xd
i (t) otherwise

(19)

where T(x) is the quadratic transfer function, rand(0,1) is a random number in [0,1], X is the position of
the hawk, i is the order of hawk in the population, d is the dimension, t is the current iteration, and ¬X
is the complement of X. The pseudocode of QBHHO is demonstrated in Algorithm 2.



Electronics 2019, 8, 1130 9 of 27

Algorithm 2. Quadratic binary Harris hawk optimization.

Inputs: N and T
1: Initialize the Xi for N hawks
2: for (t = 1 to T)
3: Evaluate the fitness value of the hawks, F(X)
4: Define the best solution as Xr

5: for (i = 1 to N)
6: Compute the E0 and J as shown in (2) and (7), respectively
7: Update the E using (1)

// Exploration phase //
8: if (|E| ≥ 1)
9: Update the position of the hawk using (3)
10: Calculate the probability using quadratic transfer function
11: Update new position of the hawk using (19)

// Exploitation phase //
12: elseif (|E| < 1)

// Soft besiege //
13: if (r ≥ 0.5) and (|E| ≥ 0.5)
14: Update the position of the hawk as shown in (5)
15: Calculate the probability using quadratic transfer function
16: Update new position of the hawk using (19)

// Hard besiege //
17: elseif (r ≥ 0.5) and (|E| < 0.5)
18: Update the position of the hawk using (8)
19: Calculate the probability using quadratic transfer function
20: Update new position of the hawk using (19)

// Soft besiege with progressive rapid dives //
21: elseif (r < 0.5) and (|E| ≥ 0.5)
22: Update the position of the hawk as shown in (13)
23: Calculate the probability using quadratic transfer function
24: Update new position of the hawk using (19)

// Hard besiege with progressive rapid dives //
25: elseif (r < 0.5) and (|E| < 0.5)
26: Update the position of the hawk using (16)
27: Calculate the probability using quadratic transfer function
28: Update new position of the hawk using (19)
29: end if
30: end if
31: next i
32: Update Xr if there is a better solution
33: next t
Output: Global best solution

5. Application of Proposed BHHO and QBHHO for Feature Selection

In this section, the application of the proposed BHHO and QBHHO algorithms for the feature
selection problems are presented. Generally, the feature selection problem is an NP-hard combinatorial
binary optimization problem, in which the possible solutions increase exponentially with the number
of features. Let D be the total number of features. The number of possible solutions is 2D-1, which
is impractical to perform the search exhaustively. Therefore, we propose the BHHO and QBHHO
to automatically find the promising solution (feature subset) that can significantly improve the
performance of the classification model.
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In feature selection, the solutions are representing in binary form, and they can be either bit ‘0’ or
bit ‘1’. Bit ‘1’ indicates that the feature is selected, whereas bit ‘0’ represents the unselected feature [23].
Taking the sample solution (solution consists of 10 features) in Figure 4 as an example, it shows that a
total of five features (1st, 3rd, 4th, 7th, and 8th) have been selected.
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In wrapper feature selection, a fitness function (objective function) is required to evaluate the
individual solution. The primary goal of feature selection is to enhance prediction accuracy and to
reduce the number of features. In this work, the fitness function that considers both criteria is utilized,
and it is defined as [9]:

↓ Fitness Function = αError + (1− α)
|S|
|F|

(20)

Error =
No. o f wrongly predicted
Total number o f instances

(21)

where Error is the error rate computed by a learning algorithm, |S| is the length of feature subset, |F|

is the total number of features, and α is a parameter used to control the influence of classification
performance and feature size. In Equation (20), the first term is the classification performance, while
the second term is the feature reduction.

6. Experiment and Results

6.1. Dataset

In this study, twenty-two benchmark datasets collected from the UCI machine learning repository
are used to validate the performances of proposed approaches [24]. Table 3 outlines the datasets used
in this work. For each individual dataset, the features are normalized between 0 and 1 to prevent the
numerical problem.

6.2. Parameter Settings

In the present study, the k-nearest neighbor (KNN) algorithm with Euclidean distance and k = 5
is used to compute the error rate (first term of the fitness function). Different BHHO and QBHHO
algorithms are employed to find the most informative feature subset. The algorithms are repeated 30
times with different random seeds. Besides, the K-fold cross-validation manner is applied to compute
the error rate in the fitness function for preventing the overfitting [15]. In each of the 30 runs, the dataset
is partitioned into K equal parts. One part is used for the testing set, while the remaining K – 1 parts are
used for the training set. The procedure is repeated with K times using different parts for the testing
and training sets, and the average results are recorded. Finally, the average statistical measurements
are collected throughout 30 independent runs and displayed as the final results. In the previous works,
KNN was shown to be faster, simpler, and ease of implement [13,25,26]. Thus, the KNN is chosen as
the learning algorithm in this work.

All the experiments are executed on MATLAB 9.3 using a PC with an Intel Core i5-9400F CPU
2.90 GHz and 16.0 GB RAM. In this study, we set K = 10. The number of hawks (population size) is set
to 10, and the maximum number of iterations is 100. This hyper-parameter setting was utilized in
various previous works [27,28]. The dimension of search space is equal to the total number of features
of each dataset. According to [9,28,29], we choose the α = 0.99 since the classification performance is
the most important in the current work.
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Table 3. The list of used datasets.

No. Dataset Number of Instances Number of Features

1 Glass 214 10
2 Hepatitis 155 19
3 Iris 150 4
4 Lymphography 148 18
5 Primary Tumor 339 17
6 Soybean 307 35
7 Horse Colic 368 27
8 Ionosphere 351 34
9 Zoo 101 16
10 Wine 178 13
11 Breast Cancer W 699 9
12 Lung Cancer 32 56
13 Musk 1 476 166
14 Arrhythmia 452 279
15 Dermatology 366 34
16 SPECT Heart 267 22
17 Libras Movement 360 90
18 ILPD 583 10
19 Seeds 210 7
20 LSVT 126 310
21 Diabetic 1151 19
22 Parkinson 756 754

6.3. Evaluation of Proposed BHHO and QBHHO Algorithms

In the first part of the experiment, the performances of the BHHO and QBHHO algorithms are
validated on 22 datasets. The commonly used evaluation metrics include the best fitness value, mean
fitness value, standard deviation of fitness value (STD), classification accuracy, and the number of
selected features (feature size) are measured, and they can be defined as follows [9,30,31]:

Best Fitness = minR
m=1Gbm (22)

Mean Fitness =
1
R

R∑
m=1

Gbm (23)

STD =

√∑R
m=1(Gbm − µ)

2

R− 1
(24)

Average accuracy =
1
R

R∑
m=1

No. o f correctly predictedm

Total number o f instances
(25)

Average feature size =
1
R

R∑
m=1

|S|m (26)

where Gb is the global best solution obtained from run m, µ is the mean fitness, |S| is the number of
selected features, m is the order of run, and R is the maximum number of runs.
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The twelve proposed approaches, BHHO (S1–S4 and V1–V4) and QBHHO (Q1–Q4) are compared
to investigate the best binary version of HHO in feature selection. Tables 4–6 present the experimental
results of the best, mean, and STD fitness values of proposed algorithms. In these tables, the best result
is highlighted with bold text. In Table 4, the BHHO-V1 scored the optimal best fitness value on most of
the datasets (twelve datasets), followed by QBHHO-Q4 (11 datasets). From Table 5, the best algorithm
that contributed to the lowest mean fitness value was found to be QBHHO-Q4 (12 datasets), followed
by BHHO-S1 and BHHO-S2 (five datasets). This shows that QBHHO-Q4 provided the highest diversity.
On the one hand, BHHO-S3 perceived the most consistent results due to the lowest STD values in eight
datasets. Furthermore, the convergence curves of the proposed algorithms on 22 datasets were shown
in Figures 5 and 6.

Tables 7 and 8 outline the result of the average classification accuracy and average feature size of
the proposed algorithms. As can be observed, QBHHO-Q4 outperformed other algorithms in finding
promising solutions, thus, leading to optimal classification accuracy. Among rivals, QBHHO-Q4 has
achieved the highest average classification accuracy in eleven datasets. It shows that the quadratic
transfer function can usually overtake S-shaped and V-shaped transfer functions in feature selection.
On the other hand, QBHHO-Q2 provided the smallest number of selected features on most of the
datasets, followed by BHHO-V4. Even though V-shaped transfer function can significantly reduce the
number of features, however, the relevant features are eliminated and thus resulting in unsatisfactory
performance. On the whole, QBHHO with quadratic transfer function Q4 is the best binary version
of HHO in current work. Therefore, only QBHHO with transfer function Q4 is used in the rest of
this paper.

Table 4. Experimental result of the best fitness value of the proposed algorithms.

Dataset
Best Fitness Value

S1 S2 S3 S4 V1 V2 V3 V4 Q1 Q2 Q3 Q4

1 0.0104 0.0104 0.0104 0.0104 0.0104 0.0104 0.0104 0.0104 0.0104 0.0104 0.0104 0.0104
2 0.1180 0.1214 0.1209 0.1235 0.1143 0.1204 0.1138 0.1143 0.1143 0.1143 0.1143 0.1143
3 0.0314 0.0314 0.0314 0.0314 0.0314 0.0314 0.0314 0.0314 0.0314 0.0314 0.0314 0.0314
4 0.1198 0.1204 0.1291 0.1269 0.1230 0.1230 0.1230 0.1230 0.1198 0.1230 0.1230 0.1230
5 0.5771 0.5771 0.5771 0.5849 0.5795 0.5771 0.5885 0.5879 0.5885 0.5908 0.5885 0.5765
6 0.2156 0.2268 0.2341 0.2337 0.2110 0.2077 0.2077 0.2171 0.2171 0.2215 0.2143 0.2116
7 0.1472 0.1621 0.1463 0.1559 0.1190 0.1190 0.1190 0.1190 0.1190 0.1190 0.1190 0.1190
8 0.0719 0.0903 0.0954 0.0966 0.0637 0.0637 0.0659 0.0637 0.0659 0.0691 0.0688 0.0637
9 0.0353 0.0341 0.0335 0.0335 0.0334 0.0334 0.0334 0.0248 0.0334 0.0335 0.0341 0.0334

10 0.0112 0.0104 0.0112 0.0104 0.0155 0.0104 0.0104 0.0104 0.0104 0.0104 0.0112 0.0104
11 0.0303 0.0303 0.0303 0.0303 0.0303 0.0303 0.0303 0.0303 0.0303 0.0303 0.0303 0.0303
12 0.2032 0.2356 0.2342 0.2683 0.1985 0.1670 0.1994 0.1987 0.1989 0.1989 0.1680 0.1670
13 0.1080 0.1051 0.1080 0.1080 0.0752 0.0761 0.0814 0.0791 0.0822 0.0796 0.0786 0.0843
14 0.3359 0.3488 0.3562 0.3615 0.2535 0.2555 0.2533 0.2579 0.2600 0.2754 0.2620 0.2754
15 0.0178 0.0172 0.0172 0.0172 0.0164 0.0142 0.0142 0.0148 0.0142 0.0154 0.0166 0.0148
16 0.1463 0.1463 0.1492 0.1459 0.1369 0.1412 0.1479 0.1450 0.1445 0.1445 0.1450 0.1412
17 0.2110 0.2124 0.2142 0.2107 0.1800 0.1806 0.1855 0.1857 0.1884 0.1914 0.1855 0.1925
18 0.2525 0.2525 0.2542 0.2542 0.2525 0.2525 0.2525 0.2525 0.2525 0.2525 0.2542 0.2525
19 0.0467 0.0467 0.0467 0.0467 0.0467 0.0467 0.0467 0.0467 0.0467 0.0467 0.0467 0.0467
20 0.0970 0.0972 0.0960 0.1033 0.0416 0.0510 0.0502 0.0498 0.0595 0.0582 0.0581 0.0505
21 0.2824 0.2824 0.2895 0.2895 0.2755 0.2793 0.2759 0.2759 0.2759 0.2781 0.2781 0.2755
22 0.0964 0.0985 0.0977 0.0953 0.0775 0.0745 0.0838 0.0732 0.0756 0.0775 0.0725 0.0843
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Table 5. Experimental result of the mean fitness value of the proposed algorithms.

Dataset
Mean Fitness Value

S1 S2 S3 S4 V1 V2 V3 V4 Q1 Q2 Q3 Q4

1 0.0237 0.0250 0.0273 0.0270 0.0232 0.0232 0.0232 0.0232 0.0232 0.0233 0.0232 0.0232
2 0.1378 0.1382 0.1394 0.1402 0.1332 0.1327 0.1311 0.1331 0.1317 0.1353 0.1394 0.1276
3 0.0378 0.0378 0.0378 0.0378 0.0378 0.0378 0.0378 0.0378 0.0378 0.0379 0.0378 0.0378
4 0.1464 0.1500 0.1519 0.1546 0.1502 0.1469 0.1496 0.1513 0.1533 0.1554 0.1602 0.1474
5 0.5938 0.5978 0.6023 0.6030 0.6067 0.6073 0.6064 0.6100 0.6049 0.6114 0.6095 0.6019
6 0.2416 0.2484 0.2515 0.2516 0.2320 0.2323 0.2387 0.2393 0.2347 0.2400 0.2426 0.2275
7 0.1709 0.1865 0.1858 0.1885 0.1323 0.1304 0.1286 0.1320 0.1332 0.1412 0.1438 0.1272
8 0.0935 0.1019 0.1038 0.1036 0.0739 0.0740 0.0728 0.0725 0.0739 0.0790 0.0799 0.0717
9 0.0474 0.0462 0.0473 0.0471 0.0497 0.0513 0.0535 0.0484 0.0496 0.0541 0.0541 0.0477

10 0.0175 0.0176 0.0178 0.0177 0.0200 0.0199 0.0188 0.0188 0.0187 0.0201 0.0205 0.0180
11 0.0319 0.0318 0.0318 0.0318 0.0323 0.0324 0.0319 0.0322 0.0322 0.0324 0.0326 0.0319
12 0.3180 0.3089 0.3109 0.3214 0.2561 0.2530 0.2517 0.2538 0.2551 0.2617 0.2532 0.2431
13 0.1214 0.1215 0.1256 0.1248 0.1005 0.0997 0.1011 0.1043 0.1037 0.0983 0.0986 0.0951
14 0.3590 0.3686 0.3714 0.3739 0.2814 0.2835 0.2798 0.2821 0.2853 0.3020 0.3007 0.2950
15 0.0216 0.0223 0.0242 0.0251 0.0206 0.0221 0.0215 0.0236 0.0211 0.0234 0.0221 0.0199
16 0.1643 0.1633 0.1651 0.1657 0.1632 0.1603 0.1635 0.1667 0.1712 0.1723 0.1692 0.1540
17 0.2256 0.2272 0.2263 0.2276 0.2036 0.2054 0.2065 0.2100 0.2054 0.2094 0.2043 0.2069
18 0.2677 0.2671 0.2675 0.2678 0.2679 0.2698 0.2705 0.2693 0.2706 0.2733 0.2739 0.2683
19 0.0527 0.0527 0.0527 0.0527 0.0530 0.0529 0.0527 0.0527 0.0529 0.0531 0.0539 0.0527
20 0.1193 0.1200 0.1190 0.1202 0.0806 0.0779 0.0811 0.0790 0.0830 0.0845 0.0860 0.0854
21 0.3007 0.3030 0.3051 0.3055 0.2908 0.2909 0.2901 0.2893 0.2892 0.2946 0.2964 0.2873
22 0.1037 0.1042 0.1044 0.1039 0.0921 0.0903 0.0943 0.0944 0.0907 0.0916 0.0915 0.0936

Table 6. Experimental result of the STD of the proposed algorithms.

Dataset
Standard Deviation of Fitness Value

S1 S2 S3 S4 V1 V2 V3 V4 Q1 Q2 Q3 Q4

1 0.0075 0.0091 0.0098 0.0095 0.0070 0.0070 0.0070 0.0070 0.0070 0.0071 0.0070 0.0070
2 0.0070 0.0078 0.0080 0.0065 0.0108 0.0076 0.0087 0.0087 0.0105 0.0106 0.0108 0.0085
3 0.0033 0.0033 0.0033 0.0033 0.0033 0.0033 0.0033 0.0033 0.0033 0.0034 0.0033 0.0033
4 0.0117 0.0110 0.0109 0.0113 0.0139 0.0112 0.0112 0.0133 0.0133 0.0183 0.0198 0.0115
5 0.0073 0.0087 0.0077 0.0076 0.0093 0.0114 0.0081 0.0094 0.0086 0.0114 0.0126 0.0098
6 0.0121 0.0096 0.0090 0.0110 0.0131 0.0120 0.0126 0.0127 0.0118 0.0140 0.0183 0.0103
7 0.0133 0.0119 0.0115 0.0109 0.0117 0.0122 0.0100 0.0105 0.0104 0.0179 0.0180 0.0066
8 0.0068 0.0054 0.0048 0.0045 0.0054 0.0059 0.0047 0.0046 0.0052 0.0042 0.0088 0.0040
9 0.0064 0.0078 0.0084 0.0078 0.0123 0.0096 0.0096 0.0107 0.0103 0.0123 0.0102 0.0091

10 0.0032 0.0030 0.0030 0.0035 0.0034 0.0042 0.0037 0.0042 0.0043 0.0046 0.0048 0.0042
11 0.0008 0.0009 0.0010 0.0009 0.0012 0.0011 0.0009 0.0010 0.0009 0.0014 0.0014 0.0009
12 0.0393 0.0354 0.0350 0.0294 0.0375 0.0401 0.0328 0.0359 0.0415 0.0443 0.0389 0.0314
13 0.0059 0.0062 0.0070 0.0080 0.0091 0.0125 0.0115 0.0104 0.0080 0.0104 0.0125 0.0077
14 0.0094 0.0081 0.0058 0.0061 0.0183 0.0172 0.0184 0.0146 0.0143 0.0149 0.0169 0.0128
15 0.0022 0.0025 0.0028 0.0028 0.0027 0.0043 0.0035 0.0048 0.0042 0.0044 0.0039 0.0029
16 0.0073 0.0077 0.0071 0.0071 0.0187 0.0119 0.0137 0.0173 0.0205 0.0199 0.0198 0.0076
17 0.0070 0.0069 0.0081 0.0081 0.0107 0.0107 0.0113 0.0096 0.0093 0.0076 0.0122 0.0079
18 0.0077 0.0070 0.0062 0.0064 0.0072 0.0083 0.0078 0.0073 0.0079 0.0089 0.0085 0.0080
19 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0028 0.0037 0.0030
20 0.0120 0.0118 0.0091 0.0103 0.0155 0.0131 0.0137 0.0132 0.0157 0.0111 0.0112 0.0143
21 0.0084 0.0079 0.0071 0.0068 0.0076 0.0060 0.0062 0.0067 0.0074 0.0102 0.0094 0.0065
22 0.0036 0.0030 0.0039 0.0045 0.0079 0.0063 0.0067 0.0083 0.0066 0.0062 0.0081 0.0054
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Table 7. Experimental result of the average classification accuracy of the proposed algorithms.

Dataset
Average Classification Accuracy

S1 S2 S3 S4 V1 V2 V3 V4 Q1 Q2 Q3 Q4

1 0.9771 0.9759 0.9737 0.9740 0.9776 0.9776 0.9776 0.9776 0.9776 0.9775 0.9776 0.9776
2 0.8647 0.8642 0.8633 0.8622 0.8676 0.8680 0.8700 0.8676 0.8691 0.8653 0.8609 0.8736
3 0.9664 0.9664 0.9664 0.9664 0.9664 0.9664 0.9664 0.9664 0.9664 0.9662 0.9664 0.9664
4 0.8588 0.8550 0.8529 0.8500 0.8519 0.8548 0.8524 0.8505 0.8488 0.8467 0.8417 0.8545
5 0.4074 0.4032 0.3986 0.3975 0.3923 0.3918 0.3927 0.3888 0.3944 0.3878 0.3901 0.3978
6 0.7631 0.7556 0.7516 0.7513 0.7692 0.7687 0.7622 0.7613 0.7668 0.7616 0.7584 0.7742
7 0.8297 0.8146 0.8157 0.8132 0.8671 0.8691 0.8709 0.8675 0.8662 0.8581 0.8555 0.8723
8 0.9082 0.9004 0.8990 0.8992 0.9265 0.9263 0.9275 0.9279 0.9264 0.9213 0.9205 0.9289
9 0.9580 0.9590 0.9573 0.9577 0.9543 0.9527 0.9503 0.9557 0.9543 0.9497 0.9500 0.9563

10 0.9880 0.9878 0.9876 0.9873 0.9845 0.9843 0.9855 0.9855 0.9857 0.9841 0.9841 0.9867
11 0.9736 0.9735 0.9735 0.9736 0.9723 0.9726 0.9732 0.9729 0.9727 0.9723 0.9720 0.9732
12 0.6833 0.6933 0.6911 0.6800 0.7422 0.7456 0.7467 0.7444 0.7433 0.7367 0.7456 0.7556
13 0.8833 0.8830 0.8786 0.8791 0.9004 0.9014 0.8998 0.8962 0.8972 0.9030 0.9025 0.9065
14 0.6401 0.6317 0.6299 0.6274 0.7162 0.7141 0.7177 0.7155 0.7122 0.6953 0.6965 0.7027
15 0.9853 0.9841 0.9816 0.9807 0.9831 0.9818 0.9821 0.9801 0.9829 0.9806 0.9820 0.9842
16 0.8401 0.8408 0.8385 0.8379 0.8382 0.8415 0.8382 0.8347 0.8301 0.8288 0.8322 0.8481
17 0.7775 0.7756 0.7767 0.7754 0.7959 0.7944 0.7931 0.7896 0.7943 0.7902 0.7954 0.7931
18 0.7339 0.7347 0.7342 0.7339 0.7330 0.7307 0.7301 0.7316 0.7300 0.7270 0.7263 0.7327
19 0.9510 0.9510 0.9510 0.9510 0.9506 0.9508 0.9510 0.9510 0.9508 0.9505 0.9495 0.9510
20 0.8853 0.8844 0.8853 0.8839 0.9194 0.9222 0.9189 0.9208 0.9169 0.9158 0.9142 0.9153
21 0.6998 0.6977 0.6956 0.6952 0.7090 0.7087 0.7096 0.7100 0.7104 0.7046 0.7027 0.7126
22 0.9018 0.9008 0.9003 0.9004 0.9089 0.9103 0.9067 0.9066 0.9104 0.9098 0.9095 0.9083

Table 8. Experimental result of the average feature size of the proposed algorithms.

Dataset
Average Number of Selected Features

S1 S2 S3 S4 V1 V2 V3 V4 Q1 Q2 Q3 Q4

1 1.03 1.13 1.23 1.23 1.07 1.07 1.07 1.07 1.07 1.03 1.07 1.07
2 7.17 7.17 7.83 7.20 4.03 3.83 4.53 3.83 4.00 3.73 3.17 4.63
3 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.80 1.83 1.83
4 12.00 11.53 11.23 10.90 6.50 5.57 6.23 5.87 6.47 6.43 6.20 6.17
5 12.07 11.97 11.77 11.13 8.70 8.80 8.77 8.27 9.13 9.00 9.63 9.67
6 24.90 22.37 19.43 18.97 12.43 11.63 11.70 10.43 13.20 13.77 12.27 14.07
7 6.37 8.13 9.27 9.63 2.07 2.03 2.10 2.10 2.07 1.93 2.00 2.07
8 8.80 11.10 12.77 12.93 3.63 3.47 3.73 3.87 3.60 3.93 3.93 4.43
9 9.37 8.97 8.17 8.27 7.23 7.07 6.87 7.20 7.00 6.83 7.33 7.20

10 7.37 7.20 7.27 6.57 6.03 5.70 5.77 5.73 5.90 5.67 6.17 6.23
11 5.17 4.97 5.07 5.07 4.37 4.67 4.90 4.80 4.60 4.53 4.43 4.87
12 25.43 29.40 28.83 25.90 5.03 6.13 4.77 4.53 5.50 5.67 7.07 6.27
13 96.40 94.70 89.87 85.63 30.93 34.30 30.73 25.97 32.23 38.37 34.60 40.60
14 73.23 110.50 137.83 139.57 13.23 11.93 10.47 11.20 9.97 8.67 8.10 18.60
15 24.03 22.33 20.37 20.53 13.47 13.77 12.87 13.07 13.93 14.43 14.60 14.27
16 13.30 12.50 11.47 11.70 6.67 7.53 7.27 6.80 6.73 6.33 6.73 7.93
17 47.93 45.23 47.03 46.83 13.77 16.23 15.00 15.57 15.63 14.90 15.53 19.40
18 4.30 4.50 4.37 4.37 3.53 3.27 3.23 3.50 3.30 3.00 2.90 3.70
19 2.93 2.93 2.93 2.93 2.87 2.90 2.93 2.93 2.90 2.87 2.77 2.93
20 176.60 174.67 167.60 162.13 27.10 28.87 25.27 20.17 25.37 35.47 30.50 46.67
21 6.77 7.03 7.13 7.03 5.03 4.80 4.80 4.30 4.70 4.20 3.93 5.30
22 487.00 454.47 425.70 404.87 144.53 115.10 144.20 141.67 145.67 172.83 144.47 210.00

6.4. Comparison with Other Metaheuristic Algorithms

In the second part of the experiment, five recent and popular metaheuristic algorithms, including
binary differential evolution (BDE) [32], binary flower pollination algorithm (BFPA) [33], binary
multi-verse optimizer (BMVO) [14], binary salp swarm algorithm (BSSA) [28], and genetic algorithm
(GA) [34], are applied to examine the efficacy and efficiency of proposed QBHHO in feature selection
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problem. BDE is a variant of differential evolution (DE) that composes of differentiation, mutation,
crossover, and selection process. BFPA is a binary version of flower pollination algorithm (FPA)
in which the S2 transfer function is implemented for conversion. BMVO integrates the V4 transfer
function to convert the continuous variables into the binary one. BSSA is a binary variant of the salp
swarm algorithm (SSA) that implements the V3 transfer function. GA comprises of parent selection,
crossover, and mutation operators. We utilize a simple GA with roulette wheel selection and single
crossover for comparison. Table 9 lists the parameter settings of the utilized algorithms.

Table 9. Parameter settings of the utilized algorithms.

Algorithm Parameter Value

BDE Number of vectors, N 10
Maximum number of generations, T 100

Crossover rate, CR 0.9
BFPA Number of flowers, N 10

Maximum number of iterations, T 100
Switch probability, P 0.8

BSSA Number of salps, N 10
Maximum number of iterations, T 100

BMVO Number of universes, N 10
Maximum number of iterations, T 100

Coefficient, WEP [0.02, 1]
GA Number of chromosomes, N 10

Maximum number of generations, T 100
Crossover rate, CR 0.8
Mutation rate, MR 0.01

Tables 10–12 display the experimental results of the best, mean, and STD fitness values of six
different algorithms. In these tables, the best results are bolded. Based on the results obtained, QBHHO
was showing competitive performance in feature selection. In comparison with BDE, BFPA, BMVO,
BSSA, and GA, QBHHO was highly capable in finding the nearly optimal solution. From Table 10,
QBHHO yielded the optimal best fitness value in fourteen datasets, which overwhelmed other
competitors in this work. This result proves that the QBHHO with quadratic transfer function is
helpful for assisting the algorithm to find the optimal solution. Moreover, QBHHO offered the lowest
mean fitness values on most of the datasets. This again validates the efficacy of QBHHO in exploring
the untried areas when finding the global optimum. In Table 12, the BFPA perceived the smallest STD
value in most cases, which contributed to a high consistent result. However, BFPA cannot find the
optimal solution very well and thus leading to an ineffective result.

Figures 7 and 8 demonstrate the convergence curves of six different algorithms on 22 datasets.
As can be seen, QBHHO can usually offer a high diversity. Taking dataset 7 (horse colic) and 21
(diabetic) as the examples, QBHHO converged faster to find the promising solution, which overtook
other algorithms in feature selection. That is, QBHHO keeps tracking the global optimum, thus leading
to a high quality solution. This can be interpreted due to some strong properties of HHO algorithm,
and the superior of quadratic transfer function we made in QBHHO algorithm.
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Table 10. Experimental result of the best fitness value of six different algorithms.

Dataset
Best Fitness Value

QBHHO BDE BFPA BMVO BSSA GA

1 0.0104 0.0397 0.0104 0.0104 0.0104 0.0104
2 0.1143 0.1367 0.1301 0.1220 0.1265 0.1220
3 0.0314 0.0314 0.0314 0.0314 0.0314 0.0314
4 0.1230 0.1274 0.1215 0.1371 0.1377 0.1258
5 0.5765 0.5921 0.5801 0.5963 0.6035 0.5795
6 0.2116 0.2252 0.2324 0.2455 0.2568 0.2037
7 0.1190 0.1804 0.1801 0.1538 0.1190 0.1217
8 0.0637 0.0946 0.0975 0.0722 0.0694 0.0643
9 0.0334 0.0459 0.0353 0.0341 0.0433 0.0341

10 0.0104 0.0170 0.0104 0.0163 0.0104 0.0112
11 0.0303 0.0311 0.0303 0.0306 0.0303 0.0314
12 0.1670 0.2356 0.2381 0.2679 0.2654 0.1354
13 0.0843 0.0968 0.1080 0.1080 0.1077 0.0504
14 0.2754 0.3644 0.3711 0.3447 0.3291 0.3038
15 0.0148 0.0221 0.0150 0.0237 0.0237 0.0121
16 0.1412 0.1506 0.1506 0.1506 0.1506 0.1374
17 0.1925 0.2116 0.2121 0.2137 0.2113 0.1832
18 0.2525 0.2542 0.2525 0.2525 0.2573 0.2542
19 0.0467 0.0467 0.0467 0.0467 0.0467 0.0467
20 0.0505 0.0985 0.0887 0.0946 0.0993 0.0528
21 0.2755 0.3080 0.2927 0.2852 0.2848 0.2778
22 0.0843 0.0906 0.0960 0.0913 0.1006 0.0629

Table 11. Experimental result of the mean fitness value of six different algorithms.

Dataset
Mean Fitness Value

QBHHO BDE BFPA BMVO BSSA GA

1 0.0232 0.0626 0.0444 0.0259 0.0232 0.0301
2 0.1276 0.1534 0.1418 0.1390 0.1422 0.1409
3 0.0378 0.0387 0.0378 0.0378 0.0378 0.0379
4 0.1474 0.1662 0.1495 0.1580 0.1732 0.1563
5 0.6019 0.6122 0.5974 0.6101 0.6325 0.6058
6 0.2275 0.2580 0.2485 0.2633 0.2813 0.2230
7 0.1272 0.2390 0.2036 0.1736 0.1468 0.1469
8 0.0717 0.1133 0.1100 0.0955 0.0857 0.0814
9 0.0477 0.0615 0.0494 0.0522 0.0663 0.0544

10 0.0180 0.0257 0.0190 0.0196 0.0249 0.0214
11 0.0319 0.0336 0.0319 0.0321 0.0335 0.0331
12 0.2431 0.3328 0.3236 0.3228 0.3245 0.2377
13 0.0951 0.1226 0.1261 0.1243 0.1326 0.0746
14 0.2950 0.3786 0.3788 0.3641 0.3483 0.3269
15 0.0199 0.0317 0.0228 0.0291 0.0387 0.0204
16 0.1540 0.1780 0.1662 0.1675 0.1854 0.1618
17 0.2069 0.2283 0.2278 0.2262 0.2285 0.2059
18 0.2683 0.2893 0.2671 0.2702 0.2743 0.2737
19 0.0527 0.0588 0.0527 0.0527 0.0539 0.0553
20 0.0854 0.1166 0.1236 0.1155 0.1236 0.0839
21 0.2873 0.3247 0.3088 0.3010 0.3025 0.3048
22 0.0936 0.1000 0.1051 0.1050 0.1091 0.0780
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Table 12. Experimental result of the STD of six different algorithms.

Dataset
Standard Deviation of Fitness Value

QBHHO BDE BFPA BMVO BSSA GA

1 0.0070 0.0133 0.0124 0.0093 0.0070 0.0142
2 0.0085 0.0089 0.0072 0.0074 0.0088 0.0108
3 0.0033 0.0042 0.0033 0.0033 0.0033 0.0034
4 0.0115 0.0140 0.0114 0.0099 0.0129 0.0134
5 0.0098 0.0149 0.0087 0.0089 0.0136 0.0121
6 0.0103 0.0173 0.0109 0.0105 0.0157 0.0121
7 0.0066 0.0251 0.0116 0.0141 0.0194 0.0143
8 0.0040 0.0077 0.0046 0.0079 0.0070 0.0087
9 0.0091 0.0084 0.0063 0.0089 0.0110 0.0119

10 0.0042 0.0059 0.0032 0.0030 0.0061 0.0045
11 0.0009 0.0016 0.0008 0.0010 0.0015 0.0014
12 0.0314 0.0510 0.0338 0.0315 0.0302 0.0445
13 0.0077 0.0100 0.0083 0.0070 0.0103 0.0138
14 0.0128 0.0080 0.0044 0.0086 0.0085 0.0147
15 0.0029 0.0081 0.0030 0.0032 0.0066 0.0041
16 0.0076 0.0099 0.0067 0.0091 0.0117 0.0165
17 0.0079 0.0103 0.0093 0.0074 0.0082 0.0114
18 0.0080 0.0159 0.0072 0.0067 0.0065 0.0104
19 0.0030 0.0076 0.0030 0.0030 0.0037 0.0052
20 0.0143 0.0102 0.0105 0.0110 0.0130 0.0148
21 0.0065 0.0097 0.0057 0.0079 0.0075 0.0124
22 0.0054 0.0043 0.0046 0.0047 0.0039 0.0074

Table 13 presents the experimental results of the average classification accuracy of six different
algorithms. Note that the best results are highlighted with bold text. According to the result in Table 13,
the average classification accuracy obtained by QBHHO was far superior to other competitors in most
cases. Out of 22 datasets, QBHHO contributed to the highest average classification accuracy on at
least twelve datasets. Figures 9 and 10 exhibit the results of boxplot of six different algorithms on
22 datasets. In these figures, the red line in the box represents the median value, and the symbol ‘+’
denotes the outlier. As can be seen, QBHHO scored the highest median value in most cases, which
provided better classification performance than BDE, BMVO, GA, BSSA, and BFPA algorithms.

Table 14 outlines the experimental results of the average feature size of six different algorithms.
Inspecting the result in Table 14, QBHHO can often choose fewer features in most cases (15 datasets).
Additionally, BSSA selected fewer features on nine datasets. Based on the results obtained, QBHHO
was good at finding a smaller subset of relevant features, which led to high classification performance.
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Table 13. Experimental result of the average classification accuracy of six different algorithms.

Dataset
Average Classification Accuracy

QBHHO BDE BFPA BMVO BSSA GA

1 0.9776 0.9414 0.9576 0.9751 0.9776 0.9714
2 0.8736 0.8502 0.8613 0.8631 0.8580 0.8611
3 0.9664 0.9658 0.9664 0.9664 0.9664 0.9664
4 0.8545 0.8393 0.8557 0.8455 0.8290 0.8469
5 0.3978 0.3891 0.4036 0.3902 0.3667 0.3939
6 0.7742 0.7473 0.7557 0.7389 0.7211 0.7799
7 0.8723 0.7636 0.7988 0.8274 0.8528 0.8529
8 0.9289 0.8909 0.8935 0.9063 0.9146 0.9207
9 0.9563 0.9457 0.9560 0.9523 0.9383 0.9500

10 0.9867 0.9806 0.9861 0.9855 0.9802 0.9835
11 0.9732 0.9732 0.9738 0.9729 0.9712 0.9726
12 0.7556 0.6700 0.6789 0.6778 0.6733 0.7633
13 0.9065 0.8835 0.8789 0.8787 0.8691 0.9291
14 0.7027 0.6244 0.6235 0.6355 0.6492 0.6741
15 0.9842 0.9756 0.9836 0.9757 0.9664 0.9840
16 0.8481 0.8272 0.8379 0.8358 0.8176 0.8409
17 0.7931 0.7762 0.7759 0.7757 0.7717 0.7965
18 0.7327 0.7124 0.7352 0.7305 0.7258 0.7275
19 0.9510 0.9459 0.9510 0.9510 0.9497 0.9484
20 0.9153 0.8892 0.8814 0.8875 0.8769 0.9189
21 0.7126 0.6776 0.6924 0.6992 0.6965 0.6961
22 0.9083 0.9066 0.9002 0.8984 0.8930 0.9261

Table 14. Experimental result of the average feature size of six different algorithms.

Dataset
Average Number of Selected Features

QBHHO BDE BFPA BMVO BSSA GA

1 1.07 4.57 2.40 1.20 1.07 1.80
2 4.63 9.63 8.63 6.57 3.17 6.50
3 1.83 1.93 1.83 1.83 1.83 1.87
4 6.17 12.80 11.90 9.07 7.03 8.50
5 9.67 12.60 11.93 10.80 9.43 9.80
6 14.07 27.60 22.97 16.80 18.10 17.67
7 2.07 13.33 12.00 7.40 2.80 3.33
8 4.43 17.80 15.70 9.20 3.93 9.77
9 7.20 12.40 9.27 7.97 8.40 7.80

10 6.23 8.40 6.83 6.80 6.90 6.57
11 4.87 6.40 5.37 4.80 4.50 5.40
12 6.27 34.03 31.77 21.13 6.37 18.83
13 40.60 120.70 104.23 70.67 50.40 73.60
14 18.60 189.53 169.40 90.93 28.53 119.30
15 14.27 25.67 22.27 17.37 18.37 15.30
16 7.93 15.20 12.63 10.73 10.60 9.40
17 19.40 60.33 53.60 37.90 22.00 39.50
18 3.70 4.57 4.97 3.37 2.80 3.93
19 2.93 3.63 2.93 2.93 2.83 2.97
20 46.67 214.37 190.10 129.03 55.47 112.40
21 5.30 10.47 8.27 6.00 3.87 7.43
22 210.00 569.33 477.77 338.67 241.80 364.70
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Furthermore, we apply the Wilcoxon signed-rank test to examine whether the performance of
the proposed QBHHO is significantly better than other algorithms in this work. In the Wilcoxon
signed-rank test, if the p-value achieved is less than 0.05, then the performances of the two algorithms
are significantly difference; otherwise, the performances of the two algorithms are similar. Table 15
exhibits the result of Wilcoxon signed-rank test with p-values. In this Table, the symbols “w/t/l”
indicates that the proposed QBHHO was significantly better to (win), equal to (tie), and significantly
worse to (lose) other algorithms. Note that the results with the p-value greater than 0.05 are underlined.
Inspecting the result in Table 15, the performance of QBHHO was significantly better than other
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algorithms in most datasets. The results again verify the superiority of QBHHO to solve the feature
selection problem in classification tasks. To sum up, the experiments show the excellent properties of
QBHHO in terms of classification accuracy and feature size. As an instant conclusion, QBHHO is a
useful tool, and it is appropriate to apply in rehabilitation, clinical, and engineering applications.

Table 15. P-values of Wilcoxon signed-rank test.

Dataset
P-Value

BDE BFPA BMVO BSSA GA

1 0.00000 1.00 × 10−5 0.06250 1.00000 0.01563
2 0.00000 1.00 × 10−5 1.00 × 10−5 0.00000 5.00 × 10−5

3 0.01563 1.00000 1.00000 1.00000 1.00000
4 1.00 × 10−5 0.13054 2.00 × 10−5 0.00000 0.00029
5 0.00411 0.06503 0.00047 0.00000 0.14430
6 0.00000 0.00000 0.00000 0.00000 0.05982
7 0.00000 0.00000 0.00000 9.00 × 10−5 2.00 × 10−5

8 0.00000 0.00000 0.00000 0.00000 2.00 × 10−5

9 1.00 × 10−5 0.01557 0.00605 0.00000 0.00203
10 6.00 × 10−5 0.13839 0.11775 4.00 × 10−5 0.00772
11 6.00 × 10−5 1.00000 0.12378 4.00 × 10−5 0.00028
12 0.00000 0.00000 0.00000 0.00000 0.92625
13 0.00000 0.00000 0.00000 0.00000 1.00 × 10−5

14 0.00000 0.00000 0.00000 0.00000 0.00000
15 0.00000 0.00071 0.00000 0.00000 0.52355
16 0.00000 1.00 × 10−5 0.00000 0.00000 0.04429
17 0.00000 0.00000 0.00000 0.00000 0.44051
18 3.00 × 10−5 0.66882 0.07104 0.00033 0.01761
19 4.00 × 10−5 1.00000 1.00000 0.06250 0.00098
20 0.00000 0.00000 0.00000 0.00000 0.46528
21 0.00000 0.00000 0.00000 0.00000 2.00 × 10−5

22 0.00011 0.00000 0.00000 0.00000 0.00000
w/t/l 22/0/0 15/7/0 16/6/0 19/3/0 12/7/3

7. Conclusions

In this paper, the BHHO and QBHHO algorithms are proposed to tackle the feature selection
problem in classification tasks. The BHHO integrated S-shaped or V-shaped transfer function to
convert the continuous HHO into the binary version. On the one hand, the quadratic transfer
function is introduced in QBHHO to enhance the performance of BHHO in feature selection.
The proposed algorithms are validated on 22 benchmark datasets in the UCI machine learning
repository. The performances of proposed algorithms are evaluated based on the best fitness value, mean
fitness value, standard deviation of fitness value, classification accuracy, and feature size. Among the
BHHO and QBHHO algorithms, the QBHHO with quadratic transfer function Q4 offered the optimal
performance in current work. Furthermore, the performance of QBHHO is compared with other
algorithms, include BDE, BFPA, BMVO, BSSA, and GA. The experimental results show that our
proposed QBHHO can usually achieve the highest classification accuracy as well as the smallest feature
size when dueling with feature selection tasks. All in all, QBHHO is a powerful tool to solve the feature
selection problem in classification tasks.

In the future, QBHHO can be applied to other feature selection and real-world problems.
In addition, the classifiers such as support vector machine (SVM) and neural network (NN) can
be implemented to enhance the performance of the current algorithm. Moreover, QBHHO can be
employed to solve the other binary optimization problems such as knapsack problem and optimized
neural network. Lastly, the quadratic transfer function can be integrated into other metaheuristic
algorithms to solve binary optimization problems.
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