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Abstract: This study proposed a reinforcement Q-learning-based deep neural network (RQDNN) 
that combined a deep principal component analysis network (DPCANet) and Q-learning to 
determine a playing strategy for video games. Video game images were used as the inputs. The 
proposed DPCANet was used to initialize the parameters of the convolution kernel and capture the 
image features automatically. It performs as a deep neural network and requires less computational 
complexity than traditional convolution neural networks. A reinforcement Q-learning method was 
used to implement a strategy for playing the video game. Both Flappy Bird and Atari Breakout 
games were implemented to verify the proposed method in this study. Experimental results showed 
that the scores of our proposed RQDNN were better than those of human players and other 
methods. In addition, the training time of the proposed RQDNN was also far less than other 
methods. 

Keywords: convolution neural network; deep principal component analysis network; image sensor; 
reinforcement learning; Q-learning; video game 

 

1. Introduction 

Reinforcement learning was first used to play video games at the Mario AI Competition, which 
was hosted in 2009 by Institute of Electrical and Electronics Engineers (IEEE) Games Innovation 
Conference and IEEE Symposium on Computational Intelligence and Games [1]. The top three 
researchers in the competition adopted a range of 20 × 20, centered on the manipulated roles as the 
input, and used an A* algorithm matched with a reinforcement learning algorithm. In 2013, Mnih et 
al. [2] proposed a convolution neural network based on the deep reinforcement learning algorithm, 
called Deep Q-Learning (DQN). It is an end-to-end reinforcement learning algorithm. The game’s 
control strategies were learned with good effects. The algorithm can be directly applied in all games 
by modifying the input and output dimensions. Moreover, Mnih et al. [3] proposed an improved 
DQN by adding a replay memory mechanism. This method stores all learned states from a randomly 
selected number of empirical values from the experience data in each update. In such a way, the 
continuity between states is broken and the algorithm learns more than one fixed strategy. Schaul et 
al. [4] improved the replay memory mechanism by removing useless experience and strengthening 
the selection of important experience in order to enhance the learning speed of the algorithm while 
consuming less memory. 

In addition to improving the reinforcement learning mechanism, some researchers have 
modified the network structure of DQN. Hasselt et al. [5] used double DQN to estimate Q values. 
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This algorithm can stably converge parameters from both networks through synchronization at 
regular intervals. Wang et al. [6] proposed a duel DQN to decompose Q values into the value function 
and the advantage function. By limiting the advantage function, the algorithm can focus more on the 
learning strategy throughout the game. 

Moreover, strategies in playing video games have been applied in many fields, such as 
autonomous driving, automatic flight control, and so on. In autonomous driving, Li et al. [7] adopted 
reinforcement learning to realize lateral control for autonomous driving in an open racing car 
simulator. The experiments demonstrated that the reinforcement learning controller outperformed 
linear quadratic regulator (LQR) and model predictive control (MPC) methods. Martinez et al. [8] 
used the game Grand Theft Auto V (GTA-V) to gather training data to enhance the autonomous 
driving system. To achieve an even more accurate model, GTA-V allows researchers to easily create 
a large dataset for testing and training neural networks. In flight control, Yu et al. [9] designed a 
controller for a quadrotor. To evaluate the effectiveness of their method, a virtual maze using the 
Airsim software platform was created. The simulation results demonstrated that the quadrotor could 
complete the flight task. Kersandt et al. [10] proposed deep reinforcement learning for the 
autonomous operation of drones. The drone does not require a pilot for the entire period from flight 
to completion of the final mission. Experiments showed that the drone could be trained completely 
autonomously and obtained results similar to human performance. These studies show that training 
data are easier and less costly to obtain in a virtual environment. 

Although deep learning has been widely used in various fields, it requires a lot of time and 
computing resources, and it requires expensive equipment to train the network. Therefore, in this 
study, a new network architecture, named reinforcement Q-learning-based deep neural network 
(RQDNN), was proposed to improve the above-mentioned shortcomings. The major contributions of 
this study are described as follows: 
• A new RQDNN, which combines a deep principal component analysis network (DPCANet) and 

Q-learning, is proposed to determine the strategy in playing a video game; 
• The proposed approach greatly reduces computational complexity compared to traditional deep 

neural network architecture; and 
• The trained RQDNN only uses CPU and decreases computing resource costs. 

The rest of this paper is organized as follows: section 2 introduces reinforcement learning and 
deep reinforcement learning, section 3 introduces the proposed RQDNN in this study, and section 4 
illustrates the experimental results. Two games, Flappy Bird and Breakout, are used as the real testing 
environment. Section 5 is the conclusion and describes future work. 

2. Overview of Deep Reinforcement Learning 

Reinforcement learning consists of an agent and the environment (see Figure 1). When the 
algorithm starts, the agent will firstly produce the initial action (𝐴௧, where t represents the present 
time point) and input to the environment. Then, the environment will feed back a new state (𝑆௧ାଵ) 
and a new reward (𝑅௧ାଵ), and, based on observation of state (𝑆௧) and reward (𝑅௧) on the new time 
point, the agent will select a new action (𝐴௧). Through this repeated interactive process, the agent will 
learn a set of optimal strategies (this is similar to when a kid learns how to ride a bike: he needs to 
keep a good balance and practice not falling down. Then, after making mistakes, he learns the 
strategy needed to ride the bike.).  
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Figure 1. The structure of reinforcement learning. 

Reinforcement learning comprises two major branches: model-based and model-free branches. 
The difference between these two branches is the need for a thorough understanding of the 
environment. The model-based method is effective in training and learning optimal strategies, but, 
in reality, a complex environment is hard to model, which causes difficulty in developing the model-
based method. Hence, most researchers now focus on model-free methods, where the strategies are 
learned not by modeling the environment directly, but through continuous interactions with 
environment. 

Q-learning is the most commonly used model-free method, and the updated parameters are 
listed in Equation (1). Tables are used to record Q values in original Q-learning, where the 
environmental state and action shall be discretized, as shown in Table 1. After learning the 
parameters, decisions can be made by directly looking up values in the table. Q(S, A) ← 𝑄(𝑆, 𝐴) +  𝛼[𝑅 +  𝛾 𝑚𝑎𝑥௔𝑄(𝑆ᇱ, 𝐴ᇱ) − 𝑄(𝑆, 𝐴)]. (1) 

Table 1. Schematic diagram of a Q-table. 

Q-table 
Actions 

South(0) North(1) East(2) West(3) Pickup(4) Dropoff(5) 

States 

0 0 0 0 0 0 0 

… … … … … … … 

328 -2.30108 -1.97092 -2.30357 -2.20591 -10.3607 -8.55830 

… … … … … … … 

499 9.96984 4.02706 12.9602 29 3.32877 3.38230 
 

In most cases, for a complicated control problem, a simple Q-table can not be used to store 
complicated states and actions. Some scholars have introduced artificial neural networks from Q-
learning to fit complicated Q-tables. Equation (2) is used to show the updated parameters of artificial 
neural networks. Q-learning can learn more complex states and actions by adding artificial neural 
networks, but to avoid excessive data dimensions, manually selected features or few input sensors 
are used. Loss = ∑[(𝑅 +  𝛾𝑚𝑎𝑥௔ᇲ𝑄(𝑆ᇱ, 𝐴ᇱ, 𝜃ି) − 𝑄(𝑆, 𝐴, 𝜃))ଶ]. (2) 

This problem is solved until DQN is proposed, and there are some important improvements to 
DQN as follows: 

(1) Original images are used as the input states for the convolution neural networks; 
(2) A replay memory mechanism is added to enhance the learning efficiency of the algorithm; 

and 
(3) Independent networks are introduced to estimate time difference errors more accurately 

and to stabilize algorithm training. 
The outstanding effects of DQN have attracted much research into DQN improvement, 

including improved methods, such as Nature DQN, Double DQN, and Dueling DQN. However, no 
DQN improvement strategy has strayed from architecture based on convolution neural networks; 
therefore, the problems of long consumption times and diverse computing resources have not been 
resolved. 

Convolution neural networks were proposed by Lecun [11] in recognizing handwriting, in 
which the accuracy reached 99%. However, due to insufficient computing resources at the time, 
convolutional neural networks were not taken seriously by other researchers. It was greatly 
developed until 2012, when AlexNet was proposed by Krizhevsky, when display card acceleration 
was introduced to solve slow training in addition to building deeper and larger network architectures. 
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[12] Since then, deeper and more complicated network architectures have been proposed, such as 
VGGNet [13], GoogleNet [14], and ResNet [15]. 

The architecture of convolution neural networks comprises feature selection in the first half and 
classifiers in the second half, as shown in Figure 2. However, the main difference is that traditional 
methods are conducted through manually designed feature selection mechanisms, such as Histogram 
of Orientation Gradient (HOG), Local Binary Pattern (LBP), and Scale-Invariant Feature Transform 
(SIFT). For convolution neural networks, feature selection is conducted based on learning parameters 
and offsets of the convolutional, pooling, and activation function layers. The effects of the 
convolution kernels gained from learning are significantly better than those gained from the 
traditional method for feature selection. 

Convolution neural networks are divided into the convolutional layer, pooling layer, and 
activation function layer. These layers are introduced as f. 

 
Figure 2. Schematic diagram of convolution neural networks. 

2.1. Convolutional Layer 

The convolutional layer is the most important part in convolution neural networks. The features 
are extracted through convolution kernels after learning, and then mapping from low-level features 
to high-level features is completed through superposition of multi-layer convolution kernels to 
achieve good effects. Figure 3 is a schematic diagram with a step (s) of 1 and kernel (𝐾௛ × 𝐾௪) of 3 × 3 
for a convolution operation of a 4 × 4 feature map (𝑓௛ × 𝑓௪), and the operation is shown in Equations 
(3) and (4). The convolution result is shown as follows: 𝑌ூ௃ = ∑ ∑ 𝑥(ூା௜ିଵ)(௃ା௝ିଵ) ∗ 𝑘௜௝௄೓௝ୀ଴௄ೢ௜ୀ଴  and (3) h × w =  ቀ௙௛ି௞௛௦ + 1ቁ ×  ቀ௙௪ି௞௪௦ + 1ቁ. (4) 

 
Figure 3. Schematic diagram of convolution kernel operation. 

2.2. Pooling Layer 

In general, two pooling operations are commonly used: average pooling and max pooling. 
Figure 4 shows the average pooling operation, which adds up the elements within the specified range 
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and takes the average. Max pooling takes the maximum element within the range as a new value, 
which is shown in Figure 5. 

 
Figure 4. Schematic diagram of average pooling. 

 
Figure 5. Schematic diagram of max pooling. 

2.3. Activation Function Layer 

In order to increase the fitting ability of neural networks, an activation function layer is added 
to make the original linear neural networks fit nonlinear functions. Early researchers used sigmoid 
as the activation function layer. In training deep neural networks, due to features of the sigmoid 
function, the gradient approaches 0 in the functional saturation region, which results in the 
disappearance of the gradient and bottlenecks the training. Currently, a commonly used activation 
function layer is Rectified Linear Unit (ReLU), a piecewise function, where the gradient is kept at 1 
in the region greater than 0 and is kept at 0 in the region smaller than 0. In addition to solving the 
disappearance of the gradient, ReLU can increase sparse neural networks and prevent overfitting. 
Current common activation functions are shown in Table 2. 

Table 2. Common activation functions. 

Name Functions Derivatives 

Sigmoid σ(Χ) = 11 + 𝑒ି௫ 𝑓ᇱ(Χ) = 𝑓(Χ)൫1 − 𝑓(Χ)൯ଶ 

tanh σ(Χ) = 𝑒௫ − 𝑒ି௫𝑒௭ + 𝑒ି௭  𝑓ᇱ(Χ) = 1 − 𝑓(Χ)ଶ 

ReLU 𝑓(Χ) = ቄ0 𝑖𝑓 Χ ൏ 0Χ if Χ ൒ 0  𝑓ᇱ(Χ) = ቄ0 𝑖𝑓 Χ ൏ 01 if Χ ൒ 0  

Leaky ReLU 𝑓(Χ) = ቄ0.01Χ 𝑖𝑓 Χ ൏ 0Χ if Χ ൒ 0  𝑓ᇱ(Χ) = ቄ0.01 𝑖𝑓 Χ ൏ 01 if Χ ൒ 0  

3. The Proposed RQDNN 

To reduce the hardware computing resources and training time of deep reinforcement learning, 
this study proposed the reinforcement Q-learning-based deep neural network (RQDNN), as shown 
in Figure 6. 𝑆௧ and 𝑆௧ାଵ are the input and output of the neural network, respectively, taking a reverse 
transfer to update neural network parameters, in which L(𝜃) is the loss function of the RQDNN. 
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Figure 6. Diagram of the reinforcement Q-learning-based deep neural network (RQDNN) 

algorithm. 

This section introduces the network architecture and operation flow of the RQDNN. Firstly, in 
order to train the algorithm stably, by reference of Mnih Nature DQN [3], this paper used a double-
network architecture to estimate loss functions, and the loss function of the original DQN is as shown 
in Equation (5). After each parameter update, the original neural network will be changed when 
fitting the target, which leads to the algorithm being unable to converge stably. Loss = ∑[(𝑅 +  𝛾𝑚𝑎𝑥௔ᇲ𝑄(𝑆ᇱ, 𝐴ᇱ, 𝜃) − 𝑄(𝑆, 𝐴, 𝜃))ଶ]. (5) 

Traditional DQN uses two groups of neural networks with identical architectures: Q-Network 
and Target Q-Network. The parameter of the Q-Network is 𝜃, while the parameter of the Target Q-
Network is 𝜃ି . The loss function will be changed to Equation (6). In every training, only the 
parameters of the Q-Network are updated, and, after every 100 updates, the parameters of the Q-
Network are copied to the Target Q-Network. In such a way, loss function calculations will be stable, 
accurate, and reduce the convergence time of algorithm. Loss = ෍[(𝑅 +  𝛾𝑚𝑎𝑥௔ᇲ𝑄(𝑆ᇱ, 𝐴ᇱ, 𝜃ି) − 𝑄(𝑆, 𝐴, 𝜃))ଶ] (6) 

DQN adopts a convolution neural network architecture, which contains three convolutional 
layers and two full connection layers. The architecture is simple, but, because of the features of 
convolution neural networks, the computing resources and time for training are greatly increased. 
Moreover, in the early training of the algorithm, convolution kernels cannot extract effective features, 
which greatly increases the training time of DQN. To solve this problem, a new network architecture, 
RQDNN, which combines DPCANet and Q-learning, was proposed in this study. 

3.1. The Proposed DPCANet 

The proposed DPCANet is an 8-layer neural network. The network architecture is shown in 
Figure 7, and the operation in each layer is described as follows: 
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Figure 7. Diagram of the proposed DPCANet. 

• The first layer (input layer):  
This layer has no operations, but it is responsible for pre-treatment of the input game pictures, 

which involves magnifying images to 80 × 80  and recording the time it takes for convolution 
operation. 

• The second and third layers (convolutional layers):  
Both of these layers are convolutional layers. There are 8 convolutional layers on the second 

layer and 4 on the third layer. The size of the convolution kernels is 5 × 5 with a step of 1. But, 
different from the parameters of convolution kernels in traditional convolution neural networks 
learned from algorithms, the parameters of the convolution kernels on both layers are gained from 
principal component analysis calculations. This calculation flow is as shown in Figure 8. 

 
Figure 8. Flowchart of parameter calculations of convolution kernels. 

Before calculating the parameters of convolution kernels, firstly, images were collected through 
interaction with the games and models of random actions served as the training samples. There were 
a total of n training samples, which is indicated by X = ሼ𝑥ଵ, 𝑥ଶ, 𝑥ଷ, … , 𝑥௡ሽ. 

The first step is to sample 𝑥ଵ in the range of 5 × 5 and then flatten all blocks gained from 
sampling and splice them into a matrix 𝑥ଵ෦, 𝑥ଵ෦, with a size of 25 × 25, calculated as Equation (7) where 
h and w are, respectively, the length and width of 𝑥ଵ, 𝑘௛ and 𝑘௪ are, respectively, the length and 
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width of the convolution kernel, and s is the step. Next, in the same way, other samples are sampled 
to get the training set X෩ = ሼ𝑥ଵ෦, 𝑥ଶ෦, 𝑥ଷ෦, … , 𝑥௡෦ሽ. (𝑘௛ × 𝑘௪) × (ቀ௛ି௞೓௦ + 1ቁ × ൬ቀ௪ି௞ೢ௦ + 1ቁ൰. (7) 

The second step is to calculate the covariance matrix of 𝑥ଵ෦. Firstly, the mean m of X෩ is calculated 
with a size of 1 × 5776, subtracted m from 𝑥ଵ෦ to get a new 𝑥ଵ෦, and then 𝑥ଵ෦ is multiplied by its own 
transport to get 𝑥ଵ෦𝑥ଵ෦். The same operation is conducted for other training samples and then X෩X෩் =൛𝑥ଵ෦𝑥ଵ෦், 𝑥ଶ෦𝑥ଶ෦், 𝑥ଷ෦𝑥ଷ෦், … , 𝑥௡෦𝑥௡෦்ൟ is obtained based on the calculations as shown in Equation (8). The 
size of the covariance matrix σ is 25 × 25. σ = ∑ ௫ഢ෦௫ഢ෦೅೙೔సభ(ቀ೓షೖ೓ೞ ାଵቁ×ቆቀೢషೖೢೞ ାଵቁቇ. (8) 

Lastly, σ is entered into the Lagrange equation and an eigenvector size of 25 × 25 is obtained. 
Then, take the first 8 dimensions as the parameters of the 8 convolution kernels on the second layer. 
The parameters of the 4 convolution kernels on the third layer can also be obtained through 
calculations of the above-mentioned steps. But, before calculating the convolution kernels on the 
third layer, a 2-layer convolution operation is conducted on X = ሼ𝑥ଵ, 𝑥ଶ, 𝑥ଷ, … , 𝑥௡ሽ  to get X௅ଶ =ሼ𝑥ଵଵ, 𝑥ଵଶ, … , 𝑥ଵ଼, 𝑥ଶଵ, 𝑥ଶଶ, … , 𝑥ଶ଼, … , 𝑥௡଼ሽ and then the parameters of the third-layer convolution kernel 
are calculated with X௅ଶ as the new training sample set.  

• The fourth layer (block-wise histograms layer): 
After performing convolution operations on the second and third layers, the original input 

image will produce 32 feature maps (1 × 8 × 4) in total, and effects similar to multi-layer convolution 
neural networks can be obtained through superposition of the second and third layers. For the 
activation function layer, however, we used block-wise histograms to achieve nonlinear 
transformation of the original activation function layer. The specific operation process is shown 
below. 

After the third layer is convolved, the feature map is used for binarization and is expressed as X௅ଷ , X௅ଷ = ሼ𝑥ଵଵ, 𝑥ଵଶ, … , 𝑥ଵସ, 𝑥ଶଵ, 𝑥ଶଶ, … , 𝑥ଶସ, … , 𝑥଼ସሽ . Firstly, X௅ଷ  is grouped every 4 pieces, and n 
groups of feature maps are gained in total 𝑥௡ = ሼ𝑥௡ଵ, 𝑥௡ଶ, 𝑥௡ଶ, 𝑥௡ସሽ , where n is the number of 
convolution kernels on the second layer. Based on the operation shown in Equation (9), the size of 𝑥௡෦, 𝑥௡෦  is 72 × 72 . Next, 𝑥௡෦  is divided into four blocks 18 × 18  in size, expressed as 𝑥ଵ௡෦ , 𝑥ଶ௡෦ , 𝑥ଷ௡෦ , 𝑥ସ௡෦ . The four blocks are used for histogram statistics and spliced into a 1024-dimensional 
vector. Next, other groups of feature maps are operated in the same way, and lastly, all of them are 
spliced into an 8192-dimensional eigenvector as the output of this layer. 𝑥௡෦ = ∑ 2ସି௜𝑥௡௜ସ௜ୀଵ . (9) 

• The fifth, sixth, and seventh layers (full connection layers): 
The fifth, sixth, and seventh layers are full connection layers and the dimensions are, 

respectively, 8192, 4096, and 512, with operations the same as those of other normal, similar neutral 
networks. 

• The eighth layer (output layer): 
The eighth and last layer is the output layer. The output dimension is the number of actions that 

can be controlled by the games and was set as 2 in this paper. 
Next, the operation flow of DPCANet will be explained. The training flow comprises an 

interaction stage, storage and selection stage, and update stage, as shown in Figure 9. 
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Figure 9. Flowchart of deep principal component analysis network (DPCANet). 

3.2. The Proposed RQDNN 

Before starting the major stage, initialization is conducted as the flow, as shown in Figure 10. In 
the beginning, an experience pool will be initialized. The experience pool D is responsible for all states 
and actions explored by RQDNN during training, and, at the update stage, experience will be 
randomly extracted from the experience pool to add into the parameter update. Next, Q-Network 
and Target Q-Network will be initialized, and the architectures of both networks are the same, as 
shown in Figure 7. At the update stage, parameter θ of the Q-Network is the only one updated, and 
parameter θି of the target Q-Network is synchronized with parameter θ of the Q-Network upon 
every 100 update stages. Lastly, the environment will be initialized, and the initial state 𝑠଴ will be 
the output. Next are the circulation of interaction stage, storage and selection stage, and update stage, 
until the stopping condition is met. In this study, the stopping condition was to reach the specified 
survival time. The interaction stage, storage and selection stage, and update stage operated as below: 

 
Figure 10. Flowchart of initialization. 

Upon completion of initialization, next comes the interaction stage with the flow, as shown in 
Figure 11. In the beginning, the states are taken from the environment, and the Q-values of all actions 
under 𝑠௧ shall be calculated by Q-Network. Next, 𝜀 𝑔𝑟𝑒𝑒𝑑𝑦 is used to select the action 𝑎௧ that will 
interact with the environment. If the probability is greater than  𝑎௧ , the action will be selected 
randomly. In the end, a new state 𝑠௧ାଵ will be gained through the interaction between 𝑎௧ and the 
environment. 
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Figure 11. Flowchart of the interaction stage. 

Next is the storage and selection stage. Algorithms related to Q-Learning are basically updated 
in single steps. Namely, the update is conducted for each interaction with the environment. Its 
advantages are its extremely high efficiency and the update can be done without completion of the 
entire flow. The disadvantages are that the strategies learned are simple to target and, once the game 
flow is changed, the effects of the strategies learned will be very poor. In order to solve this problem, 
DQN proposes replay memory, which stores all the experienced interactions in the experience pool 
D from interactions with environment. At the update stage, the experience most recently used in the 
interaction stage will not be directly used. Instead, a batch of experience randomly selected from the 
experience pool will be used. In this paper, the batch was set as 32, and the flow of storage and 
selection is shown in Figure 12. 

Start

Store (st, rt,  αt,  st+1)
in experience pool D

Examine the capacity
of experience pool is 

exceeded or not

Delete the oldest 
experience

Select a batch of 
experience

End

Yes

No

 
Figure 12. Flowchart of the storage and selection stage. 

The last is the update stage, and the flow is as shown in Figure 13. Upon selection from the 
experience pool, Equation (6) will be used to calculate loss function and the format of experience is ൏ 𝑠௧, 𝑟௧, 𝑎௧, 𝑠௧ାଵ ൐ . Q(s௧, a௧; 𝜃)  and maxQ(s௧ାଵ, a௧ାଵ; 𝜃ᇱ)  are calculated through Q-Network and 
Target Q-Network and, after that, the state of s௧ାଵ is examined, and r is given as the reward. When 
the barrier is successfully passed, r = 1, otherwise r = –1, and in the state of persistent existence, r = 
0.1. Next, the loss function L(θ) can be calculated. The random gradient reduction shall be used to 
update parameter θ  of the Q-Network, and then parameter θି  of the target Q-Network is 
synchronized with parameter θ of the Q-Network upon every 100 update stages. 

 
Figure 13. Flowchart of the update stage. 



Electronics 2019, 8, 1128 11 of 15 

 

Based on the above-mentioned stages, the proposed RQDNN can effectively learn to determine 
the playing strategy. The training time and hardware resources consumed in RQDNN are much less 
than those of DQN. 

4. Experimental Results 

In order to evaluate the effectiveness of the method proposed in this study, performance 
comparisons of different convolution layers and the two games (i.e., Flappy Bird and Atari Breakout) 
are implemented. 

4.1. Evaluation of Different Convolution Layers in DPCANet 

In this study, the proposed DPCANet replaced the traditional convolutional neural network 
(CNN) for extracting image features. DPCANet adopted a principal component analysis to calculate 
convolution kernel parameters, which can significantly reduce the computation time. In this 
subsection, the Modified National Institute of Standards and Technology (MNIST) database was used 
to test the network performances of different convolution layers. The MNIST dataset consists of 
grayscale images of handwritten digits 0–9. One thousand samples were used for training and testing 
in DPCANet. The experimental results are shown in Table 3. In this table, the performance of network 
2 was better than that of the other networks. In addition, more convolutional layers increased the 
computing time and could not improve the accuracy during fixed iterations. Therefore, the 
architecture of network 2 was used to extract the features of game images. 

Table 3. Performance evaluation of different convolution layers. 

 

1st layer 
Dimension 

of   
convolution 

2nd layer 
Dimension of 
convolution 

3rd layer 
Dimension of 
convolution 

4th layer 
Dimension of 
convolution 

Testing 
error 
rate 

Computation 
time per image 

(s) 

Network 1 8 NaN NaN NaN 5.5% 0.12 
Network 2 8 4 NaN NaN 4.1% 0.17 
Network 3 8 4 4 NaN 4.6% 0.22 
Network 4 8 4 4 4 4.8% 0.34 

 

4.2. The Flappy Bird Game 

The Flappy Bird game is as shown in Figure 14. In this game, a player can manipulate the bird 
in the picture to continuously fly past water pipes. This game seems easy as there are only two 
actions: flying or not flying. But the position and length of the water pipes in the picture are 
completely random; thus, the state space is very huge. Such a relationship was fitted to verify the 
effectiveness of RQDNN. 
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Figure 14. The Flappy Bird game. 

Next is the comparison of training and test results between the proposed RQDNN and DQN [2]. 

Firstly, the used hardware configurations for training are introduced, as shown in Table 4. The 
training results are shown in Figure 15. This figure shows that the training time of RQDNN was 
shorter than DQN [2]. Moreover, the external computing resources in the proposed RQDNN did not 
require accelerated computing of the Graphics Processing Unit (GPU).  

Table 4. Hardware configurations of RQDNN and DQN [2] 

 RQDNN DQN [2] 
CPU Intel Xeon E3-1225 Intel Xeon E3-1225 
GPU None GTX 1080Ti 

Training time 2 hours 5 hours 

 
Figure 15. Comparison results of RQDNN and Deep Q-learning Network (DQN) [2] training with 

the Flappy Bird game. 

Here, we set passing 200 water pipes as the condition for successful training. In Figure 15, the 
rewards were given at the 400th and the 1200th trials using RQDNN and DQN, respectively. In 
addition, the proposed RQDNN required only 1213 trials to achieve successful training, while DQN 
required 3145 trials. 

Next, the testing results were compared. If 𝜀 was set as 0, then the gained results are shown in 
Table 4 through 10 executions. The scores of the human player were gained from tests done by human 
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players. In Table 5, the gained score of the proposed method was better than that gained in the DQN 
proposed by Mnih [2] and significantly better than that gained by human players. 

Table 5. Testing results of the Flappy Bird game using various methods. 

 Min Max Mean 
Proposed method 223 287 254.2 

V. Mnih [2] 176 234 213.4 
Human player 10 41 21.6 

4.3. The Atari Breakout Game 

In Breakout, six bricks are arranged on the first third of the screen. A ball moves straight around 
the screen and bounces off the top and sides of the screen. When a brick is hit, the ball bounces, and 
the brick is destroyed. The player has a paddle that moves horizontally to reflect the ball and destroy 
all the bricks. There are five chances in a game. If the ball crosses the racket, the player will lose a 
chance. The Atari Breakout game is as shown in Figure 16.  

 
Figure 16. The Atari Breakout game. 

In this game, 3500 trials were set as the complete training condition for training process. The 
training results of the proposed RQDNN and DQN are shown in Figure 17. This figure shows that 
the proposed method had a faster convergence rate than DQN in playing the Breakout game. After 
3500 trials, the proposed RQDNN kept 1179 time steps to play Breakout, while DQN only kept 570 
time steps. The experimental results showed that the proposed RQDNN can keep a longer playing 
time than DQN in the Breakout game. 
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Figure 17. Comparison results of RQDNN and DQN [2] in the Breakout game. 

5. Conclusions and Future Work 

In this study, a Reinforcement Q-Learning-based Deep Neural Network (RQDNN) was 
proposed for playing a video game. The proposed RQDNN comprised DPCANet and Q-learning to 
determine the playing strategy of video games. Video game images were used as the inputs. 
DPCANet was used to initialize the parameters of convolution kernels, to obtain good rewards, and 
to shorten the convergence time in training process. The reinforcement Q-learning method was used 
to capture the image features automatically and implement game control strategies. Experimental 
results showed that the scores of the proposed RQDNN were better than those of human players and 
other deep reinforcement learning algorithms. In addition, the training time of the proposed RQDNN 
was also far less than that of other deep reinforcement learning algorithms. Moreover, the proposed 
architecture did not require GPU to accelerate computation and needed less computing resources 
than traditional deep reinforcement learning algorithms.  

Although the architecture of the proposed method replaces the convolutional and pooling layers 
of the original convolution neural network, the block-wise histogram layer used for the activation 
function layer is not good architecture. In addition to large dimensions, external feature combinations 
were also improved. In future work, we will focus on using kernel principal component analysis and 
other nonlinear methods to generate convolution kernels and improve the performance of deep 
reinforcement learning. 
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