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Abstract: This paper illustrates regenerative battery charging control method of the permanent
magnet synchronous motor (PMSM) drive without DC/DC converter. Conventional control methods
for battery current and voltage control methods generally use a bidirectional DC/DC converter for
regenerative control. The reason to use this DC/DC converter is the DC-Link current ripple of the
inverter of is affected by switching of the inverter and the motor speed. This problem causes to use
a low pass filter (LPF) for sensing the DC-link current, however, it occurs deteriorating the control
performance. In this paper, battery current and voltage control methods using only the motor drive
are illustrated. To control the DC-link current, power control is performed using the look-up table
(LUT) data that are extracted from the experiment. In addition, an applicable method for the variable
DC-link voltage of the proposed regenerative control method is illustrated.

Keywords: PMSM drive; regenerative control; battery charging control

1. Introduction

Electrical components in vehicles are continuously modified to suit specific needs and requirements,
and enhance drive efficiency [1–3]. A variety of electrical systems are used in vehicles and operating
motors to improve fuel efficiency and performance. However, this has led to a rise in electric power
consumption, especially with the application of active steering, suspension systems, and braking
devices; mechanical or hydraulic motors are being replaced by electric drive systems. A permanent
magnet synchronous motor (PMSM) drive for integrated starter and generator (ISG), nevertheless,
have certain advantages. It not only propels initial driving power, but also reduces fuel consumption
with an idle stop and go function. An ISG implements regenerative braking, which improves fuel
efficiency by recovering some of the energy lost during conventional braking [4–6].

The drive topology of a PMSM is shown in Figure 1a; however, for DC-link voltage stabilization
or to charge the battery, a bidirectional DC-DC converter is placed between the battery and the motor
drive [7]. The bidirectional DC-DC converter in Figure 1b controls power flow by using a battery
management system (BMS) [8–16]. Therefore, the PMSM drive configuration in Figure 1b offers more
battery stability and efficiency, as compared to the arrangement in Figure 1a.

As previously mentioned, the ISG drive provides the driving or braking force to the wheel, in an
effort to increase efficiency of the traction drive. Regenerative control, which is an ISG application,
generates a braking torque to provide a braking force and charge the battery [17]. This brake system has
recently been improved upon to produce the hybrid brake, which combines mechanical and electrical
braking features using an ISG to enhance the driving distance [17–22]. Figure 2 shows the control
method of the hybrid brake: the main control unit (MCU) controls the brake torque (which is provided
by the electrical and mechanical brakes), taking into consideration the battery’s state of charge (SOC).
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When the brake torque from the brake pedal is beyond the battery’s capacity, MCU transfers the
remaining brake torque to a mechanical brake controller. This hybrid system not only transfers brake
energy back to the battery, but also enhances the mechanical brake’s life by reducing abrasion.
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Assuming that the MCU reflects battery SOC and current reference from the BMS, optimal 
charging current to the battery can be achieved by allocating a braking torque to the mechanical brake 
and ISG. Based on this concept, this paper proposes battery current and voltage control methods 
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control is easily achieved by using a DC/DC converter with the conventional battery charging control. 
However, as this topology needs additional switches and a reactor, the cost and size unavoidably 
increases. In contrast, the topology of Figure 1a struggles to control the charging current because the 
DC-link current of the inverter is degraded by switching and motor speed. A DC-link capacitor can 
mitigate this ripple; however, in cases of slow motor speed, this effect reduces. This paper first 
explains the PMSM torque control method using a look-up table (LUT) for current reference 
generation. It then elucidates the DC-link current sensing problem. In addition, the proposed 
regenerative control method for PMSM drive is illustrated. Finally, the proposed algorithm is verified 
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Figure 1. Power conversion unit of PMSM drive for regenerative control: (a) General topology of
PMSM drive; (b) PMSM drive with DC-DC converter.

The hybrid brake is a fine technique; however, conventional research focuses only on increasing a
vehicle’s braking performance [18–22]—they use the topology shown in Figure 1a; the torque required
to enhance braking performance is directly applied to PMSM drive, ignoring suitable battery charge that
emanates from the BMS. Although braking performance is important, battery charge control is also vital,
as it enhances battery life. Research on electric brake control using only motor drive is limited [23,24];
moreover, the studied control methods only consider battery voltage, not battery current.

Assuming that the MCU reflects battery SOC and current reference from the BMS, optimal
charging current to the battery can be achieved by allocating a braking torque to the mechanical brake
and ISG. Based on this concept, this paper proposes battery current and voltage control methods using
PMSM drive. With the topology shown in Figure 1b, regenerative battery current and voltage control is
easily achieved by using a DC/DC converter with the conventional battery charging control. However,
as this topology needs additional switches and a reactor, the cost and size unavoidably increases.
In contrast, the topology of Figure 1a struggles to control the charging current because the DC-link
current of the inverter is degraded by switching and motor speed. A DC-link capacitor can mitigate
this ripple; however, in cases of slow motor speed, this effect reduces. This paper first explains the
PMSM torque control method using a look-up table (LUT) for current reference generation. It then
elucidates the DC-link current sensing problem. In addition, the proposed regenerative control method
for PMSM drive is illustrated. Finally, the proposed algorithm is verified by experimental results.
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2. Regenerative Power of a PMSM

2.1. Torque Control of a PMSM

A three-phase PMSM is modelled by synchronous d-/q-axis transformation. The transformed
electrical torque equation is expressed as:

Te =
3
2

P
2

(
φpmirqs + (Ld − Lq)irdsi

r
qs

)
(1)

Electrical torque is the value that divides mechanical output by velocity. Therefore, power
generated from the PMSM can be expressed as Equation (2), assuming that copper and iron loss can be
negligible, caused by small fluctuations in the phase current ripple:

Pout =
3P
4
ωr

(
φpmirqs + (Ld − Lq)irdsi

r
qs

)
(2)

Based on the equation above, if the motor rotates in a forward direction at constant velocity and
torque, the generated power is constant and has a positive value. Because inductance Lq is larger
than Ld in an interior mounted PMSM (IPMSM), d-axis current should have a negative value in order
to obtain a positive second term of Equation (2). On the other hand, power flow direction of the
regenerative operation should be from the PMSM to the DC-link, and the q-axis current should be of a
negative value to achieve the direction as described in Equation (2). The power from the PMSM to the
DC-link can be expressed as follows:

Pin = VdcIdc (3)
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If the loss from inverter switching or friction of mechanical gear can be ignored, the power
generated by the PMSM and the power transmitted to the DC-link will be the same. In this case,
Equation (4) is deducted from Equations (2) and (3):

Pin = Pout

VdcIdc =
3P
4 ωr

{
φpmirqs +

(
Ld − Lq

)
irdsi

r
qs

} (4)

As illustrated in Equation (4), regenerative power to the battery is controlled by PMSM current.
Because DC-link voltage (Vdc) is always positive and motor speed of ISG (ωr) is almost positive (except
during reverse driving), the q-axis current and DC-link current generally are in the same direction.
Therefore, a negative q-axis current can generate torque that is in the opposite direction of motor
speed, and can generate regenerative power to the DC-link and the battery. Note that the negative
DC-link current absorbs energy from the motor. Assuming that the capacitance of the battery is almost
infinite, this absorbed energy is delivered to the battery through the DC-link due to the constant
DC-link voltage. As a result, the negative DC-link current becomes the input current of the battery,
thus charging it.

On the other hand, various d-/q-axis currents can generate specific torque and power, according
to Equation (1). Specific torques identified according to Equation (1) can be expressed by various
d-/q-axis current combinations, as shown in Figure 3. The most efficient current point is the maximum
torque per ampere (MTPA) point, which points to the minimum current magnitude. As shown in
the figure, generating and regenerating torques have a symmetrical relation to the q-axis. If the same
amount of torque is generated or regenerated, the d-axis current for the MTPA point is the same and
the q-axis current for the MTPA point only changes direction. Therefore, if the MTPA points of various
motoring torques are identified, the MTPA points of regenerating torques are easily estimated.
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The ISG needs to satisfy a broad velocity region through a field weakening technique, which 
reduces the back-EMF voltage. However, the d-/q-axis current point for field weakening control is 
affected by PMSM parameters, as described in Equation (5), especially for resistor variation. Because 
the voltage drop caused by the resistor is easily changed by operating temperature or humidity, 
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Generally, these current points are stored in an LUT, wherein it responds to a specific
torque command. However, if motor speed increases, these d-/q-axis current points should take
into consideration MTPA points for torque generation and restriction of the back-EMF voltage.
The back-EMF voltage amount can be calculated as below:

Emag =

√{
Rsirqs +ωr(Ldirds + φpm)

}2
+ (Rsirds −ωrLqirqs)

2

Emag ≤ Vmax(Vmax = Vdc/
√

3)
(5)

The ISG needs to satisfy a broad velocity region through a field weakening technique, which reduces
the back-EMF voltage. However, the d-/q-axis current point for field weakening control is affected
by PMSM parameters, as described in Equation (5), especially for resistor variation. Because the
voltage drop caused by the resistor is easily changed by operating temperature or humidity, optimal
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d-/q-axis currents for specific generating and regenerating torque in a field weakening region have
large differences. Thus, current data in an LUT for a field weakening region is usually experimentally
established. In addition, because the LUT has to reflect torque command as well as current speed for
the field weakening operation, it needs to be two-dimensional (2D-LUT). Figure 4 shows the 2D-LUT
of the ISG motor used in this paper.
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With these 2D-LUTs for the d-/q-axis current, instantaneous torque control can be achieved by
using the vector control method—it is the most common control method for PMSM drive, generating
torque by controlling the d-/q-axis current flowing through the stator phase current. In this case, d-axis
is the position wherein magnetic flux is generated from the positive pole of the permanent magnet,
and q-axis has a 90◦ phase difference from the magnetic flux of the rotor in space. Because the PMSM is
a synchronous motor, the flux caused by the stator current has to be sync with motor speed. To achieve
this, the stator current needs to be transformed by using the rotor reference frame, which rotates at the
rotational velocity of the rotor. Position information of the rotor (θr) is required for synchronous frame
transformation for vector control. In general, a position sensor is used to detect rotor position and the
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obtained information transforms the three-phase currents to d-/q-axis currents, or d-/q-axis voltage
references to three-phase voltage references.

Figure 5 shows a block diagram of the algorithm used for instantaneous torque control in a
PMSM. As mentioned earlier, the current reference to generate specific torque for MTPA and field
weakening operation is output using 2D-LUT. On using the identified torque, the battery can be
charged through torque assist and regeneration of the ISG system. However, the conventional ISG
system does not include a separate algorithm for effective charging of the battery [23,24]. It simply
ensures voltage control—maintains nominal voltage—when there is an increase due to overcharging
of the battery. However, such a control method is insufficient for efficient battery use, because it
fails to have appropriate current control. In this case, the current sensor is simply used to detect the
overcurrent flowing in the battery, instead of being used for current control.
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Figure 5. General regenerative torque control in a PMSM drive.

2.2. Problem of Sensing the DC-link Current

As aforementioned, the DC-link current in the three -phase inverter is affected by inverter
switching and back-EMF voltage. One of the biggest problems with the conventional method is that
the regenerative energy of the inverter cannot be estimated by DC-link current. As is widely known,
the actual inverter DC-link current is corrupted by the switching of the inverter and the back-EMF
voltage of the traction motor. A brief explanation of this current ripple is provided in this section.

To analyze this current ripple, a-phase output voltage of the inverter is modeled:

Van = Ean + jωrLsia(t) (6)

where, n is the PMSM neutral point, Van is the a-phase inverter output voltage, Ean is the a-phase
back-EMF voltage.

In the steady state, the fundamental component of the inverter output voltage is the same as that
of the back-EMF voltage. The current ripple is calculated as:

ia_ripple =
Van − Ean

jωrLs
(7)

where, ia_ripple is an a-phase current ripple.
Fundamentally, the inverter output voltage is not sinusoidal voltage, but rectangular pulse.

Therefore, this voltage difference between the fundamental component and the real voltage creates the
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current ripple. On the other hand, in an ideal condition, the input power of the DC-link would be the
same as the output power.

Vdcidc(t) = van(t)ia(t) + vbn(t)ib(t) + vcn(t)ic(t) (8)

From Equation (7), instantaneous DC-link current can be obtained as:

idc(t) =
EmagIa

Vdc
[cos(ωrt) cos(ωrt−φ)

+ cos(ωrt− 120◦) cos(ωrt−φ− 120◦)
+ cos(ωrt + 120◦) cos(ωrt−φ+ 120◦)]

(9)

where, Emag and Ia are the amplitudes of the phase voltages and the currents, respectively, and φ is the
phase difference between the phase voltage and the current.

From this equation, it can be seen that instantaneous DC-link current is affected by motor
back-EMF; the DC-link current has the 6th harmonic component. Therefore, Equation (9) can be
approximately transformed to the following equation:

idc(t) =
3EmagIa

Vdc
cosφ+ k1

3EmagIa
Vdc

cos(6ωrt−φ) + k2iSW(t)
= Idc + ĩDC1(t) + ĩDC2(t)

(10)

where, k1, k2 are the magnitude gains of the DC-link current ripples.
In Equation (10), the first component Idc is the DC component, which relates to regenerative energy.

The second component ĩDC1(t) is the 6th harmonics component, which is a result of the back-EMF
and DC-link voltage. The third component ĩDC2(t) is the switching current ripple. On observing
the DC-link current, it can be seen that the switching current ripple ĩDC2(t) can be removed by LPF.
However, the harmonic component ĩDC1(t) cannot be easily disconnected because harmonic frequency
varies according to the DC-link capacitor, and swelling of the current remains at low speed. Besides,
this capacitor is only operated as an LPF, which has a specific low value cut-off frequency. Therefore,
control dynamics are restricted when the DC-link current is controlled by a sensing current. Figure 6
illustrates Equation (10): the period of ĩDC1(t) and ĩDC2(t) are well described, highlighting that ĩDC1(t)
is six times that of the phase current period and ĩDC2(t) is the switching period.
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Fortunately, DC-link current’s ripples decrease in relation to the value of DC-link capacitance.
In the manufacturing of traction drives, capacitance value is set at more than 10 times the designated
value, because reduction in a battery charging current’s ripples enhances the life of a PMSM drive
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system. However, an ISG drive does not allow such a size or cost. In order to meet these restrictions,
a designated capacitance has to be applied to PMSM drive, without any margins. This does not allow
the charging current’s sensor to use low pass filter (LPF) that has low cut-off frequency. This affects
control performance owing to slow sensing data acquisition, thus degrading the battery’s constant
current (CC) control performance. Moreover, as previously mentioned, the frequency of the ripples vary
with motor speed, and controller gain setup for stable operation is performed under adverse conditions.

3. Proposed Regenerative Control Method for Battery Charge

We will first explain the constant current and voltage control method for battery charge using a
general DC-DC converter. Using the configuration shown in Figure 1a, battery current and voltage can
be substituted by DC-link current and voltage. Figure 7a shows the general constant voltage (CV) and
a constant current control block; operation of this block is shown in Figure 7b. In Figure 7, the DC-link
voltage is controlled by a PI controller. The output of the voltage controller is limited by the desired
current reference for CC control operation. During the CC control operation, because the target voltage
does not reach the reference, the voltage controller output is saturated by the PI controller. The desired
current reference for the CC operation is then inserted into the limiter to adjust the saturated voltage
controller output. This saturated current reference is input into the current controller to control the
battery current. If the battery voltage reaches the reference value, the saturated voltage controller is
released, and CV control is initiated. CV operation reduces the battery current, and subsequently the
voltage drop by battery impedance is also decreased. Consequently, the open terminal voltage of the
battery is set as the voltage reference. Figure 7b shows the CC-CV control result.
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As previously mentioned, DC-link current has lots of ripples, created by the switching power
converter and voltage of back-EMF. Therefore, if this general CC-CV controller is adopted in a PMSM
drive system, the problem of DC-link current sensing arises. To solve this problem, this paper proposes
an indirect DC-link current control by means of a power controller. Figure 8 shows the proposed
control method.

As a conventional current and voltage controller, the voltage controller generates the current
reference. However, the DC-link current reference is multiplied by the current DC-link voltage to
deduct the power reference. The generated power reference is compared with the PMSM regeneration
power based on a simple equation:

VdcIdc = K(Te,ωr) × Teωr (11)

where, K(Te,ωr) is the efficiency of the energy transformation from mechanical energy to electrical energy.
As is widely known, the efficiency of a PMSM operation varies with generation torque and motor

speed. Therefore, the proposed control method needs two LUT data: the first is the generated torque,
and the second is efficiency. Generated torque can be estimated by dq-axis current, based on Equation
(1). Note that the generated torque is only affected by current, not motor speed. Figure 9 shows the
estimated torque with dq-axis currents.

On the other hand, the efficiency of PMSM drive is affected by copper and iron losses. Copper
loss is the dissipation of energy caused by nonlinearity between the current and flux—hysteresis and
eddy current losses. Therefore, this loss is proportional to motor speed. Iron loss is the loss caused by
resistance of the windings. Therefore, this loss is proportional to motor current. As a result, to achieve
correct power control, parameter K has to consider motor speed and torque. Figure 10 shows the
estimated efficiency of the target motor drive, according to motor speed and torque.
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4. Experimental Results

In order to verify the validity of the CC-CV regenerative control in an ISG system, we created an
experimental setup (Figure 11). The target PMSM drive parameters are provided in Table 1 and battery
parameters in Table 2.

Table 1. PMSM drive parameters.

Parameter Value

Pole 8
Permanent magnet flux 0.0045 (Wb)

d-axis inductance 0.000303 (H)
q-axis inductance 0.000907 (H)

Resistance 0.0003 (Ω)
DC-link capacitance 670 (µF)
Rated phase current 110 (A)

Rated Speed 4800 (rpm)
Rated Torque 32 (Nm)
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Table 2. Battery parameters.

Parameter Value

Battery type LiB
Rated voltage 250 (V)
Rated current 18 (Ah)

Maximum charging current 28 (A)
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Figure 12 provides the results of the CC-CV control; Figure 12a shows the battery current and
voltage, Figure 12b shows the three-phase currents during the CC-CV operation. Load motor is coupled
with a target PMSM to ensure that motor speed is the rated 4800 rpm, and time division of all figures is
1 s/div. At this speed, the battery charging current reference is set as 28 A, the maximum charging
current; and battery voltage reference is set as 250 V, the rated full-charging voltage. As shown in the
figure, when charging control is initiated, the battery current is well controlled with current reference
of 28 A. During this CC control period, q-axis current increases in accordance with the rising battery
voltage, because the required charging power for constant current is increased by the battery voltage.

Figure 13 shows the results of CC-CV control at various speeds. This experiment was conducted
by adjusting the speed of the load motor from 1000 rpm to 3000 rpm; charging current was 15 A,
charging voltage was 250 V, and time division was 5 s. Even with sudden change (increase/decrease)
in motor speed, CC-CV control is achieved by modifying the regenerative torque with the proposed
control method. Note that if battery voltage is increased, the controlled regenerative torque also rises,
because the power required for constant battery current control also increases, similar to as shown in
Figure 12.

Table 3 shows a comparison between the previous control method by [14] and the proposed one.
The charging method using the old charging controller has 89% maximum efficiency; however, with the
proposed charging method, maximum efficiency was found to be 92%. The older method used a
hysteresis controller for generative and regenerative operations, incurring losses from the DC-link
capacitor. However, the proposed control method does not use a DC/DC converter to charge the
battery, and, as a result, efficiency is dramatically enhanced.

Table 3. Comparison of maximum efficiency of the two methods.

Max. Efficiency of Previous Control Method [14] Max. Efficiency of Proposed Control Method

89% 92%
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5. Conclusions

This paper proposes regenerative battery current and voltage control methods for PMSM drive.
The proposed method controls battery charging using power control. Motor speed and torque can
directly affect battery voltage and current; therefore, the proposed control method charges the battery
with a CC-CV control, and not a DC-DC converter. A conventional CC-CV control method is achieved
by the current sensor of a DC-link or battery; however, inverter switching and the voltage of back-EMF
causes ripples in DC-link current, which deteriorate control performance. In contrast, the proposed
control method indirectly controls the DC-link current using a power controller, and does not require
DC-link current sensing. The proposed method was verified by experiments using maximum power
output conditions and varied motor speeds, and was found to be effective for battery charge under
varied motor circumstances.
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Nomenclature

Te Electrical torque
φpm Permanent magnet flux
Ld, Lq Inductances of d-/q-axis synchronous frame
Ls Magnitude of phase inductance
irds, irqs Currents of d-/q-axis synchronous frame
ωr Electrical angular velocity
Vdc DC-link voltage
idc(t) DC-link current
Idc Effective component of DC-link current
Emag Back-EMF voltage magnitude
Ls Phase inductance in the stator
Ia Magnitude of phase current
ia(t), ib(t), ic(t) a,b,c-phase currents
van(t), vbn(t), vcn(t) a,b,c-phase back-EMF voltages
P Number of poles of PMSM
Vmax Maximum output voltage of the inverter with SVPWM under linear modulation region
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