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Abstract: In this article, the intended purpose is to show an innovative technique for estimating the 
MIMO channel at millimeter wave bands, candidates for mobile 5G technology, by using hardware 
acceleration, game engines and heuristic algorithms applied to optical ray launching techniques. To 
verify the performance of the ray launching tool, the normalized Power Delay Profile (PDP) was 
simulated. The channel was analyzed using the mean square delay error (RMS), the average value 
of the delay (MD) and the basic propagation loss (PL). The results obtained in computational 
precision and time were compared with those of a traditional ray tracing tool simulation 
programmed in MATLAB and with the measurements made in the 57 to 66 GHz range in a 
specialized laboratory. The results show that the presented technique becomes efficiently profitable 
from a small number of simulated events (reflections, diffractions). 

Keywords: ray launching; game engines; hardware acceleration; wireless channel estimation; 
MIMO channel estimation 

 

1. Introduction 

Overcrowding in access to multimedia information such as online videogames and streaming 
services forces the next generation of communications to present technological advances quickly 
[1,2]. That is, increase the efficiency of the wireless channel through transmission in the shortest time 
and with an acceptable quality to the greatest number of possible users. Nowadays, rates between 
wireless LAN technologies and mobile networks are comparable, forcing a coexistence to avoid 
interference [3]. Therefore, they tend to integrate and become the same access technology. 

5G mobile networks must face the challenges of energy consumption and high rates [4]. In 
compliance with the formulation in Shannon's capacity, there are two ways to improve service 
quality: Increasing signal strength or increasing bandwidth. 

The best way to improve energy consumption and, at the same time, increase the signal strength 
is through the implementation of femtocells [5]. Smaller coverage areas between the transmitter and 
the receiver improve signal strength and interference to provide better quality of service. In this 
paradigm, the difficulty of interference can be resolved with the use of a radio spectrum available at 
high frequencies and cognitive radio [6].  

By the other way, spectral efficiency improves by increasing the bandwidth of the channel [7]. 
To solve the need bandwidth, mobile technologies have been increasing their operating frequencies 
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as it evolves. The next mobile generation hopes to use millimeter waves or terahertz to improve the 
quality of service. 

A relevant factor is the implementation of multiple antennas for the simultaneous transmission 
of information, using spatial multiplexing or diversity [8]. By means of a lower wavelength given by 
the millimeter or terahertz waves, it is possible to integrate a greater number of antennas and make 
them smaller. The MIMO and MIMO massive sets will support emerging technologies called next-
generation mobile networks (NGMN). 

To evaluate technological implementations, it is necessary to estimate the behavior of the radio 
channel through precise models such as deterministic models [9]. With the estimation of the radio 
channel at the physical layer level, support is provided for the choice of digital modulations, media 
access techniques and the encodings that will be used. 

Radio channel estimation use stochastic or deterministic models. First models use a probabilistic 
distribution function and disregard some channel effects due to the antennas or the type and number 
of scatterers in the scenario to be evaluated. Deterministic models are adequate in different 
environments with scatterers of considerable size, given their exact and verifiable predictions [10]. 
Computational methods have had an enormous influence on the prediction of wireless channel 
parameters, with the optical beam technique being the most accurate [11]. Until now, the technique 
of ray tracing (RT) based on the image method [9,12,13] and the technique of ray launching (RL), 
which uses the brute force algorithm, have been implemented with greater efficiency and precision 
[14–16].  

However, computationally, the first technique is limited to a simplified scenario due to the 
number of secondary sources (images) that are produced by the multiple reflection and diffraction 
phenomena. With respect to the second technique, its accuracy is based on the firing resolution angle. 
The rays produced initially and those generated as a secondary source, a product of the Huygens–
Fresnel principle, exponentially increase the number of paths to analyze. For ray launching to be a 
practical, accurate and computationally efficient strategy, it is necessary to resort to the use of game 
engines and hardware acceleration, but such studies have been limited to the estimation of the 
wireless channels of a transmitter and a receiver (SISO, single input single output) in decimeter 
waves. 

The above mentioned indicates that it is necessary to develop efficient and practical acceleration 
techniques that allow a reduction in the simulation time while maintaining accuracy. Each ray 
launched or traced is independent of the rest of the rays and, therefore, it is possible for a processor 
or processor unit to calculate the path and the interactions of one ray at the same time that another 
processor does the same with another ray. In this way, if several processors are available, the task of 
launching or tracing beams can be parallelized reaching a high efficiency without losing precision. 

In Section 2 we present the materials and methods used to develop the software in the game 
engine using ray launching and the way in which the measurement campaign was carried out. In 
Section 3 the obtained results are described and compared with another optical ray strategy 
developed in MATLAB. In Section 4 we discuss some aspects of how this application would be in 
other environments. Finally, in Section 5 the conclusions are presented. 

2. Materials and Methods 

Next, we describe both the geometrical model of the stage and the physical model of wave 
propagation using game engines and hardware acceleration. The estimation of channel parameters 
depends, to a large extent, on these representations. 

2.1. Description of the Test Scenario 

The accuracy of the results of the ray launcher is intimately linked with the description of the 
environment or 3D scenario for both indoor and outdoor environments. The representation of the 
scatterers as well as their constitutive parameters must be included in a high-resolution model, and 
the representation must include both the electromagnetic characteristics of the materials and the 
dimensions of each one of the scenario elements.  
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Figure 1 shows a photograph (right) of the laboratory at the Polytechnic University of Cartagena 
(UPCT), Spain, used for measurements and its 3D computational model (left). The scenario has 
dimensions of 6.40 m x 4.44 m x 2.60 m. Five classes of materials present in the analysis scenario were 
identified. The floor and columns consist of concrete, glass windows, wooden furniture with metal 
frames and a plaster ceiling. On the left, the game engine representation is shown, where the red 
sphere represents the transmitter position and the blue sphere represents the receiver position (setup 
of 5 transmitting antennas) for a total of 180 MIMO channels.  

 
Figure 1. 3D model of the laboratory. 

The measurements were made at different locations inside the laboratory, as shown in Figure 2. 
Each one of the triangles (transmitters) represents a virtual uniform rectangular array (URA) 
composed of 6 x 6 positions, and the receiver is a virtual uniform linear array (ULA) composed of 1 
x 5 positions. Thus, 180 MIMO channels were measured in each one of the locations. The separation 
distance between each location is 1 m in length and 0.5 m in width. 

 
Figure 2. Top view of the electromagnetic characterization laboratory, Polytechnic University of 
Cartagena (UPCT), Spain. Distribution of measurement points. 

The initial values used for the relative permittivity and the conductivity of the scenario materials 
were provided by the UPCT advisors (mentioned in the Acknowledgments) and are shown in Table 
1. 
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Table 1. Values of relative permittivity and conductivity of materials. 

Element Relative 
Permittivity 

Conductivity 
(S/m) 

Floor and 
Columns 6.5–0.43i 1.43 

Walls and Drop-Down  
Ceiling 

2.81–0.046i 0.15 

Furniture 1.54–0.095i 0.32 
Metal 1 1 
Glass 6.94–0.176i 0.59 

In the literature, the nominal values of relative permittivity and conductivity for wood, concrete 
and glass can be found for specific materials and at low frequencies, far from the measurement 
frequencies. For this reason, measured values were taken in [12]. 

Figure 3 shows a scheme of the system used for the measurements. The frequency response is 
measured using a vector network analyzer. Then, the inverse Fourier transform is applied to obtain 
the complex impulse response (CIR) in the time domain. Once all CIRs are collected for one location 
the PDP is obtained as usual by averaging the CIRs. The range of measurements was between 57 GHz 
and 66 GHz with 4096 frequency points. The measurement system used consists of two groups of 
identical omnidirectional antennas in virtual arrays (Q-pair QOM55-65 VRA) with vertical 
polarization and gain ranging from 4 to 5.1 dBi along the bandwidth. In each array, the antenna 
elements, both in reception and transmission, are separated equidistantly 2 mm, which in terms of 
wavelengths gives a ratio of 2λ . In addition, the antennas have an omnidirectional radiation 
pattern in the H plane and a medium power beam centered at 40°, 28° and 21° for the frequencies of 
55 GHz, 60 GHz and 65 GHz, respectively. 

 

Figure 3. Measurement system for the measurement campaign between 57 and 66 GHz. 

The antennas are supported on metal structures 1.44 m high for the transmitter and 1.54 m for 
the receiver. They are connected with a coaxial cable to the Rohde & Schwartz ZVA67 vector network 
analyzer whose transmission power was –10 dBm. To compensate for the attenuation effects of the 
coaxial cables, amplifiers (HXI HLNA-465) with maximum gains of 25 dB were used, whose effects 
were measured and adjusted. In order to obtain precision, a software was created for positioning 
with servomotors and operated from outside the environment to maintain the channel stationary. 
With an intermediate frequency of 10 Hz, a dynamic range of more than 100 dB was obtained. 

The 3D model of the scenario was obtained using plane geometries to represent all the objects. 
Each of the physical geometries of the objects present in a laboratory can be modeled by combining 
some basic primitive geometries, which altogether achieve great geometric resolution. However, in 
the selected scenario, the environment and the present objects do not have great geometric 
complexity and are composed of flat surfaces with their respective properties of dimension, thickness, 
permittivity and conductivity. Likewise, to identify the impact of the propagation wave on the edges, 
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a cylinder shape was used. Furthermore, to represent the measurement points and to identify the 
rays that impact on them, the geometry of the reception sphere was used.  

The open source multiplatform tool Blender 2.74 was used to develop 3D modeling of the 
internal environment, which uses Python as an internal programming language. In a first phase, the 
data are selected to create the environment according to the measurements of the realistic UPCT 
scenario, obtaining the points of the XY coordinates with their respective height for each element that 
is included in the study environment. 

In Blender each object is included by adding a cube-type mesh in the scene for the walls, floor, 
ceiling, windows and other elements of the environment. Additionally, each material is represented 
as textures that are incorporated in the model, by means of the texturing technique mapped in 2D 
coordinates (UV), which allows to establish a correspondence between the vertices of an object and 
the coordinates of a texture. 

Assigning an image to each polygon according to the material in the model of the environment, 
to improve rendering, you get great 3D resolution providing realism to the scenario. Finally, before 
exporting the files, the transformations of scale, units, rotation and location of the scene applied in 
the 3D environment of Blender must be considered. This is important in order to apply the changes 
of the scene with the characteristics of the model as material, meshes and associated textures, to later 
import the model in the JME (Java Monkey Engine). Subsequently, the 3D scenario in Blender format 
is exported to a format compatible with the game engines. 

2.2. Channel Modeling 

The brute force method employed uses the theory of the optical beam that allows to separate 
each propagation mechanism (reflection, diffraction and dispersion) with the advantage of applying 
optical geometry. It is based on the SBR (Shooting and Bouncing Ray) algorithm. First, rays are 
launched from the transmitting antenna, and then the ray trajectories are traced, allowing us to see if 
it hits any object in the environment or if it reaches the receiving antenna. When the beam hits a flat 
surface, a reflected beam is generated and another transmitted by the interface, but if the beam hits 
an edge, a large amount of diffracted rays are generated and each of them is drawn until it hits 
another object and so on until it is discarded as having less power than the sensitivity of the receiver, 
or successfully impacting the receiver. Finally, the ray characteristics associated with the propagation 
are calculated. 

The ray launching method applies the Fermat principle and the local field principle to model 
rays. Fermat's principle states that a ray follows the shortest path from the source to the field point, 
while the principle of the local field states that when the rays strike a surface, they experience 
reflection, refraction and diffraction, and at high frequencies, it only depends on the electrical and 
geometric properties of the scatterers. 

Each ray is associated with a complex and vectorial electric field of amplitude, which is 
computed taking into account the field emitted in the transmitter, the losses in the free space, the 
reflections, and the diffractions and diffusions experienced by the ray in which the appropriate 
models are used. The losses in the free space are represented by the Friss equation, and the reflections 
are represented by applying the Fresnel reflection coefficients, while for diffraction the vector field is 
multiplied by the relevant diffraction coefficients and obtained from the UTD theory, using a 
modification of Luebber’s coefficients. 

2.3. Ray Propagation 

The transmitter is modeled as a source point. To determine all the possible rays that can be 
launched from the transmitter and reach the receiver it is necessary to consider all possible angles of 
the transmitter's output and arrival at the receiver. The rays must be launched from the transmitter 
at an elevation angle and an azimuth angle relative to the fixed coordinate system and following a 
launch method. 

The ray tracer calculates both the temporal dimension and the frequency. For purposes of the 
comparisons with the ray tracer of the UPCT and with the measurements, its operation is used in the 
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frequency domain. Thus, the launcher calculates the gain in direct transmission of the electric field 
(parameter) under the following equation: 

21rx txE S E=  (1) 

where rxE  is the electric field at the point of reception and txE  the electric field at the point of 
transmission. For this last situation the electric field is assumed as a phasor with a zero phase of 
reference. The power in the receiver is calculated by [17]: 

2

22   
4 120

rxtx tx
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EP G wP mdπ π
= =  (2) 
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30 tx tx
rx

P G
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d
= . (3) 

For all trajectories without line of sight (NLoS, Non-Line of Sight) you can write of (2) and (3): 

21rx txE S E=  (4) 

if the received power is considered at a specific distance 

2
2
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π

 
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In terms of the parameter it is possible to rewrite the reception power as 

2
2 2

21 2480rx tx rxP S E Gλ
π

 
=  

 
. (6) 

2.4. Launch Algorithm 

For ray launching, the regular icosahedron method was implemented [18], where it is inscribed 
in a unitary sphere. This platonic solid, containing 20 polygonal faces and 12 vertices, allows the rays 
to be launched at angles that pass through the inner vertices and edges. The main advantage of this 
technique is that, using the tube beam, it does not generate overlap between the wave fronts as shown 
in Figure 4. 

 

Figure 4. Ray launching representation using the tube and icosahedron ray technique (left) and the 

cone beam technique. 
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The direction of propagation is not necessarily normal for the face of the icosahedron compared 
to that the tube. The tessellation strategy is used to determine the direction of propagation [17,18]. 
This is to divide the icosahedron into a mosaic in order to determine the direction of the tube ray. 
When making this division, the wave fronts modify their size, but the relationship in shape and 
distance in the vicinity of the wave fronts is maintained. The number of rays launched by the 
transmitting source is given by [19]: 

210 2RL N= + , (7) 

where N is the frequency of the division. The radial separation is a measure of the angular resolution 
of the scattering of the rays for ray launching [19] and was used to calculate the angular resolution of 
separation between the wave front neighborhood: 

69
N

α °= . (8) 

2.5. Reception Algorithm 

A highly efficient method to determine reception is by variable spheres [20–23]. This method 
consists of examining whether a launched ray reaches a sphere located in the receiver and centered 
on a point with a radius of  

3
adr = , (9) 

where d  is the length of the ray. If the launched ray has contact with the sphere, it can be received. 
In this method, each ray is verified with the generation of a sphere, which makes its computational 
implementation inefficient for thousands of launched rays. Therefore, the technique of variable 
spheres is modified to a constant sphere, which is described in [19]. The sphere now has a radius 
defined by Equation (9), calculating the distance of the ray from the maximum expected length 
according to the propagation in the free space at that distance. Once the losses are calculated by the 
ray trajectory, the sensitivity of the receiver is compared to discard the ray. If the power of the ray is 
below the sensitivity of the receiver, the ray is not taken into account. This receiving sphere contains 
all the spheres of variable reception for possible expected rays. 

2.6. Hardware Acceleration 

In programming using game engines, if the computer architecture offers multiple processors, it 
can allow the programmer to parallelize the game so that it can use all the resources and have 
improvements in performance. In Java, there is a Remote Method Invocation (RMI) to maximize the 
efficiency of multi-core processors. RMI allows the programmer to distribute the processes in which 
remote objects are invoked. 

Multiple Java virtual machines (JVMs) were used on a single computer to parallelize the tasks 
and thus be able to use the multi-core processor as a system of distributed processes. 

As a result of the pre-processing of rays, the list of stored candidate rays is taken and processed 
by the RMI server, executing a game engine for each nucleus and delivering a batch of candidate rays 
from the list. The RMI server stores in memory the list of the initial addresses of the rays to be 
launched from the transmitter, and then sends them sequentially and in order. 

The game engine, upon receiving the address list of the rays to be launched from the transmitter, 
generates the rays with their initial parameters to be launched. Then it launches the generated rays 
into the environment, and they are processed in the GPU. In this stage, the GPU is efficiently used 
when processing a large number of rays in parallel and without displaying them on a monitor or 
screen. In the next rendering cycle, the GPU returns the list of processed rays to the CPU so that the 
game engine processes reception, reflection and diffraction, and generates the new list of rays to be 
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launched in the next cycle. This process is repeated iteratively while the number of events is within 
the initial parameters. 

The game engine receives from the graphics card a list of the rays that were processed by the 
GPU. The algorithm reads sequentially from the list of candidate rays, one by one, and identifies for 
each ray if it impacted with an object and determines the object with which it impacted (sphere, 
cylinder or plane). Depending on the impact object, it validates the impact and calculates its 
multipath parameters and verifies that the power level is above the threshold to continue or discard 
the ray. 

In case of reflection or diffraction, it generates the new rays with their parameters to store them 
in a new list of rays to be launched from the impact position. Then it checks if there are more rays to 
be processed, and if it does, it reads the next ray in the list and processes it, otherwise, it ends the 
cycle for the rays sent by the GPU. Therefore, once all the rays are launched from a transmitter, it is 
possible to calculate the electric field at any reference point within the scenario. 

3. Results 

For this experiment, a maximum of two diffraction and a maximum of three consecutive 
interactions between reflections and diffraction were defined. The geometric separation resolution 
for the SBR is 0.13 as it is an indoor scenario and thus obtain a reasonable number of discrete rays in 
the analyzed scenario. 

Figure 5 shows the result for the tracer, the launcher and the measurements for Position 3. In the 
graph you can see the differences between the two models and the measurements, being in this case 
very similar the results between the tracer and the launcher. The comparison has also been carried 
out quantitatively. Thus, Table 2 shows the measured and estimated channel parameters; in 
particular, the mean square value of the delay (RMS), the average value of the delay (MD) and the 
basic propagation loss (PL) have been used. 

 
Figure 5. Comparison between the power delay profile (PDP) measured in Position 3, simulated with 
the tracer and simulated with the launcher programmed in the GPU. 

Table 2. Measured and simulated parameters. 

 RMS [ns] 
Position Measure Tracer % Launcher % 

3 4.22 4.41 95.5 3.92 92.9 
7 3.77 3.52 93.4 4.05 92.57 

18 4.32 3.70 83.2 3.81 88.2 
 Medium Delay [ns] 

Position Measure Tracer % Launcher % 
3 11.22 11.01 98.1 10.7 89 
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7 6.90 6.70 97.0 6.92 99.7 
18 8.98 8.26 91.3 9.76 91.3 

 PL [dB] 
Position Measure Tracer Dif. Launcher Dif. 

3 71 74 3 69.7 1.3 
7 72 70 2 67.2 4.8 

18 71 72 1 67.88 2.12 

In Figure 6 the results for Point 18 are shown, and, in this case, the result of the launcher is a 
little more like the real measurements than in the case of the tracer. 

Statistics in Table 2 show very small differences between the two systems; the largest differences 
are found at Position 7 in which the ray tracer obtained a greater accuracy than the ray launcher in 
estimating the mean value while the launcher was more accurate in estimating the RMS. There are 
also some cases in which the percentage of accuracy is the same, for example, in the mean value of 
Position 18, and yet there is an appreciable difference between the results of both techniques. 

 
Figure 6. Comparison between the PDP measured at Position 18, simulated with the tracer and 
simulated with the launcher programmed in GPU. 

Finally, comparison for Position 7 is observed in Figure 7; the accuracy is similar, although the 
tracer shows a group of replicas between 6 and 8 m that the launcher only partially represents. The 
precision is again similar without clearly distinguishing which of the two methods is more precise. 

 
Figure 7. Comparison between the PDP measured at Position 7, simulated with the tracer and 
simulated with the launcher programmed in GPU. 
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4. Discussion 

The objective of programming the ray launcher in GPU-type processors is the acceleration of the 
estimation of the wireless channel. The ray launcher takes 36 h to estimate the path of all rays 
considered in the room. Once this simulation has been carried out, the 180 transfer functions in 
frequency for each channel can be obtained immediately and therefore the PDP for any position; so 
it can be said that the launcher takes 36 h to simulate the 20 measured locations, of which we have 
shown results for four of them. The ray tracing tool programmed in MATLAB takes around 13 h to 
simulate the 180 frequency transfer functions that allow finding the PDP of one position; that is, it is 
only necessary to perform the simulation of three locations to make the ray launcher programmed in 
the GPU profitable and therefore more computationally efficient with the same precision features. 

The ray launcher is capable of including rays reflected of up to a third order; first order 
diffractions, up to two reflections after a diffraction, and up to two reflections with a subsequent 
diffraction. As seen in the results, this number of components is sufficient to accurately estimate the 
behavior of the wireless channel in the studied environment. A large number of contributions from 
the dispersers improve the electric fields received and, therefore, the prediction. 

Next, another propagation environment is analyzed. High-density outdoor environments of 
buildings with low heights, determined by the downlink channel, predominantly reflected rays 
[24,25]. Diffraction components increase generating more rays. The combinations between reflection 
and diffraction events increase the number of rays and, therefore, the calculation time. However, 
there are external factors that decrease processing. Outdoors, the rays travel a greater distance, and 
this leads to only a few rays reaching the power above the sensitivity threshold of the receiver. 
Therefore, simulations in open environments can take the same time to interior simulations with 
good precision, such as that obtained in [26]. 

5. Conclusions 

In this work, it has been shown that the programming of a ray launcher in GPU processors allows 
for the acceleration of the wireless channel estimation thanks to the parallelization of the ray-
launching task. The accuracy of the launcher is high and has been compared with that achieved by a 
ray tracer. The differences between the simulations made with the ray launcher and the 
measurements may be due to the fact that, although the modeling of the environment was done more 
precisely in the launcher, there may be errors in locating objects of a few centimeters, which would 
affect the results at the frequencies used (millimeter waves). In future work the ray launcher will be 
compared with commercial ray launching tools to test their efficiency. 
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