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Abstract: The use of Hardware-in-the-Loop (HIL) systems implemented in Field Programmable Gate
Arrays (FPGAs) is constantly increasing because of its advantages compared to traditional simulation
techniques. This increase in usage has caused new challenges related to the improvement of their
performance and features like the number of output channels, while the price of HIL systems is
diminishing. At present, the use of low-speed Digital-to-Analog Converters (DACs) is starting to be a
commercial possibility because of two reasons. One is their lower price and the other is their lower pin
count, which determines the number and price of the FPGAs that are necessary to handle those DACs.
This paper compares four filtering approaches for providing suitable data to low-speed DACs, which
help to filter high-speed input signals, discarding the need of using expensive high-speed DACS, and
therefore decreasing the total cost of HIL implementations. Results show that the selection of the
appropriate filter should be based on the type of the input waveform and the relative importance of
the dynamics versus the area.
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1. Introduction

Digital control for power converters has been increasingly used during the last few decades. For
instance, it has been applied in many fields such as for DC-DC converters [1,2], AC-DC converters [3,4], motor
controllers [5,6], etc. However, the debugging of digital controllers is a complicated, expensive, and
sometimes even dangerous process. It usually requires plenty of resources and design efforts. Therefore,
the need for a safe and cheap technique triggered the current popularity of using Hardware-In-the-Loop
(HIL) simulations. HIL simulations provide an effective platform for real-time testing of a variety of
systems such as aerospace vehicles [7], electric cars [8], robots [9], motor drives [10], renewable energy
plants [11,12], battery management [13], smart grids [14], satellites [15], and many other kinds of
power converters [16–18]. A lot of modern research is dedicated to developing and improving power
converter models for HIL [19–23]. In reference [19], a model of multilevel Packed U-Cell Converter
(PUC) was presented, while in reference [20], a resonant LLC model is shown. In reference [21], Li et al.
show a method to obtain the equivalent circuits of multilevel converters for HIL applications. In
reference [22], the importance of the arithmetic used for implementing a converter model is shown.
Finally, in reference [23] an HIL methodology to model basic converters is shown, using a Digital
Signal Processor (DSP).

The main idea of HIL in power electronics is to substitute for a power converter using its HIL
model, which consists of two parts: a digital model of the power converter and Digital-to-Analog
Converters (DACs). However, low-cost DACs remain an almost unexplored research area. To the best
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of the authors’ knowledge, there is no recent research in this special topic, except for references [24,25],
where a new architecture of the FPGA-driven (Field Programmable Gate Array) Σ–∆ DAC in HIL is
described, and this architecture is optimized mainly for triangular waveforms and focused on the
increase in the bandwidth. The main advantage of the architecture proposed in references [24,25] is the
decrease in the number of necessary FPGA pins for driving the DACs, which is only one pin per DAC
channel. Although that is an extreme reduction, the fact is that the number of pins per DAC channel
varies from more than 10 in most high-speed DACs, usually with parallel protocols, to two pins in
most low-speed DACs with serial protocols. As the number of DAC channels in most HIL applications
is potentially quite high, the reduction of the number of pins per channel is also a driving force to use
lower speed DACs.

In commercial HIL systems, using expensive DACs (starting from 20 dollars) does not cause a big
difference in comparison with the overall HIL cost (which is generally thousands of dollars) [26–28]. In
the meantime, for ad-hoc HIL simulators developed using low-cost FPGA boards (which normally
cost only 100–300 dollars) [29–31], the expenses needed for a fast off-the-shelf DAC are becoming
significant. For instance, in reference [30], a Xilinx Zynq-7000 FPGA is used which price is under
175 dollars, while reference [31] uses a Xilinx Spartan 3 FPGA, proving that even an old low-cost FPGA
can be used to model simple power converters. The solution for the ad-hoc implementations is to use
economical low-speed DACs with serial protocols, which cost around 1-2 dollars per unit. The problem
with this approach is that low-speed DACs are not able to represent high-speed signals correctly. The
speed of such DACs is normally less than 10 MSPS, while the switching frequency of power converters
nowadays can reach more than 100 kHz with the traditional technology, and more than 10 MHz with
the new GaN and SiC switching technologies, which are becoming increasingly popular [32,33]. For
example, authors in reference [32] show a buck converter being operated at 40 MHz, while authors
in reference [33] show a boost converter operating at 75 MHz. One of the possible solutions for this
problem can involve filtering the high-speed input signals produced by the model. This is useful to
provide the DAC input data adapted to its update frequency and data width. It has to be taken into
account that the high-speed component of these signals is mainly the switching ripple. However, its
average value over each switching period is the most important information of the signal, which can
be appropriately represented using a low-speed DAC if the signal is previously filtered.

This paper compares four different filtering approaches in terms of an FPGA-based HIL design:
the mathematical average, maximum-minimum point, low-pass, and hybrid low-pass filter approach.
All of these approaches have their pros and cons, and a specific one must be chosen for each application
target. The paper analyzes area and time results of these filters, their output latency, and their
maximum frequency.

The rest of the paper is organized as follows: Section 2 describes the digital schematic of the
proposed filters, represents their mathematical formulae, and makes brief theoretical assumptions of
the expected results. Section 3 shows the results of the simulation and implementation of the filters,
compares utilization results, and gives some recommendations about the choice of the appropriate
approach depending on the input waveform and the aim of the designer. Lastly, conclusions are given
in Section 4.

2. Proposed Filters

The objective of the paper is to define the most efficient and low-cost algorithm for a filter, the aim
of which is obtaining the average value of the input signal. The main difference from other common
filters should be its adaptive character. The new filter will represent the average value during each
switching period. The switching period can vary from cycle to cycle and is defined by a different signal,
which is the input/s to the switch/es (i.e., the gate signals). These control signals (SW in the figures) are
auxiliary inputs to the proposed filters, which are binary (on or off).

This paper presents four digital filters applied to generate the output signal of an HIL system. All
the proposed filters consider signed signals so they can handle positive and negative numbers. The
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hardware architecture of these filters is proposed and mapped onto a Xilinx Artix-7 field FPGA with
fixed-point representation.

There are four types of filters based on different mathematical approaches proposed in this paper:

2.1. Mathematical Average Filter (MAv)

The approach used in this filter is based on the mathematical operation of summarizing the input
signal in a defined interval in the discrete domain (which is equivalent to integration in the continuous
domain) and dividing the result by the number of terms in the sum. The mathematical formula of the
MAv filter can be represented as:

Y(n) =
∑N

i=1 x(i)
N

(1)

where x(i) is the value of the input signal in sample i, N is the number of samples in the current
switching cycle, and Y(n) is the value of the output signal.

The digital schematic of the Mathematical Average filter is shown in Figure 1. Unfortunately,
it is impossible to replace the division with an arithmetic right shift, since shifting can only be used
for division by powers of 2, which is not necessarily true in the case of this filtering approach. If N
was known a priori, the division could be replaced with a constant (1/N) that is multiplied by the
summation. However, an HIL system must be implemented to work with any possible switching
frequency without the need for resynthesizing the DAC interface. For this approach, a detector for the
rising-edge of the switching signal is used to reset (R input) a counter that measures N, which is used
for the division.
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In fact, the algorithm represents the definition of the average value in the discrete domain itself.
Therefore, the main advantage of this filter is the best level of accuracy which can be obtained and the
possibility of applying it to any waveform. However, the only, but significant disadvantage of this
method is the need for using a complex hardware operator of division. This causes a decrease in speed
and an increase in hardware resources. For that reason, there is a need for an alternative algorithm to
reduce the hardware resources while keeping good accuracy.

2.2. Maximum-Minimum Point Filter (MAX-MIN)

The MAX-MIN method is possibly the simplest intuitive approach for obtaining the average
value of a signal. The algorithm of this filter is based on detecting the last two extrema of the input
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signal and calculating the average value of them. The mathematical formula of MAX-MIN filter can be
represented as:

y(n) =
xMAX(n− 1) + xMIN(n− 1)

2
(2)

where xMAX(n− 1), xMIN(n− 1) are the values of the input signal in the maximum and minimum
points in the previous switching period step and y(n) is the new value of the output signal. Taking
into account that the average value of many typical power waveforms, like the triangular waveform of
Figure 2 is the same in both slopes, the output of this filter can be updated twice per switching period.
One value represents the average during the on-time and the other represents the average during the
off-time. In this way, the latency is reduced to half compared to MAv.
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Figure 2. Some possible types of the waveform.

Figure 3 shows the digital schematic of the proposed filtering algorithm. As can be seen from the
schematic, a rising-edge detector of the switching signal is used to reset the MAX and MIN blocks
(R input) to the opposite side – the lowest value for the MAX block and the highest value for the MIN
block. This is used to delete all data from the previous switching period. In addition, there is another
switching period event detector which detects both edges to update the filter output. Using both edges
to do this allows the system to increase the output frequency. In order to use fewer hardware resources,
the operation of division by 2 is made by an arithmetic right shift by 1 (SRA1 in Figure 3), since these
two operations are interchangeable in fixed-point notation.
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Considering that no division is required to calculate the output, this algorithm obtains a significant
efficiency advantage over the previous MAv algorithm. A serious disadvantage of the method is that
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the filtering operation can be applied only for continuous waveforms. For example, two different types
of probable input signals are shown in Figure 2. The wave of the first type (a) can be processed with
excellent accuracy using the MAX-MIN algorithm, while the wave of the second type (b), which is
discontinuous, cannot be filtered correctly using this method. Hence, the second algorithm can be
used in continuous waveforms in which the average is equal to Equation (2).

2.3. Low-Pass and Hybrid Low-Pass Filters (LOW-PASS, Hybrid)

The third and the fourth filters are an infinite impulse response filter (IIR), specifically, a non-delay
version of first-order low-pass filters with gain G = 1 [34]. The transfer function of the filters can be
expressed as Equation (3) and its finite difference equation in Equation (4).

F(z) =
k·z

z− (1− k)
=

k
1− (1− k)·z−1

(3)

y(n) = k·x(n) + (1− k)·y(n− 1) (4)

where k is a constant coefficient value, which depends on the cut-off frequency fc (5). The cut-off

frequency should be chosen depending on the desired attenuation:

fc =
fsw

Att
(5)

fsw =
fs

128
(6)

fs ≤ fclk = 50 MHz (7)

where Att is the desired attenuation, fsw is the switching frequency, fs is the filter sampling frequency,
and fclk is the clock frequency. The filters have been designed in order to obtain 128 samples per
switching period as can be seen in Equation (6). The number 128—power of two—was chosen with the
aim of optimizing the filter, using arithmetic right shifting instead of dividing, as for the second filter.
This can be seen from the digital schematic in Figure 4.Electronics 2019, 8, x FOR PEER REVIEW 6 of 14 
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The maximum of the sampling frequency is equal to the clock frequency of 50 MHz, therefore the
filter can be applied only to frequencies, which correspond to the condition Equation (7). The sampling
frequency is being adapted proportionally to the switching frequency, which consequently causes the
change of cut-off frequency without changing the constant k. Therefore, the adaptive algorithm of the
LOW-PASS filter provides the same level of attenuation for all the possible switching frequencies. To
do that, the left counter of Figure 4 obtains the number of clock cycles in a switching period (Nsw).
When the switching period has finished—using the rising-edge detector of the switching cycle—that
number is multiplied by Ns. Ns is a constant defined as 1

128 , so the system always takes 128 samples
per switching cycle.

The choice of the attenuation is not trivial. The aim of the filter is to reduce the ripple of the values
generated by the HIL model, so higher attenuations will provide better accuracy, i.e., an output signal
without switching ripple. However, the increase in attenuation leads to a proportional increase in the
delay of the filter output. Figure 5 shows an example of a triangular wave, a 40 dB filter output with a
negligible ripple and a 20 dB filter output with a significant ripple. Regarding accuracy, the 40 dB filter
is clearly better. However, the delay is proportional to the attenuation, as it will be shown in Figure 8.
Therefore, in order to have better accuracy, higher attenuation leads to a higher delay.
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A trade-off situation between delay and accuracy should be reached. A lower attenuating filter,
which is faster, can be used and its output can be driven to an additional MAX-MIN filter. Figure 5 also
shows the output of the 20 dB filter combined with MAX-MIN in two cases. The original MAX-MIN
filter updates on both edges of the switch control signal. This is not appropriate for the output of
the LOW-PASS filter because its average is different during the on and off time, and two average
values are obtained. The solution is to update the MAX-MIN filter only once per switching period,
thereby obtaining the real average per switching cycle. Figure 6 shows the schematic of the proposed
Hybrid architecture that combines a low pass filter with the MAX-MIN algorithm applied only in the
rising-edge of the switching signal.



Electronics 2019, 8, 1116 7 of 14

Electronics 2019, 8, x FOR PEER REVIEW 7 of 14 

 

MIN filter updates on both edges of the switch control signal. This is not appropriate for the output 
of the LOW-PASS filter because its average is different during the on and off time, and two average 
values are obtained. The solution is to update the MAX-MIN filter only once per switching period, 
thereby obtaining the real average per switching cycle. Figure 6 shows the schematic of the proposed 
Hybrid architecture that combines a low pass filter with the MAX-MIN algorithm applied only in the 
rising-edge of the switching signal. 

 
Figure 6. Digital schematic of the Hybrid filter. 

3. Results 

In this section, a comparison of the four proposed filters is presented. In order to demonstrate 
the difference between the effect of algorithms, several simulations and implementations were made 
(see Figure 7). The first one is the direct simulation of the filters with a step-function input to check 
their dynamics in a simple test. The second experiment is the integration of the proposed filters with 
a real-time HIL model of an asynchronous buck converter so the dynamics of the full system are 
shown. Finally, this section presents a comparison of the impact on the area and minimum achievable 
period clock. Design tools such as ModelSim and Vivado, respectively, were used for this aim. 

 

Figure 7. Architecture of the experiments shown in this section. (a) Model of the step function signal 
connected to the filters. (b) Model of the buck converter, connected to the filters. 

The first simulation experiment was carried out by connecting a step function signal to the input 
of the filters, as shown in Figure 7a. This experiment was made with the aim of proving the theoretical 
working principles of the proposed algorithms. Figure 8 proves that the experimental results of all 
MAv, MAX-MIN, LOW-PASS, and Hybrid filters meet the theoretical expectations. It can be seen that 
the MAv filter is being applied to each rising edge of the control signal with a small delay, caused by 

Figure 6. Digital schematic of the Hybrid filter.

3. Results

In this section, a comparison of the four proposed filters is presented. In order to demonstrate
the difference between the effect of algorithms, several simulations and implementations were made
(see Figure 7). The first one is the direct simulation of the filters with a step-function input to check
their dynamics in a simple test. The second experiment is the integration of the proposed filters with a
real-time HIL model of an asynchronous buck converter so the dynamics of the full system are shown.
Finally, this section presents a comparison of the impact on the area and minimum achievable period
clock. Design tools such as ModelSim and Vivado, respectively, were used for this aim.
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The first simulation experiment was carried out by connecting a step function signal to the input
of the filters, as shown in Figure 7a. This experiment was made with the aim of proving the theoretical
working principles of the proposed algorithms. Figure 8 proves that the experimental results of all
MAv, MAX-MIN, LOW-PASS, and Hybrid filters meet the theoretical expectations. It can be seen that
the MAv filter is being applied to each rising edge of the control signal with a small delay, caused by
the delay of the hardware and medium algorithm complexity. The MAX-MIN filter is being updated
during every event of the control signal, which can be also observed in Figure 8. In the first event of
the control signal after the input is 1, the MAX-MIN filter gives an output of 50%, because it considers
the current value (1) and the previous value (0). In the next control signal event, the output gets the
final value, which is 100%. As can be seen, the MAX-MIN filter has the smallest, almost unnoticeable,
latency time among the proposed filters, according to its simplest algorithm. In contrast with the
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MAX-MIN filter, the 40 dB LOW-PASS filter shows the slowest dynamic, caused mainly by the delay of
the algorithm, while the Hybrid filter which uses an attenuation of 20 dB is about 10 times faster but
still slower than the MAv and the MAX-MIN. To conclude the results of the step signal filtering, it
must be said that all the proposed filters obtain the correct result after the corresponding latencies, so
the mathematical approaches for these filters were chosen correctly.
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The second simulation experiment was done by connecting the inputs of the filters to the outputs
of a real-time HDL model of an asynchronous buck converter as can be seen in Figure 7b. The outputs
of the HIL model are inductor current (I_L), output voltage (V_Out) and input current (I_In). The
implementation of the buck converter model is described in reference [30]. The selected physical buck
converter parameters used for experimental results are presented in Table 1.

Table 1. Buck Converter Parameters.

Parameter Value

fsw 100 kHz
L 22 µH
C 220 µF
P 10 W

Vin 12 V
Vout 5 V

Figure 9 shows a transition from power off to nominal operation using a constant duty cycle. The
accuracy of the LOW-PASS filter is significantly worse than the accuracy of MAv and MAX-MIN filters
because of its slow dynamic. Considering this, the following experimental conclusion can be made:
the 40 dB LOW-PASS filter is not applicable for use during transients. However, the hybrid filter shows
better dynamics. We have to take into account that the switching frequency is not constant in many
applications. Therefore, during the experiment made for Figure 9, the switching frequency has been
changed from the original one, 100 kHz, to 200 kHz and 50 kHz in order to test the behavior. The
experiment shows that the proposed filters are updated correctly for the different frequency ranges. It
is also noticeable that if the switching frequency is lower, and therefore closer to the natural frequencies



Electronics 2019, 8, 1116 9 of 14

of the power converter, the relative importance of latency increases. For example, when the switching
frequency is 50 kHz (right part of Figure 9) the phase delay of the Hybrid filter is clearly visible.
However, when the switching frequency is 200 kHz, the phase delay is much smaller. The results of
the output voltage and input current have the same behavior, so they are not shown in this paper for
the sake of shortness.
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It is also important to notice that during discontinuous mode (between 0.25 and 0.5 ms) the
MAX-MIN filter cannot lead to proper results because the average of the extrema is not the real average
of the current. As can be seen in the first zoomed figure, the current filtered by the MAX-MIN method
has a significant deviation, as was predicted in Section 2.2. In this case, this filter output higher is
above the real average. However, during the rest of the time this filter gives accurate results, since the
current is in continuous mode.

Finally, the proposed filters were implemented and tested on a Xilinx FPGA Artix-7 chip
XC7A35TICSG324-1L using the design tool Vivado 2018.3. Table 2 presents the synthesis results of
the emulation systems after the implementation. The table shows the results in area and speed. Two
different syntheses were carried out. 1) The HIL system from the second experiment, which includes
the buck converter and different filtering architectures, one for each output signal (I_L, V_Out, I_In).
2) Only one filter did not have any model connected to it, to check the hardware resources needed for all
the proposed methods so they can be compared to the resources used for the power converter model.
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Table 2. Comparison of used field programmable gate array (FPGA) resources.

System HIL Model + 3 Filters Without Model (1 Filter) Overall Results

Min Period
(ns)

terms of
area (LUTs) FFs

Digital
Signal

Processors
(DSPs)
25 × 18

Min Period
(ns) LUTs FFs DSPs 25 ×

18 Latency (µs)

Cost
Performance
Index (CPI)

1
latency∗LUTs

MAv 15.692 2739 7502 2 3.271 798 2467 0 - -
MAv(no DSPs) 15.785 2828 7501 0 - - - - 10.9 114.9

MAX-MIN 15.023 450 260 2 2.825 38 53 0 - -
MAX-MIN (no DSPs) 15.331 560 259 0 - - - - 5 5263.2

40 dB LOW-PASS 17.822 720 423 14 9.116 122 91 4 - -
40 dB LOW-PASS (no DSPs) 16.995 1495 339 0 10.589 339 78 0 641 4.6
Hybrid (20dB + MAX-MIN) 16.302 857 605 14 9.299 191 133 4 - -

Hybrid (20dB + MAX-MIN) (no DSPs) 17.713 1687 502 0 11.850 414 133 0 70 34.5
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All the systems have been also synthesized without using DSP blocks to perform a fair comparison
of the logic usage. Of course, in a real application, this is not recommended because the minimum
period can become significantly higher. According to the table, the MAv filter needs much more
hardware resources than the other three filters. The reason for this is that the fixed-point divider, used
in the mathematical average filter, is a complex operation that requires a large number of resources.
For example, most part of the LUTs needed for the MAv filter without the model, specifically 778 out of
798, were used for the division. The smallest quantity of hardware resources is taken for the MAX-MIN
filter because of its simplicity. And the LOW-PASS filters require more resources than the simplest
MAX-MIN, but still need much less than the MAv. Regarding synthesis time results, the table II shows
that the maximum frequency that can be obtained for the MAX-MIN filter is 1.16 times higher than the
MAv, around 2.79 times higher than the LOW-PASS, and 2.84 times higher than the LOW-PASS hybrid.
However, it must be underlined that in the current situation area, resources of the filters play a much
more important role than the time resources. In the end, the minimum period of a complete system is
defined by the speed of the model, not the filters (as it can be also seen in Table 2).

Table 2 also shows the CPI (Cost Performance Index) of all the proposed methods. The CPI has
been defined following the formula:

CPI =
1

latency ∗ LUTs
. (8)

The latency number is the one obtained in the experiment shown in Figure 8. In the case of the
low-pass filters, their settling times (98%) have been used. This index has been applied only for the
non-DSP versions so they can be compared fairly in terms of area (LUTs). For the CPI, latency has been
chosen instead of the minimum clock period because the filter latency is the most important factor for
the user. In the previous formula, filters with higher values have a better trade-off between dynamics
and area usage. The latency would change with the switching frequency because all the filters are
executed with that reference. As the latency will grow proportional to the switching cycle in all cases,
the CPI ratio between filters will remain basically the same.

From all the above, a proper filtering approach must be chosen depending on the input waveform.
The MAX-MIN filter shows significantly better CPI than the other three filters because it is the fastest
and simplest filter. Therefore, if the type of waveform allows proper filtering via the MAX-MIN
(continuous waveform), it is highly recommended to use it. On the other hand, the 40 dB low-pass
filter should be discarded because it has no clear advantage compared with the hybrid architecture: it
has a much higher latency and similar area.

If the type of waveform is not suitable for the MAX-MIN method, the MAv and Hybrid methods
should be considered. MAv approach has better CPI and therefore better global performance. But in
each application, the relative importance of latency and area should be considered. If latency is very
important—e.g., if the switching frequency is relatively low—MAv should be chosen. However, if the
area is more important than the latency, the Hybrid filter may be a good choice.

Finally, all the models have been downloaded to a Digilent Arty A7-35 to check the integration of
the complete HIL system (model and DACs). Figure 10 shows the transient process of the inductor
current of a buck converter with two different DACs: a high-speed DAC (AD9767 from Analog
Devices)—lower line—and a low-speed DAC (PMOD DA2 from Digilent)—higher line. The output
that goes to the low-speed DAC has been previously filtered using the MAX-MIN filter. Therefore, the
ripple has been removed while having the same numerical average results. Likewise, Figure 11 shows
the steady-state of both DACs. It is obvious that a high-speed DAC offers a more realistic analog output
but, as was explained in Section 1, high-speed DACs have parallel interfaces so they require a lot of
FPGA output pins to be used. As the number of output analog channels of a HIL system is growing in
importance and the overall cost of HIL platforms is decreasing, the use of cheaper and lower pin count
DACs must be taken into account. As these DACs offer lower speed, using the proposed filters may be
considered as an alternative.
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4. Conclusions

This paper presents a comparison between four different filtering methods to interface low-speed
DACs in HIL applications. The filters were designed to be implemented in FPGAs and experimentally
applied to the most common types of waveforms (triangular and non-triangular types) of switched
power converters. MAX-MIN is based on taking two samples every half-cycle and getting their average.
The MAv method gets the average of as many samples as can be taken at the system clock frequency.
40 dB LOW-PASS implements a classic first-order low-pass filter with high attenuation. Finally, a
Hybrid architecture merges a 20 dB low-pass filter with the MAX-MIN method, getting more ripple
after the classic low-pass filter but removing it with MAX-MIN.

The first conclusion is that the MAX-MIN method is the simplest and fastest filter (15% faster
than MAv, 275% faster than 40 dB LOW-PASS, and 320% faster than Hybrid), but it cannot be applied
for discontinuous waveforms. In that case, another method is necessary.

Results show that MAv is the method with the lowest latency that can be applied to any waveform.
However, it requires the largest area (135% more LUTs than 40 dB LOW-PASS, and 93% more than
Hybrid). LOW-PASS filters significantly decrease the area at the expense of the latency. Latency can be
decreased reducing the attenuation of the filter, but the switching ripple would increase, going against
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the objective of these filters. A trade-off can be reached using a hybrid architecture composed by a
low-attenuation LOW-PASS filter followed by a MAX-MIN filter.

Finally, from the methods which can be applied to any waveform, MAv has the best global
performance measured by CPI (25 times better than 40 dB LOW-PASS, and 3.3 times better than
Hybrid), but the final decision should be taken while considering the relative importance of the latency
and area. When latency is the key factor, MAv is the best choice, while a hybrid filter is the best option
for the area.
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