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Abstract: Removing a specific object from an image and replacing the hole left behind with visually
plausible backgrounds is a very intriguing task. While recent deep learning based object removal
methods have shown promising results on this task for some structured scenes, none of them
have addressed the problem of object removal in facial images. The objective of this work is to
remove microphone object in facial images and fill hole with correct facial semantics and fine
details. To make our solution practically useful, we present an interactive method called MRGAN,
where the user roughly provides the microphone region. For filling the hole, we employ a Generative
Adversarial Network based image-to-image translation approach. We break the problem into two
stages: inpainter and refiner. The inpainter estimates coarse prediction by roughly filling in the
microphone region followed by the refiner which produces fine details under the microphone
region. We unite perceptual loss, reconstruction loss and adversarial loss as joint loss function for
generating a realistic face and similar structure to the ground truth. Because facial image pairs
with or without microphone do not exist, we have trained our method on a synthetically generated
microphone dataset from CelebA face images and evaluated on real world microphone images. Our
extensive evaluation shows that MRGAN performs better than state-of-the-art image manipulation
methods on real microphone images although we only train our method using the synthetic dataset
created. Additionally, we provide ablation studies for the integrated loss function and for different
network arrangements.

Keywords: object removal; image reconstruction; image restoration; generative adversarial network;
microphone removal

1. Introduction

Facial expressions are an important part of daily life communication. Smile can present our
acceptance of a message while a scowl might indicate disagreement. However, when a person is
speaking on a microphone in scenarios such as stage performance, press conference and speech,
the microphone occludes the person’s face and makes it difficult to understand their facial expressions.

The goal of this research is to remove the microphone object in facial images. It involves detection
of the microphone part, and then inpainting of the holes left behind with plausible correct contents.
This problem is challenging because (1) the result heavily depends on the accuracy of detection of the
microphone region, (2) it is not easy to recover complex semantics of the face under the microphone
region detected, and (3) training data, i.e., facial image pairs with and without microphone are sparse
or non-existent. Because we want our work to be deployed in the real world as a working application,
we take an interactive approach that removes the microphone part in facial images by manually
providing the microphone region in an image. After the user selects the microphone region although
not exact, our algorithm successfully fills in the left behind hole with correct facial semantics with fine
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details. For the inpainting problem, we propose a novel image-to-image translation based method.
To overcome the data scarcity problem, we have created a synthetic dataset by placing microphone
object in facial images from CelebA database.

As shown in Figure 1, given an input image where some part of the face is covered by the
microphone along with a rough outline of the microphone region provided by the user, we generate a
plausible and natural face image with the microphone part removed. Because the rough microphone
region is provided, a successful solution to the inpainting problem is critical. As previously mentioned,
we formulate the inpainting problem into image-to-image translation. We employ “coarse-to-fine
structure recovery approach” where the first inpainter network fills coarse information under the
microphone part and an additional refiner network is employed to refine the inpainted area with
perceptually plausible semantics.

Figure 1. Microphone removal results of MRGAN on real world images.

We have trained the proposed network on the synthetically generated microphone dataset from the
CelebA facial images and evaluated on real world facial images with microphone. We have compared
the performance of MRGAN with state-of-art image inpainting methods. For fair comparison, we have
made the information on the microphone region available to their methods. Experimental results show
that MRGAN performs better than state-of-art image inpainting methods.

The main contributions of this work are summarized as follows.

• We propose a novel image-to-image translation based inpainting method for microphone removal
in facial images.

• We unite reconstruction loss (l1, low level, loss and Structural SIMilarity (SSIM), high level,
loss), feature level perceptual loss with adversarial loss to reconstruct plausible and natural face
structure and texture.

• For training our network, we have created a synthetic dataset by inserting a synthetic microphone
object in facial image. The performance on real world data is quite satisfactory although we only
train our network using the synthetic dataset created.

• We experimentally show that MRGAN effectively removes the microphone object and generate
plausible semantics in facial images than previous stat-of-the-art image manipulation methods.

The rest of paper is organized as follows. Section 2 presents related studies. The architecture of
MRGAN and joint loss function are detailed in Section 3. Sections 4 and 5 describe experimental setup
and results, respectively. Some ablation studies are covered in Section 6.
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2. Related Work

Object removal: Criminisi et al. [1] proposed an exemplar-based texture synthesis method,
which is a unified scheme to fill in a target region with plausible texture. However, it is unable to
produce reasonable results for the synthesis of areas for which similar patches do not exist in the
image. Wang et al. [2] presented an improved exemplar-based inpainting technique for object removal.
They used a combination of normalized cross correlation and a modified sum of squared differences
to search for the best matching patch. Although it successfully removes the object in simple scenes,
artifacts are produced at the boundaries of removed objects. Bau et al. [3] proposed a method to
visualize and understand GANs at the unit-, object-, and scene-level which can remove objects like
trees, curtains and windows. It struggles to remove objects such as tables and chairs from a conference
room, however results are blurred. Since recovering facial semantics is hard due to its complex
structure, aforementioned methods do not work well for microphone removal.

One recent work [4] automatically detects the object to be remove and fill hole with plausible
outputs in general scene images. It heavily depends on the automatic detection of the object to remove.
Often times their automatic mask generator is unable to detect microphone part due to diversity
in shape, size, illumination and position of the microphone. For example, sometimes one holds a
microphone in his/her hands, which hides the most part of the microphone. Moreover, they fill left
behind holes by propagating image appearance information from surrounding pixels, which produces
artifacts in facial images. Hence, these reasons make it practically less useful for the microphone
removal problem in facial images.

Image inpainting: Image inpainting nowadays is one of the hot research topics in the field
of computer vision. The goal of inpainting are countless, from the removing unwanted object,
restoring damaged part to adding specific objects in an image. In this work, we focus on the
removing microphone in facial images and complete the remaining hole with appropriate contents
and fine details.

Traditional image inpainting methods propagate image information from neighboring pixels
to fill-in the damaged part [5,6]. However, all those schemes can only inpaint small regions with
stationary texture and may generate artifacts for the regions where texture and color variance is
large. Patch-based methods copy-paste similar patches from source image into the target image [7,8].
These methods perform well for inpainting non-stationary texture. Since these methods work in
iterative manner, which make them computationally expensive and inefficient for real-time systems.

Pathak et al. proposed the first CNN bsased based image inpainting network called Context
Encoders (CE) [9]. CE can inpaint large damaged area conditioned on its surroundings information.
They used both adversarial loss and pixel-wise l2 reconstruction loss. However, CE is unable to
recover high frequency details and produced artifacts. Structural inpainting [10], which is CE based
method, used an additional loss term called perceptual reconstruction loss for image inpainting. It can
generate better inpainting results to recover complex structures. Liu et al. proposed an approach to
exploit multiple level supervision of objective functions for semantically consistent inpainting [11].
Similar to [9–11], we use low-level (l1) and high-level (SSIM) as reconstruction loss to inpaint region
under the microphone.

Song et al. [12] advocated an inpainting method which first inferences a coarser image and use the
VGG network [13] to extract feature information. They match patches in feature space, which are finally
translated to a high-resolution output image. Recently, a two-stage network to inpaint the mosaiced
area in a face image was proposed in [14]. It removes the mosaic and generated face semantics
in a coarse-to-fine manner. It can only inpaint square-shape damaged area. Iizuka et al. proposed
Globally and Locally consistent Image completion (GLI) network, which can inpaint arbitrary damaged
area [15]. It produced better inpainting results but output has some artifacts when the missing regions
are at the margins of an image. Yu et al. introduced several changes to the method in [15] method.
It is a two-stage network for generative inpainting with Contextual Attention (CA) layer [16]. CA
learns structural information by explicitly considering relevant patches from nearby areas. Recently,
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Yang et al. proposed a joint CNN optimization framework to hallucinate the holes by exploiting both
local texture information and global content information [17]. They used a multi-scale neural patch
synthesis method, which was able to inpaint the image with high resolution. Similarly, our network is
a two-stage approach to inpaint microphone region with fine details.

Generative Adversarial Network (GAN): GAN is used for image generation tasks and has shown
powerful results [18]. It consists of two networks: a generator network and a discriminator network.
Generator network learns data distribution, and discriminator network approximates the probability
that a sample came from the generator or training data. Adversarial training is used to alternatively
train the generator and the discriminator networks. GAN has shown promising ability to produce
natural looking outputs [19]. Due to this ability, GAN’s have extensively been used for task such as
texture synthesis [20,21], domain translation [22–24] and image inpainting [9–11,15–17,24,25].

EdgeConnect [26] used a two-stage GAN based model to inpaint damaged part by exploiting a
hallucinated edge map of the damaged part. It heavily depends on the edge information generated by
edge generator. EdgeConnect suffers when edge generator fails to generate correct edge information.
SPG-Net [27] exploits a semantic segmentation mask for inpainting task to disentangle inter and intra
class variations. It first inpaints the segmentation mask of damaged image then inpaints it with the
help of segmentation mask. SPG-Net recovers clear boundaries between different regions but produce
artifacts while recovering complex semantic structures such as eyes and nose.

Motivated by [26], we divide our problem into two sub tasks: (1) our inpainter network fills in
the microphone part with a coarse prediction, (2) conditioned on the inpainter output, the refiner
network generates facial images without the microphone with fine details. Our approach is a GAN
based methodology, in which the generator architecture is similar to UNET [28], which has multiple
skip-connections and discriminator is Patch-GAN [22] based, to capture details particularly under
microphone area.

3. MRGAN

We propose our method called MRGAN: Microphone Removal using Generative Adversarial
Network. MRGAN consists of two networks: (1) Inpainter Network (INP), and (2) Refiner Network
(REF). Both inpainter and refiner networks follow a GAN approach, i.e., each network consists of a
generator and a discriminator. The generator and discriminator for the face inpainter network are
denoted by Ginp and Dinp, respectively. While, Gre f and Dre f denotes the generator and discriminator
for the face refiner network, respectively. For simplicity, we used these notations in the following
sections. The overall architecture of MRGAN is shown in Figure 2.

Inpainter network: Given a facial image with microphone as the input, the user roughly draws
the outline of the microphone region, then a binary mask is produced internally for the microphone
region. The inpainter network takes Imic, which is the concatenation of the input image with the
mask, to generate a coarse output image without microphone, Iunmic. The inpainter network consists
of two main blocks, Generator and Discriminator. Generator, Ginp, is a simple encoder-decoder
(U-Net [28])-like architecture. Skip connections introduced by the U-Net architecture allows to retrieve
the spatial information lost by the contracting and expanding the path of the network by combining
local information with the global information while upsampling. Encoder feature maps are passed
through skip connections to the decoder and concatenated with the corresponding decoder feature
maps. Different from the UNET, we alternatively used four layers of dilated convolution (rate: 2, 4,
8, 16) [29] and squeeze and excitation (SE) blocks [30] in the middle of encoder and decoder in the
generator model. The purpose of dilated convolution is to capture large field of view with less numbers
of parameters, which makes the part under the microphone consistent with its surroundings. While SE
block enhances the representational power of a network by learning the channel weights according to
their importance and re-calibrates the feature maps.
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Figure 2. The proposed architecture for microphone removal: The inpainter first estimates a coarse
prediction for the microphone region, followed by the refiner which produces fine details there.

The five layer encoder progressively down-samples the features. In Figure 2 we only show three
layers in the encoder architecture for simplicity). Here, each layer is composed of relu, convolution
and instant_norm, except the first and the last layer. The last layer of Ginp uses tanh as the activation
function instead of relu. The decoder architecture progressively up-samples the features to image
scale. We use transpose convolution instead of convolution in the decoder architecture. In contrast to
conventional GAN discriminators, we exploit the Patch-GAN discriminator which penalizes dissimilar
structure at the patch scale [22].

Refiner network: The refiner network architecture is similar to that of the inpainter network
except that we exploit Imic again at the refiner input along with the inpainter results, Iinp, as shown in
Figure 2. The advantage of using Imic at the refiner is that the refiner network captures details around
edges of the microphone region. Iumic is the final output image without microphone with fine details
in the removed region.

Furthermore, we use feature level reconstruction error from a pre-trained loss network and
termed it as perceptual loss. As shown in Figure 3, feature maps of middle layer, i.e., convolution_3,
convolution_4 and convolution_5 of the pre-trained VGG-19 [13] are used to measure perceptual loss.
We have empirically found that middle layers have both low level and structural information which
helps recover perceptually plausible face semantics.



Electronics 2019, 8, 1115 6 of 15

Figure 3. Perceptual loss calculation from the pre-trained loss network [13].

Loss Function

Most of previous state-of-the-art image editing methods used reconstruction or similarity loss to
recover the structure similar to the ground truth and naturalness loss (e.g., GAN loss [18] or Wasserstein
GAN loss [31]) for generating realistic results. Our joint loss function is a combination of reconstruction
loss, perceptual loss and adversarial loss. The overall joint loss function can be written as follows:

Ljoint = αLrc + βLperc + Ladv, (1)

where α and β are constants to adjust the weights of reconstruction loss and perceptual loss.
The reconstruction loss is a combination of low level l1 loss and structural penalty, SSIM loss, which
can be expressed as:

Lrc = Ll1 + Lssim. (2)

Ll1 is pixel-wise difference between ground truth image, Igt, and predicted unmic image, Iunmic, can
be expressed as:

Ll1 = ||Iunmic − Igt||, (3)

where Iunmic = G(Imic) is the generator’s output image without microphone. SSIM loss, Lssim, is the
second part of the our reconstruction loss, which is concerned with structural similarity between the
ground truth image, Igt, and the unmic image, Iumic, [32].

Lssim = 1− SSIM(Iunmic, Igt). (4)

We include perceptual loss, Lperc, to penalize results that are not perceptually similar to the
ground truth by comparing the distance measure between activation maps of the pre-trained network
for generated image and the ground truth image. It is a feature level penalty from the pre-trained
loss network.

Lperc = ∑
i
||ψi(Iunmic)− ψi(Igt)||+ γTV(Iunmic) (5)

where ψi is the feature map of the ith layer of the pre-trained loss network. As shown in Figure 3, we
have used convolution layer feature maps, specifically, convolution_3, convolution_4 and convolution_5
layers of the pre-trained VGG-19 network [13].
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Total Variation (TV) regularization encourages spatial smoothness in the generated image. γ is
constant to adjust the weight of Total Variation in perceptual loss. It removes spurious and excessive
details whilst preserving important details [33].

TV(x) = ∑
i,jεK
||xi − xj|| (6)

where K defines the neighborhoods of the current pixel that are horizontally and vertically adjacent.
In addition to Lrc and Lperc, adversarial loss Ladv [18] is used at the inpainter and the refiner network
as expressed in Equations (7) and (8), respectively.

Linp
adv = min

Ginp
max
Dinp

E[log(Dinp(Imic, Igt)) + log(1− Dinp(Imic, Ginp(Imic)))] (7)

Lre f
adv = min

Gre f
max
Dre f

E[log(Dre f (Imic, Igt)) + log(1− Dre f (Imic, Gre f (Imic, Iinp)))] (8)

The output of the inpainter gives us a coarse unmic predication, Iinp, with the correct semantics.
To achieve this objective, α and β are set to 100 and 33 in inpainter training to capture better structure.
The purpose of adversarial loss is to produce realistic results. Thus, α and β are set to 10 and 3.3 in the
refiner network training to give more focus on Ladv for yielding of natural looking results.

4. Experiments

We train our model and state-of-the-art image manipulation methods such as Content-Aware Fill
(Adobe Photoshop feature based on [34]), Iizuka et al. [15] and Yu et al. [16] using a synthetic dataset
and evaluate on real world test images.

Synthetic dataset: To train our network, MRGAN, in a supervised setting, we have created a
synthetic dataset of 20,000 images using the publicly available, CelebA Face dataset [35]. CelebA
dataset contains face images of various celebrities with wild backgrounds. We first align the faces
using OpenFace dlib [36] and then create a synthetic dataset by placing microphone object in the facial
image using Adobe Photoshop CC 2018. Microphones of different size and scale are placed at different
locations in the images of CelebA face dataset. However, we did not consider overhead and headset
microphone in synthetic dataset because overhead microphone usually does not cover the face and
headset microphone covers very small part of the face. We also create corresponding microphone
masks. A couple of examples from the synthetic dataset created are shown in Figure 4.

Figure 4. Example images with their masks from the synthetic dataset.
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Training: To train our network, a pair of Imic and Igt (ground truth image without microphone) are
fed into the inpainter network. The integrated objective function, which is a combination of perceptual
loss Lperc, reconstruction loss Lrc and adversarial loss Ladv is applied. The inpainter network produces
the initial coarse image without microphone. Then, output of the inpainter, Iinp, and the input image, Imic,
are fed into refiner, which produces a final unmic images using objectives in Equations (2), (5) and (8).

Adam optimizer [37] with momentum 0.5 and learning rate 2× 10−4 is used to alternatively train
the inpainter and the refiner networks. We have used random flip and random crop augmentation
methods with batch size 10. To avoid the problem of the generator being weak at the start of training,
first, the generator is trained for 100 epochs and then both generator and discriminate are trained for
500 epochs. MRGAN is implemented using tensorflow library [38]. Training took 72 h on one NVIDIA
GeForce 1080Ti GPU.

5. Comparison and Discussion

We now discuss the qualitative and quantitative performance of our method and its comparison
with other previous state-of-the-art image manipulation methods on real world images with microphone.

5.1. Qualitative Evaluation

We present qualitative results of our method and comparison to Content-Aware Fill (Adobe
Photoshop feature based on) [34], Iizuka et al. [15] and Yu et al. [16] on real world test images.
We collect real face images with microphones of different sizes, shapes, locations and types from the
Internet and interactively select microphone part.

As shown in Figure 5, MRGAN offers significantly improved results for real world data than
the other previous state-of-the-art image manipulation methods. Content-Aware Fill inpaints the
texture with right color and imminence, but is unable to generate correct structure. Iizuka et al. [15]
generates better structure than Content-Aware Fill due to its global and local consistency penalties,
but suffers some artifacts at the margins of inpainted area. Yu et al. [16] reduces the artifacts at margins
but is unable to recover a complex face structure. The inpainter network of the proposed MRGAN
generates a correct face semantic structure by carefully selecting loss function for each aspect of face
reconstruction. On top of the inpainter, the refiner network is employed to produce high resolution
face semantics without artifacts.

To subjectively measure the perceptual assessment, we have performed a pilot user study. Given
a real-world photo with microphone, a user was asked to choose the best photo without microphone
based on the following criteria: (1) effective removal of microphone and (2) image quality and
naturalness. The options are four randomly shuffled photos with microphone removed by four
different methods, i.e., Content-Aware Fill [34], Iizuka et al. [15], Yu et al. [16] and MRGAN. The fifteen
questions were asked form eighty-four users, who participated in the survey. 87% users selected results
of MRGAN, 5% Yu et al., 4% Iizuka et al. and 4% Content-Aware Fill as their answer. These results
confirm that MRGAN is superior to the other previous state-of-the-art image manipulation methods.
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Figure 5. Visual comparison of MRGAN with representative image completion methods on real world
images. Note that our inpainter network alone performs better than the others but has some artifacts
and color discrepancies which are removed by employing the refiner network on top of the inpainter.

Although we have trained our network using the data that do not contain cases of overhead and
headset microphones, we have also conducted experiments for some cases of overhead and headset
microphones to see how our network works for very different types of microphones from those in
the training images. Figure 6 shows the performance of MRGAN for real images with overhead and
headset microphones. As expected, MRGAN does not produce as good results for overhead and
headset cases as for the cases of commonly used microphones we have considered.

Figure 6. The performance of MRGAN for real images with overhead and headset microphones.
Our training dataset does not contain overhead and headset microphone images.
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5.2. Quantitative Evaluation

We provide quantitative evaluations in term of Structural SIMilarity (SSIM), Peak Signal to Noise
Ratio (PSNR), Naturalness Image Quality Evaluator (NIQE) [39] and Blind/Referenceless Image
Spatial Quality Evaluator (BRISQUE) [40]. NIQE and BRISQUE are non-reference image quality scores,
which measure naturalness of image. For NIQE and BRISQUE, the smaller the better. Since real
images with microphone do not have corresponding ground truth without microphone object, we have
evaluated SSIM and PSNR on the synthetic test images. Table 1 provides a quantitative comparison
with Content-Aware Fill (Adobe Photoshop feature based on [34]), Iizuka et al. [15] and Yu et al. [16].
It can be seen that for the microphone removal problem, MRGAN performs better than Content-Aware
Fill, Iizuka et al. and Yu et al. Our method with careful selection of loss function and multistage
approach allows to completely remove microphone and generate perceptually plausible UnMic images
more closely to the original images.

Table 1. Performance comparison of different methods in term of Structural SIMilarity (SSIM), Peak
Signal to Noise Ratio (PSNR), Naturalness Image Quality Evaluator (NIQE), and Blind/Referenceless
Image Spatial Quality Evaluator (BRISQUE).

Methods SSIM PSNR NIQE BRISQUE

Content Aware [34] 0.937 28.73 dB 3.651 31.21
Iizuka et al. [15] 0.927 22.41 dB 4.012 31.54

Yu et al. [16] 0.923 23.90 dB 3.555 26.49
MRGAN 0.937 29.91 dB 3.548 29.97

6. Ablation Study

In this section, we investigate the effect of using joint loss function, the role of giving the input
image back at the refiner network input along with the inpainter network output and effect of
dilated convolution.

6.1. Effect of Integrated Loss Function

We investigate the effectiveness of each component of our joint objective function. For this, we
gradually add each loss term to our GAN based network and discuss the effect. The second column of
Figure 7 shows that only using Ll1 as reconstruction loss is unable to recover the structure of complex
face semantics e.g., lips, teeth because Ll1 is low level pixel to pixel penalty. To recover the correct
semantic structure, we have added a structure level penalty Lssim to the reconstruction loss. As the
third column of Figure 7 shows that SSIM helps recover most of the structure, but there are some
artifacts which seem perceptually implausible. To cope with this issue, we have added the feature level
perceptual loss from the pre-trained VGG-19 network [13]. The last row of Figure 7 shows a case where
the mouth is completely covered with microphone. Although it is a challenging test image, our whole
loss function almost recovers the missing face semantics. The last column of Figure 7 presents that the
whole loss function successfully generates, (a) correct semantic structure, (b) perceptually plausible
results and (c) recovers better resolution under the microphone. Table 2 reports the quantitative
evaluation for the ablation study on loss function in term of SSIM, PSNR, NIQE, and BRISQUE. As we
can see, in cases of PSNR, NIQE, and BRISQUE, our total loss (LTotal = Ll1 + Lssim + Lperc) shows the
best performance, but almost the same performance as the partial losses in SSIM. Note that these are
the results of the inpainter network only, which are refined by the following stage.
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Figure 7. Effects of different loss function for the inpainter network: From left to right, input image
Imic with microphone region provided by the user, results with l1 reconstruction loss, Ll1 , only, results
with joint loss of l1 and SSIM, Ll1 + Lssim, and the result with additional Lperc.

Table 2. Quantitative evaluation for the ablation study on loss function in term of Structural SIMilarity
(SSIM), Peak Signal to Noise Ratio (PSNR), Naturalness Image Quality Evaluator (NIQE), and
Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE).

Loss Function SSIM PSNR NIQE BRISQUE

Ll1 0.950 23.70 dB 4.410 35.87
Ll1 + Lssim 0.955 24.51 dB 4.422 36.07
LTotal 0.914 33.33 dB 4.277 34.00

6.2. Role of Refiner Network Inputs

One may ask why we provide Imic again as the input of refiner network. We investigate the
effectiveness of providing Imic again at the input of the refiner network. For this, we have conducted an
ablation study. The second column of Figure 8 presents the result of the refiner network by providing
the inpainter output only as the input. As one can see, there are some irregular structure at the
boundaries of microphone region. It is because, without providing Imic, the network is unable to locate
the area to reconstruct, thus can not focus on the damaged part. The last column of Figure 8 shows
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the refiner results when both the microphone image and the inpainter output image are provided.
Teeth and the area inside the mouth are more smooth and perceptually better. With the inpainter output
concatenated with Imic, the refiner learns about the damaged part and reconstructs more smooth image.

Figure 8. The effect of providing Mic images again as the input of the refiner network. (a–c), input mic
images Imic, refiner output with the result of the inpainter network only, and refiner output with Mic
images as well as the output of inpainter network.

6.3. Effect of Dilated Convolution

To investigate the effect of dilated convolution in the generator network, we have conducted an
ablation study for dilated convolution. Figure 9 shows the results without dilated convolution and
with dilated convolution. The results show that the recovered area on the chin is more consistent with
its surrounding in case of using dilated convolution. This effect is more clearly seen in the first row of
Figure 9. We can see that dilated convolution helps recover the part under the microphone consistent
with its surroundings by capturing large field of view.

7. Conclusions

In this paper, we have presented MRGAN that is a novel method for microphone removal using
interactive inpainting in facial images. The interactive inpainter network removes the microphone
region with coarse prediction under the damaged part followed by the refiner network, which produces
perceptually plausible face semantics. Because of serious training data scarcity in our problem, we have
created a synthetic dataset for training our network. We exploit joint loss for low level, structural and
perceptual penalties to train our GAN network.
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Figure 9. The effect of dilated convolution. (a–c), input mic images Imic, output of the network without
dilated convolution and with dilated convolution.

The performance on real world data is quite satisfactory although we train our network using
the synthetic dataset only. MRGAN performs qualitatively and quantitatively better than other
state-of-the-art image manipulation methods. To make it end-to-end trainable, one might need to
automatically detect and generate mask of microphone object in facial images. In future work, we plan
to expand our method to automatically detect and remove the microphone object in facial images by
using object detection techniques. Furthermore, this work can be extended to microphone removal in
recorded or live videos.
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