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Abstract: With the increase of on-orbit maintenance and support requirements, the application of
a space manipulator is becoming more promising. In actual operation, the strong coupling of the
free-floating space robot itself and the unknown disturbance of the contact target caused a major
challenge to the robot base posture control. Traditional Reaction Null Space (RNS) motion planning
and control methods require the construction of precise dynamic models, which is impossible in
reality. In order to solve this problem, this paper proposes a new Adaptive Reaction Null Space
(ARNS) path planning and control strategy for the contact of free-floating space robots with unknown
targets. The ARNS path planning strategy is constructed by the Variable Forgetting Factor Recursive
Least Squares (VFF–RLS) algorithm. At the same time, a robust adaptive control strategy based
on the Strategy Self-Adaption Differential Evolution–Extreme Learning Machine (SSADE–ELM)
algorithm is proposed to track the dynamic changes of the planned path. The algorithm enables us
to intelligently learn and compensate for the unknown disturbance. Then, this paper constructs a
robust controller to compensate model uncertainty. A striking feature of the proposed strategy is that
it does not require an accurate system model or any information about unknown attributes. This
design can dynamically implement RNS path tracking performance. Finally, through simulation and
experiment, the proposed algorithm is compared with the existing methods to prove its effectiveness
and superiority.

Keywords: free-floating space robot; adaptive reaction null space planning; the variable forgetting
factor recursive least squares algorithm; the strategy self-adaption differential evolution; extreme
learning machine

1. Introduction

Nowadays, with the increasing frequency of space activities, the impact of spacecraft being hit by
space debris has increased. A large amount of space debris has already seriously threatened the safety
of on-orbit spacecraft. Especially by a large number of large-scale space debris, they may change the
attitude and orbit of the spacecraft and even cause the spacecraft to be completely destroyed [1].

In order to solve such problems, the development of space debris removal technology has
become particularly urgent. Among the many active space removal technologies, the technology of
space manipulator removal in the orbit has received extensive attention. The ETS–VII of Japan, the
Orbital Express of the United States, and the SY-7 of China have successively conducted verification
experiments on this technology in space, and are still intensifying their research [2,3].
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The related research [4–9] shows that the space robot is in a free-floating state during the process
of capturing the target, and the collision from the target contact may lead to a large pulse momentum.
The strong dynamic coupling between the spacecraft base and the manipulator may lead to instability
of the attitude of the space robot base, which in turn may cause problems such as space robot
rollover. The minimum planning of the base attitude disturbance can minimize the disturbance of the
manipulator movement on the base posture.

Nenchev [10] proposed an attitude control algorithm for free-floating space robots based on a fixed
attitude constrained Jacobian matrix. The algorithm aims to plan the joint movement speed so that the
joint angular velocity falls within the null space of the joint inertia matrix, thereby keeping the attitude
of the body unchanged. Xie et al. [11] proposed a reactionless coordinated motion planning algorithm
with a kinematically redundant manipulator for the dynamic coupling problems of free-floating space
manipulators. The numerical results of the planar motion of a 4-links space robotic show that the
algorithm is effective. Wei et al. [12] considered the attitude reactionless control and the vibration
suppression in the meantime to reduce the risk in grasping operation. The simulation results indicate
that, by using the optimal control for the vibration suppression in the attitude RNS, the vibration of the
manipulator could be alleviated significantly and the base attitude could also almost be undisturbed in
the meantime during the whole grasping procedure.

The space manipulator equipped with a flexible mechanism can better achieve the collision
force buffering and unloading during the contact with the target. However, the contact between the
manipulator and the target will stimulate the flexible manipulator vibration and cause substantial
disturbance to the base attitude, due to the momentum conservation in space. The flexible manipulator
vibration and the impulse to the base attitude are critical to the contacting safety and the performance.
The uncertain properties from the captured unknown objects such as space debris can cause the
conventional no-disturbance planning methods to be invalid. To solve this problem, the Adaptive
Reaction Null Space (ARNS) method [13,14] with dynamic changing planning paths for manipulators
during capturing of an unknown object was proposed and introduced to realize the minimum
disturbance to the spacecraft body attitude. In this method, the unknown part of the target can be
obtained online via the Recursive Least Square (RLS) algorithm, and compensation can be made in
the form of a time-variable matrix for the path planning equation of the manipulator. Xu et al. [15]
proposed an adaptive control algorithm based on Reaction Null Space (RNS) for free-floating robots
with uncertain kinematics and dynamics, which realizes base attitude adjustment and continuous path
tracking of end effectors. Similar schemes should acquire accurate information of the captured object
and bring about high sensor requirements and a delay control issue. Lu and Jia [16] made the spacecraft
attitude regulation error and the end–effector pose tracking error meeting the respective prescribed
performance requirements, converging to zero by the ARNS and the prescribed performance functions.
Thus, the coupling effects of the free-floating robots are overcome. Zhang [17] studied the target
dynamics parameter identification based on ARNS planning and used the RLS algorithm to update
the system in real-time. This method does not need the iteration of unknown dynamic parameters of
non-cooperative targets, and the base parameter identification is realized. The attitude disturbance
is minimal and the adaptive control can be separated from the dynamic parameter identification.
Jiao et al. [18] derived a dual-arm space robot model and proposed an ARNS motion control approach
to satisfy the principal objective of maintaining a minimum disturbance to the base in the post-capture
of a non-cooperative target. They developed a new ARNS control for a dual-arm space robot system.
The adaptive algorithm is developed based on the momentum conservation of the system and the RLS
algorithm is employed for parameter adaptation. The simulation results are presented to demonstrate
the effectiveness of the proposed approach.

The traditional RLS algorithm has data saturation phenomenon [19]. When the space robot
contacts an unknown target, the recursive algorithm cannot be directly used because the system
parameters change with time, thereby reducing the performance of the ARNS algorithm path planning.
In order to adapt to the case of time-varying parameters, the forgetting factor can be added to reduce
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the weight of the old data and increase the weight of the new data, thereby increasing the adaptability
of the ARNS algorithm to the time-varying system [17]. In addition, the sliding-window RLS (SW–RLS)
algorithm eliminates the saturation of the RLS algorithm by retaining a finite data length [20]. To realize
the reactionless motion for a space robot while capturing an unknown object, not only the ARNS
path planning algorithm based on dynamic characteristics, but also the space robot attitude tracking
control algorithm, capable of effectively tracking the planned path, is needed. However, when the
space robot itself has uncertainty and the target state is unknown, in order to ensure the stability of
the system attitude and reduce the influence of tracking error, the tracking control strategy of the
system needs to learn the unknown disturbance and compensate through the adaptive strategy, while
robust strategy culls model uncertainty, such as in Reference [21]. However, traditional adaptive
strategies, such as Back-Propagation neural network [22], radial basis function neural network [23], and
fuzzy algorithms [24,25], are not processing fast enough to handle disturbance with bursty properties.
We need a faster learning and compensating method for the abrupt unknown properties.

The Extreme Learning Machine (ELM) [26,27] algorithm was developed for its extremely fast
system uncertainty learning and cognizing performance [28–30]. However, the random input feature
settings (input weight, hidden layer bias) of conventional ELM networks could weaken the network
performance to some extent, because the pre-setting input feature owns the possibility of staying away
from its optimal value.

Given the problem, some ameliorated methods by optimizing the input feature of the ELM
algorithm have been proposed. Figueiredo et al. [31] studied the effects of eight different topologies
on the performance of Particle Swarm Optimization-ELM (PSO–ELM). The results show that there
is no optimal topology suitable for all problems, but according to the root mean square error from
the experimental results, the global topologies perform better. Zhang et al. [32] proposed a Memetic
Algorithm Based-ELM (M–ELM) algorithm. M–ELM integrates individual heuristic searches into
the global optimization framework of the population to automatically learn the optimal network
parameters, and effectively overcomes the problem of premature convergence. Cao et al. [33] proposed
a Self-adaptive Evolutionary (SaE–ELM) algorithm that not only adaptively adjusts the crossover
probability and scaling factor, but also automatically selects the best mutation strategy from the
four-seed generation strategy. The convergence of the algorithm is improved. Tang et al. [34] proposed
a Self-adaptive Differential Evolutionary–Weighted ELM (SDE–WELM) algorithm, which uses an
adaptive differential evolution algorithm to optimize the parameters of hidden layer neurons and the
weight of training samples, improving the accuracy of unbalanced data classification. Chu et al. [20]
proposed a robust adaptive control strategy, using PSO–ELM algorithm to dynamically learn the
reactionless path of space robot planning, and compensate for the unknown characteristics in the form
of constructive adaptive control. Using the ELM algorithm to learn fast, the mutation characteristics of
the space robot system are processed, and the input characteristics of the ELM are optimized by the
PSO algorithm, which improves the ELM performance.

Considering the uncertainty of the space robot system and unknown external disturbance, and
in order to meet the requirements of space robot for ARNS planning and manipulator tracking
control with faster adaptive performance and higher tracking accuracy, the strategy uses the Variable
Forgetting Factor Recursive Least Squares (VFF–RLS) algorithm to identify and compensate for the
unknown characteristics of the system, and avoids the saturation phenomenon when dealing with
time-varying elements in the planning process. At the same time, the ELM algorithm is improved by
the Strategy Self-Adaptation Differential Evolution (SSADE) algorithm to effectively compensate for
the unknown interference in the tracking control process. Based on this, this paper proposes an ARNS
path planning strategy based on the VFF–RLS algorithm, and a tracking control algorithm based on
SSADE–ELM algorithm.

The work carried out in this paper is as follows: In Section 2, the dynamic model of the space
robot is established. In Section 3, the planning Strategy and Adaptive robust control algorithm
constructed by the ARNS Planning Strategy based on VFF–RLS, adaptive robust control algorithm
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based on SSADE–ELM, and robust control algorithm are elaborated. The simulation results are shown
in Section 4. The experimental results are shown in Section 5. The discussion is shown in Section 5.
Finally, the conclusions are provided in Section 6.

2. Dynamic Model of the Space Robot

The simplified model of the space robot designed in this paper is shown in Figure 1. Where ΣI is
the inertial frame; Σi(i− 1, 2, . . . , n) is the ith body frame and Σ0 is the base frame, where b0 is a vector
pointing from center of the base to the centroid of the first joint. r0, v0,ω0 are the position vector of the
centroid of the base, the velocity and angular velocity of the base, respectively. ai is a vector pointing
from center of the ith joint to the centroid of the ith body and bi is a vector pointing from the centroid
of the ith body to the center of the (i + 1)th joint. r0g is the vector from origin of the mass center of the
base to the mass center of the system. rg is the position vector of the whole system with respect to
inertial frame.
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Considering that the space robot is in a free-floating state during the contact with the target and
the post-contact stabilization process, the complex system composed of the space robot and the target
is not subjected to any external force, and the complex system maintains the angular momentum and
the linear momentum conservation. The only disturbance in the system is due to internal factors such
as joint friction, measurement noise, and uncertainty of the target parameters. The Lagrange equation
can be used to construct the dynamic model of a space robot as in Equation (1):

Mt
..
q+Ct

.
q+τk=τe;∆M=Mt −M,∆C=Ct −C (1)

Equation (1) represents the complex dynamics model in which the dynamic parameters of the
system are changed based on the dynamic parameters of the original space robot after the space
robot captures the unknown target to form the complex. q is the generalized state variable of joint
angular displacement. M and C, respectively, represent the system equivalent moment of inertia and
equivalent friction coefficient of the joint of the space manipulator. Mt and Ct represent the actual
moment of inertia and the actual frictional damping coefficient of the joint of the space manipulator
joint, respectively. ∆ represents an unknown system model parameter perturbation. τk is the joint
actuation torque. τe is an unknown bounded external disturbance. The model parameter uncertainty
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in the system dynamics model in Equation (1), the unknown friction torque, and the unknown external
disturbance can be expressed as a form of composite interference, as shown in Equation (2).

M
..
q + C

.
q + τk = d

d = τe − ∆M
..
q− ∆C

.
q

(2)

where M = diag{M11, . . .Mii . . . , Mnn}, ∆M = diag{∆M11, . . .∆Mii . . . , ∆Mnn} are constant coefficient
diagonal matrices. So, Equation (2) can be rewritten as

..
q = M−1

(
d−C

.
q− τk

)
= M−1

(
d−C

.
q
)
−M−1τk (3)

Setting d′ = M−1
(
d−C

.
q
)
, where d′ = [d′1, d′2, . . . , d′n]. Since M is a diagonal reversible matrix, it

can be proved that Equation (3) is decoupable. The angular displacement of the above equation after
decoupling has the following form.

..
qi = d′i −M−1

ii τki (4)

Let qd be the generalized angular displacement of the joint desired. Then there are joint angle
error and angular velocity error, as shown in the following equation.

e = q− qd;
.
e =

.
q−

.
qd (5)

The control variable of the joint angle error system of the space robot can be expressed as:

r=
.
e+Λe (6)

where Λ is a positive diagonal matrix. Since r tends to zero, the reference output of the joint angular
displacement can be expressed as:

.
qr=

.
qd+Λe (7)

Bringing Equation (7) into Equation (1) gives:

M
( ..
qd+Λ

.
e
)
+ C

( .
qd+Λe

)
+ τk − d

= M
( ..
qd+Λ

.
e
)
+ C

( .
qd+Λe

)
−

(
M

..
q+C

.
q− d

)
− d

= M
( ..
qd+Λ

.
e−

..
q
)
+ C

( .
qd+Λe−

.
q
)

= M
.
r + Cr

(8)

3. Adaptive Reaction Null Space (ARNS) Planning Strategy and Adaptive Robust
Control Algorithm

3.1. Adaptive Reaction Null Space (ARNS) Planning Strategy Based on Variable Forgetting Factor Recursive
Least Squares (VFF–RLS)

After the space robot captures the target, the motion of the robot arm may cause the base posture
to be greatly disturbed. This section uses the ARNS planning to solve the problem that the complex
system has the least disturbance to the base during the motion. The minimum perturbation to the base
attitude is achieved by planning the reaction null space joint angular velocity with unknown target
kinetic parameters. This section uses the least squares method to complete the adaptive update based
on the smallest error prediction, since the conventional least squares method has saturation and is
not suitable for the case of time-varying system parameters. Therefore, the variable forgetting factor
is used to improve the least squares method, and the VFF–RLS algorithm is constructed to achieve
ARNS planning.



Electronics 2019, 8, 1111 6 of 23

The space robot in this paper is in a free-floating state, and its manipulator has redundancy.
The centroid position vector of each arm of the space robot complex system is as follows.

ri = r0 + b0 +
i−1∑
k=1

(ak+bk) + ai (9)

Setting JRi = [Z1,Z2, . . . , Zi,0, . . . ,0] and JTi =
[
Z1 ×

(
ri − p1

)
,Z2 ×

(
ri − p2

)
, . . . ,Zi × (ri − pi),0, . . . ,0

]
.

The linear velocity and angular velocity at the centroid of each boom are as follows.

vi =
.
ri = v0 +ω0 × (ri − r0) + JTi

.
q (10)

ωi = ω0 + JRi
.
q (11)

The linear momentum equation of the system is:

P =
n∑

i=0

(mi
.
ri) =

n∑
i=0

(mi
.
ri) (12)

Substituting Equation (10) into Equation (12) can obtained that:

P = Mv0 +
(
M̃rT

0g
)
ω0 + JTω

.
q =

[
ME M̃rT

0g
][ v0

ω0

]
+ JTω

.
q (13)

where r0g = rg − r0, JTω =
n∑

i=1
(miJTi).

Similarly, the system satisfies the following angular momentum conservation equation:

L =
n∑

i=0

(
Iiωi+miri ×

.
ri
)

(14)

Substituting Equations (10) and (11) into Equation (14) yields the following equation:

L =I0ω0+
n∑

i=1
Ii
(
ω0+JRi

.
q
)
+

n∑
i=1

mĩri
(
v0 − r̃T

0iω0+JTi
.
q
)

=
[

M̃r0g Iω
][ v0

ω0

]
+Iωφ

.
q

(15)

where Iω =
n∑

i=1

(
Ii −mĩr

T
i r̃0i

)
+I0, Iωφ =

n∑
i=1

(IiJRi+mĩriJTi).

The angular momentum of the multi-body system set as Lg is calculated around the centroid of
the whole space robot. The angular momentum conservation equation can be rewritten as:

L = Lg + rg ×P (16)

The angular momentum and linear momentum equations of the space robot after contact with
the target can be obtained. In conjunction with Equations (13) and (15), the momentum conservation
equation can be expressed as in Equation (17), where P is the complex system linear momentum, and
L is the angular momentum of the composite system.[

P
L

]
=

[
ME M̃rT

0g

0 Hω

][
v0

ω0

]
+

[
JTω
Hωφ

]
.
q +

[
0

rg ×P

]
(17)
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where Hω =
n∑

i=1

(
Ii+mĩr

T
gĩr0i

)
+I0, Hωφ =

n∑
i=1

(
IiJRi+mĩrgiJTi

)
, M is the total mass of the space robot target

complex system.
The angular momentum equation of the space robot complex system obtained by Equation (17) is

as follows.
L = Hωω0 + Hωφ

.
q + rg ×P (18)

When the parameters of the complex system are known, the RNS-based composite system
manipulator joint angular motion plan is:

.
qd|RNS = H+

ωφ

(
L−rg ×P

)
+

(
E−H+ωφHωφ

) .
ξ (19)

where E −H+
ωφ

Hωφ is the null space projection of the coupling matrix Hωφ. H+
ωφ

is the generalized

inverse matrix of Hωφ.
.
ξ ∈ Rn is any non-zero vector. However, since the target angular momentum is

an unknown variable, Hω and Hωφ in Equation (19) cannot be accurately obtained, and the estimated
values are used, which are denoted as H̃ω and H̃ωφ. Therefore, using the ARNS motion planning
algorithm to adjust the coefficient matrix online, the accurate performance of the complex system can
be obtained.

.
q = H̃

+
ωφ

(
L− rg ×P

)
− H̃

+
ωφH̃ωω0 +

(
E− H̃

+

ωφH̃ωφ

) .
ξ (20)

Setting y =
.
qd|RNS −

.
q, then bringing in Equation (20) can obtain Equation (21) as follows.

y=
.
qd|RNS −

.
q=

(
H+ωφ − Ĥ+ωφ

)(
L− rg ×P

)
+Ĥ+ωφĤωω0 +

(
Ĥ+
ωφĤωφ −H+

ωφ
Hωφ

) .
ξ

= K1 + K2ω0 + K3
.
ξ

=
[

K1 K2 K3
]

1
ω0.
ξ


(21)

where K1 =
(
H+ωφ−Ĥ+ωφ

)(
L−rg ×P

)
; K2 = Ĥ+

ωφĤω; K3 =
(
Ĥ+
ωφĤωφ−H+ωφHωφ

)
.

Define the error function ε is as follows.

ε = y−
(
K̂1+K̂2ω0+K̂3

.
ξ
)

(22)

Since the parameters K1, K2, and K3 contain uncertain parameters of non-cooperative targets, in
order to ensure that the angular velocity of the pedestal converges to zero, an algorithm is needed to
continuously update the values of parameters K1, K2, and K3, so that the error function ε is minimal.

In order to ensure that the unknown target has the least disturbance to the base attitude,
the parameters K1, K2, and K3 are automatically updated online according to Equation (15) using
the VFF–RLS algorithm to achieve the effect of adaptively updating the RNS velocity of the joint.
Equation (15) can be written as a standard regression equation as follows.

yT = ΦW (23)

where Φ =
[

1 ω0
.
ξ

]T
, W =

[
K1 K2 K3

]T
. According to the VFF–RLS algorithm,

Equation (20) is the update equation of W.

Ŵ(k) = Ŵ(k−1) + N(k)ε1 (24)
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where
ε1 = yT

(k) −Φ(k)Ŵ(k)

N(k) =
Q(k−1)Φ(k)

λ(k)E+Φ
T
(k)

Q(k−1)Φ(k)

Q(k) = λ−1
(k)E

[
E−N(k)Φ

T
(k)

]
Q(k−1)

(25)

If λ(k+1) is a constant, it cannot achieve good stability and tracking capabilities at the same time.
In fact, when λ(k+1) is small, the algorithm has fast convergence rate but poor stationarity, and when
λ(k+1) is large, the algorithm has converse performance. It is not an easy work to find an appropriate
constant. Therefore, a new form of changing rule is introduced, where the convergence rate is fast
in the beginning phase and has good stability in the subsequent phase. In this paper, the following
changing rule is adopted.

λ(k) = λmax − σ1e−σ2k (26)

where σ1 and σ2 are two coefficients that control the changing manner of forgetting factor. In the above
formula, Ŵ(k) is an estimate of the kth generation of W(k). ε1 represents the a priori residual. Q(k) is
the inverse of the autocorrelation matrix. Q(0) = δE,δ > 1. Here δ = 1.4. The forgetting factor is close
to 1 to ensure that the ARNS planning algorithm is stable during the post-capture motion. So, take
σ1 = 0.1,σ2 = 0.04, λmax = 0.99. When Ŵ is updated, the expected RNS joint angular velocity can be
expressed as:

.
qd|RNS =

.
q + ŴT


1
ω0.
ξ

 (27)

Figure 2 shows the ARNS path planning algorithm flow.
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3.2. Adaptive Control Algorithm Based on Strategy Self-Adaptation Differential Evolution–Extreme Learning
Machine (SSADE–ELM)

The space robot dynamics model constructed in this paper is a nonlinear system with unknown
disturbances. The nonlinear system has parameter perturbation, while adaptive control and robust
control are the main means to cancel the parameter perturbation of nonlinear systems. This section
presents an adaptive robust control algorithm based on SSADE–ELM. The diagram of adaptive control
algorithm based on SSADE–ELM is shown in Figure 3. The control law is as follows:

τki = Mii(τai+τci+τPDi) (28)
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τai represents an adaptive controller for compensating for uncertain or unknown disturbance
present in the system. τci represents a robust controller that compensates for model uncertainty. τPDi
represents the feedback controller, which is the PD controller. According to Equations (4) and (28),
Equation (29) can be obtained:

d′i =
..
qi − (τai+τci+τPDi) (29)

Since the ELM algorithm has a strong approximation ability, it can be applied to a controller that
compensates for unknown disturbance of a space robot without requiring prior knowledge. This
method enables real-time control of the robot and accurately tracks the planned trajectory. The input
vector of the ELM network is xi, which is defined as shown in the following equation.

xi =
[ ..

qdi
.
qdi qdi ei

.
ei

]
(30)

Therefore, the output of the hidden layer node can be defined as:

hi = gi(Aixi + bi) (31)

where gi is the activation function. Here it uses the sigmoid function. Ai is the input weight indicating
the connection between the hidden layer neurons and the input layer neurons, and bi is the hidden
layer bias. The adaptive compensation controller τa is constructed using the ELM network as follows:

τai = hiβi (32)

where βi =
[
βi1,βi2, . . . ,βi j

]
(j=1,2, . . . ,l) is a weight matrix between the output layer and the hidden

layer, which can be solved by the RLS algorithm.

βi = h+
i τai (33)

where h+
i is the Moore–Penrose generalized inverse of hi. The adaptive law of β̂i can be expressed as:

.
β̂i = µihiri (34)

where
.
β̂i =

[ .
β̂i1,

.
β̂i2, . . . ,

.
β̂i j

]
. µi =

[
µi1,µi2, . . . ,µi j

]
, ( j=1,2, . . . ,l) is the step adjustment factor. µi j = 1.

l is the number of hidden layer neurons. According to Equation (32), Equation (35) can be obtained:

τ̂ai = hiβ̂i (35)
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The improved SSADE algorithm is introduced into the ELM algorithm. The differential variation
and crossover operator of the algorithm can be used to search for the optimal input weight Ai and
hidden layer bias bi according to the dynamic adjustment of the whole population, thus obtaining a
more compact network structure. This can avoid excessive random neurons and cause the hidden
layer to have no sparsity and adjustment ability, which affects the generalization ability and stability of
the network.

Compared with the traditional differential evolution algorithm [35], the algorithm adopts different
mutation strategies in different periods of population evolution, which improves the convergence
speed and convergence precision of the algorithm. The implementation steps shown in Figure 4 are
as follows:Electronics 2019, 8, x FOR PEER REVIEW 11 of 25 
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Step 1: Initialization. Set the ELM hidden layer unit number l and the excitation function g(x).
The population T =

[
a11

r,g, a12
r,g, · · · , a1n

r,g, · · · , al1
r,g, al2

r,g, · · · , aln
r,g, d1

r,g, d2
r,g, . . . , dl

r,g

]
is constructed from the

input weight matrix and the implicit layer bias matrix of the ELM, and g represents the number of
iterations. Initialize Np vectors with dimension of D (l × (n + 1)). For each individual population,
the range of each dimension is [−1, 1]. The hidden layer output matrix hi is calculated according to
Equation (31), and the output weight βi is calculated according to Equation (33).

Step 2: Mutation. Aiming at the problem of mutation strategy selection based on the DE algorithm,
based on the staged idea, this paper proposes a phased strategy adaptive differential evolution
algorithm. The proposed algorithm includes two parts: the evolutionary stage estimation based on the
population congestion degree and the adaptive selection of the mutation strategy.

1. The evolutionary stage estimation based on the population congestion degree.

Referring to the idea of crowded density estimation in multi-objective differential evolution
algorithm, the judgment basis of the evolutionary stage is set as the ratio of the average distance dg,ave

to the maximum distance dmax between each individual and the optimal individual (the minimum
objective function value) in the current population. This average distance is as follows:

dg,ave =

Np∑
r=1

√
D∑

j=1

(
t j

r,g − t j
best,g

)2

Np
(36)

where t j
r,g is the current individual in the gth generation population. t j

best,g is the best individual in
the gth generation population. Compare the average distance of each generation with dmax. If the
average distance of the current generation is greater than dmax, then replace dmax. Since the population
eventually converges to a point, the minimum value of the average distance is dmin = 0. Then,
the average distance of each generation is normalized according to the maximum and minimum values
of the average distance, i.e.,

dg,ave =
dg,ave − dmin

dmax − dmin
=

dg,ave

dmax
(37)

Finally, based on the dg,ave of each generation, estimate the stage of the current population.
S1, if dg,ave > c
S2, if 1− c ≤ dg,ave < c
S3, otherwise

(38)

where S1, S2, and S3 denote the first, second, and third stages, respectively, and c is the stage
control factor.

2. The adaptive selection of the mutation strategy.

In order to improve the search efficiency of the algorithm, while maintaining the diversity of the
population, avoiding the algorithm falling into local optimum and premature convergence, different
strategies are designed to mutate according to the characteristics of different stages.

In the first stage S1, the whole population is relatively dispersed, and all individuals are
committed to searching for promising sub-regions. At this time, the population diversity should be
maintained to ensure that as many regions as possible are searched. Therefore, in the first phase, the
DE/rand/1mutation strategy is adopted.

Vi,g = Tr1,g(t) + F
(
Tr2,g − Tr3,g

)
(39)



Electronics 2019, 8, 1111 12 of 23

where Vi,g indicates a variant individual. Tr1,g, Tr2,g, and Tr3,g are randomly selected individuals.
r1 , r2 , r3 ∈ [1, Np]. F is a contraction factor, which obeys Cauchy distribution C (0.5, 0.1).

In the second stage, S2, the algorithm begins to detect promising regions that have been searched
and searches further for more promising regions. At this point, the algorithm needs to perform both
global detection and local search. Therefore, in order to balance the relationship between population
diversity and convergence rate, the DE/pbest/1 mutation strategy is adopted.

Vi,g = Tpbest,g + F
(
Tr1,g − Tr2,g

)
(40)

where Tpbest,g is the optimal individual among the historical optimal solutions before the g-generation
of the target individual Ti,g. Tr1,g, and Tr2,g are randomly selected individuals. F is a contraction
factor. Through the collaboration of historically optimal individuals and other individuals to guide the
mutation, not only can the population diversity be maintained, but also the algorithm can search for
as many regions as possible, and the local search ability of the algorithm can be improved, thereby
accelerating the convergence speed.

In the third stage, S3, all individuals may be clustered into a certain area. The algorithm is
dedicated to searching for the optimal solution in the area. Therefore, in order to speed up the
convergence, the DE/current-to-best/1 mutation strategy is adopted.

Vi,g = Ti,g + F
(
Tbest,g − Ti,g

)
+ λ

(
Tr1.g − Tr2,g

)
(41)

where Tbest,g is the best individual in the entire population. Tr1,g and Tr2,g are two different randomly
selected individuals in the population other than Tbest,g. By using the information of the current optimal
individual to guide the mutation, the algorithm converges quickly.

Boundary operation: The mutation individuals generated by the mutation operator may exceed
the allowable range of the boundary. If Vi,g is out of bounds, the individual is randomly generated
within its range of values as follows:

Vr,g = rand(0, 1)
(
tU

r − tL
r

)
+ tL

r (42)

where tU
r and tL

r are the upper and lower bounds of tr, respectively. Rand (0, 1) represents a random
fraction between (0, 1) and obeys a uniformly distributed.

Step 3: Crossover. The crossover operation increases the diversity of the group is as follows.

Ttrial,r,g =

{
Vr,g, if R ≤ CR
Tr,g, otherwise

(43)

where CR obeys a normal distribution N (0.5, 0.3). R ∈ (0, 1) obeys uniformly distributed.
Step 4: Selection. According to the planning of the minimum base disturbance of the free-floating

space robot, the dynamic equation of the space robot is selected as the fitness function. f = e is
the objective function. That is, the attitude parameters of the space robot need to be close to the
desired attitude parameters obtained through planning. When the value of f decreases, the value of T

approaches the optimal. Calculate the objective function values f
(
ttrial,r,g

)
and f

(
tr,g

)
of the mutated

individual and the target individual, respectively, and select the one with the smaller objective function
to retain. At the same time, consider the party with the smaller ELM weight because it has the better
generalization ability.

Tr,g+1 =

 Ttrial,r,g, if f
(
Ttrial,r,g

)
≤ f

(
Tr,g

)
and‖βrial,r,g‖ < ‖βr,g‖

Tr,g, otherwise
(44)
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Step 5: Determine if the objective function reaches the optimal value, or if the maximum number
of iterations is reached. When the optimal value or the maximum number of iterations is reached,
the optimal individual is output. According to the SSADE algorithm above, the optimal input weight
Ai and hidden layer bias bi are searched to obtain a more compact network structure, optimize the
ELM algorithm, and improve the performance of the adaptive control item.

3.3. Robust Control Algorithm

The main purpose of the robust control term proposed in this paper is to suppress the uncertainty
of the model. The residual error is generated by an adaptive control process, and the error Eτai of
Equation (35) is:

Eτai = τ̂ai − τ
∗

ai = hiβ̂i − hiβ
∗

i (45)

where τ∗ai is the optimal approximation of τai. Suppose Eτai has an upper bound, ∃Emax
τai ,∀|Eτai| ≤ Emax

τai .
The robust controller designed in this paper is as follows.

τ̂Ri = Emax
τai sign(ri) (46)

where τ̂Ri represents the estimated output of the robust control term. ri represents the ith term of the
systematic error r. It can be obtained that the estimated output of the space robot control algorithm is:

τ̂k=[τ̂k1,τ̂k2, . . . , τ̂ki, . . . ,τ̂kn]

τ̂ki=Mii(τ̂PDi+τ̂ai+τ̂Ri)=Mii
(
Kri+hiβ̂i+Emax

τai sign(ri)
) (47)

where K represents the gain of the PD control algorithm.

3.4. Stability Analysis

Take the Lyapunov function:

V =
1
2

rTMr +
1
2

n∑
i=1

l∑
j=1

1
µi j
β̃i jβ̃i j (48)

Find the first derivative of Equation (48):

.
V = rTM

.
r + 1

2 rT
.

Mr +
n∑

i=1

l∑
j=1

1
µi j
β̃i j

.
β̂i j

= rT
(
M

( ..
qd + Λ

.
e
)
+ C

( .
qd + Λe

)
+ d− τk −Cr

)
+ 1

2 rT
.

Mr +
n∑

i=1

l∑
j=1

1
µi j
β̃i j

.
β̂i j

= rT
(
M

( ..
qd + Λ

.
e
)
+C

( .
qd + Λe

)
+ d−Kr−

n∑
i=1

hiβ̂i − Emax
τai sign(r) −Cr

)
+ 1

2 rT
.

Mr +
n∑

i=1

l∑
j=1

1
µi j
β̃i j

.
β̂i j

= rT
(

n∑
i=1

hiβi −
n∑

i=1
hiβ̂i −Kr− Emax

τai sign(r) −Cr
)
+ 1

2 rT
.

Mr +
n∑

i=1

l∑
j=1

1
µi j
β̃i j

.
β̂i j

= rT
(

n∑
i=1

hiβ∗i −
n∑

i=1
hiβ̂i −Kr− Emax

τai sign(r) −Cr
)
+ rT

n∑
i=1

Eτai −
1
2 rT(2C−M)r +

n∑
i=1

l∑
j=1

1
µi j
β̃i j

.
β̂i j

= −
n∑

i=1
hiβ̃iri − rTKr− Emax

τai rTsign(r) + rT
n∑

i=1
Eτai +

n∑
i=1

l∑
j=1

1
µi j
β̃i j

.
β̂i j

= −rTKr− Emax
τai rTsign(r) + rT

n∑
i=1

Eτai ≤ −rTKr−
n∑

i=1

(
Emax
τai − Eτai

)
|ri| ≤ 0

(49)
It can be proved that the control algorithm constructed in this paper is stable.
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4. Simulation

4.1. Parameter Settings

The space manipulator structure model designed by the modeling software NX in this paper
is shown in Figure 5. From the model, the inertia parameters shown in Table 1 can be obtained
by choosing similar materials and structures to the experimental system. Other system parameters
shown in Table 1 are set according to the physical parameters of the hardware of the experimental
system below.
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Figure 5. The space manipulator structure model.

Table 1. The dynamic parameters of the space robot system.

Description Symbol Value Unit

Base mass m0 100 kg
Joints mass m1, m2, m3 5 kg
Base inertia J0 6.67 kg·m2

Joints inertia J1, J2, J3 0.2 kg·m2

Target mass mt 5 kg
Target inertia Jt 2.5 kg·m2

Vector from center of the base to the centroid of the first joint b0 0.5 m
Vectors from center of the ith joint to the centroid of the ith body a1, a2, a3 0.5 m

Vectors from the centroid of the ith body to the center of the (i + 1)th joint b1, b2, b3 0.5 m
Vectors from center of the Target to the centroid of the end at 0.1 m

Initial base angle θ0 0 rad
Initial base angular velocity ω0 0 rad/s
Initial base linear velocity v0 0 m/s

Initial joint angle qi, i = 1, 2, 3 [0, 0, 0] rad
Initial joint angular velocity

.
qi, i = 1, 2, 3 [0, 0, 0] rad/s

In order to verify the validity of the method, this paper uses the model of a planar three-DOFs
free-floating space robot as established by the Matlab/Simulink software. The target initial angular
velocity is 0.5 rad/s. The interior disturbance term d in the robotic system is set by the function
d = 0.5+ rand(0, 1)× sign

( .
q
)
. Table 2 shows the control algorithm parameters of the space robot system.
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Table 2. The parameters of the adaptive control algorithm.

Algorithm Description Symbol Value

Strategy Self-Adaptation
Differential

Evolution–Extreme
Learning Machine

(SSADE–ELM)

Amount of hidden layer nodes of ELM network l 60
Max iteration tmax 1000

Population size NP 30
Stage control factor c 0.85

Arbitrary non-zero vector
.
ξ [1, 1, 1]

Upper bound of error Emax
τai 1

The gain of the PD control algorithm K Diag (100, 50)
Positive diagonal coefficient matrix Λ Diag (2, 1)

Extreme Learning
Machine (ELM)

Amount of hidden layer nodes of ELM network l 60
Max iteration tmax 1000

Population size NP 30
Input weight Ai rand (0, 1)

Hidden layer bias bi rand (0, 1)
Arbitrary non-zero vector

.
ξ [1, 1, 1]

Upper bound of error Emax
τai 1

The gain of the PD control algorithm K Diag (100, 50)
Positive diagonal coefficient matrix Λ Diag (2, 1)

Particle Swarm
Optimization–ELM

(PSO–ELM)

Amount of hidden layer nodes of ELM network l 60
Max iteration tmax 1000

Population size NP 30
The weights of the stochastic acceleration terms c1 = c2 0.2

The inertial weight serving as a tradeoff between the
global and local exploration capabilities of the swarm w 2

Arbitrary non-zero vector
.
ξ [1, 1, 1]

Upper bound of error Emax
τai 1

The gain of the PD control algorithm K Diag (100, 50)
Positive diagonal coefficient matrix Λ Diag (2, 1)

4.2. Simulation Results

Figure 6 shows the total angular momentum the space robot with target.Electronics 2019, 8, x FOR PEER REVIEW 17 of 25 
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Figure 6. Total angular momentum.

Figure 7 shows the space robot attitude parameters by simulation. Figure 7a shows the base angle.
Figure 7b shows the base angular velocity. Figure 7c,d show the joints angle via VFF–RLS and RLS.
Figure 7e,f show the joints angular velocity via VFF–RLS and RLS.
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Figure 7. Space robot attitude parameters by simulation. (a) The base angle; (b) The base angular
velocity; (c) The joints angle via Variable Forgetting Factor Recursive Least Squares (VFF–RLS); (d) The
joints angle via RLS; (e) The joints angular velocity via VFF–RLS; (f) The joints angular velocity via RLS.

Figure 8 shows the tracking error of each joint trajectory of control algorithms by simulation.
Table 3 shows the average error of joint tracking of control algorithms by simulation.



Electronics 2019, 8, 1111 17 of 23

Electronics 2019, 8, x FOR PEER REVIEW 18 of 25 

 

 

(e) 

 

(f) 

Figure 7. Space robot attitude parameters by simulation. (a) The base angle; (b) The base 

angular velocity; (c) The joints angle via Variable Forgetting Factor Recursive Least Squares 

(VFF–RLS); (d) The joints angle via RLS; (e) The joints angular velocity via VFF–RLS; (f) The 

joints angular velocity via RLS. 

Figure 8 shows the tracking error of each joint trajectory of control algorithms by 

simulation. Table 3 shows the average error of joint tracking of control algorithms by 

simulation. 

 

 

(a) 

 

(b) 

Electronics 2019, 8, x FOR PEER REVIEW 19 of 25 

 

 

(c) 

Figure 8. The tracking error of each joint trajectory of control algorithms by simulation. (a) The 

tracking error of Joint1 trajectory of control algorithms; (b) The tracking error of Joint2 trajectory 

of control algorithms; (c) The tracking error of Joint3 trajectory of control algorithms. 

Table 3. The average error of joint tracking of control algorithms by simulation. (SSADE–ELM = 

Strategy Self-Adaptation Differential Evolution–Extreme Learning Machine, PSO–ELM = Particle 

Swarm Optimization–ELM). 

Algorithm SSADE–ELM ELM PSO–ELM 

Average error −3.0 × 10−7 −4.5 × 10−7 −4.2 × 10−7 

5. Experiment 

5.1. Experimental Setting 

Based on the parameters in Table 1, a semi-physical experiment system of a space robot principle 

prototype is constructed. The main hardware architecture includes: a computer for data processing, 

an FPGA control card as the core control module, and a space robot prototype. The communication 

module of the joint control system adopts CAN bus. The prototype is placed on an air floating 

platform supported by air feet and has three yaw freedoms. It is constructed mainly by the joint 

motors (Kollmorgen TBM(S)–12955-X) and the six-dimensional force sensors (ATI–Nano17) are used 

for measuring the axial forces and moments. The encoders (EAC58P) are used for measuring the 

angular displacement and speed. The motor drives (HAR–5/60) are used for controlling motor motion. 

There is another stiffness motor which we closed for a constant stiffness in this experiment. The 

diagram of the experimental system is shown in Figure 9. The workflow of the semi-physical 

experiment system is as follows: the operator operates on the PC and issues commands to the joint 

control system. The joint control system then sends the command to the motor drive, which rotates 

to change the joint angle. At the same time, the joint control system uses the motor encoder to monitor 

the movement of the motor, and the position and speed information of the feedback motor are 

transmitted to the joint control module and the driver, respectively, and the motor movement is 

adjusted according to the error, thereby adjusting the movement of the joint to achieve the purpose 

of movement and precision. Requirements to make the joints have better positioning. The experiment 

system uses a single pendulum to strike the end of the joint to produce an external disturbance torque

e
 . In order to be able to generate the force in the yaw direction, the experiment was designed to 

strike the end of the joint at a certain angle to the pitch axis of the joint. The method of calculating the 

end impact force is as follows: 

Figure 8. The tracking error of each joint trajectory of control algorithms by simulation. (a) The tracking
error of Joint1 trajectory of control algorithms; (b) The tracking error of Joint2 trajectory of control
algorithms; (c) The tracking error of Joint3 trajectory of control algorithms.

Table 3. The average error of joint tracking of control algorithms by simulation. (SSADE–ELM =

Strategy Self-Adaptation Differential Evolution–Extreme Learning Machine, PSO–ELM = Particle
Swarm Optimization–ELM).

Algorithm SSADE–ELM ELM PSO–ELM

Average error −3.0 × 10−7
−4.5 × 10−7

−4.2 × 10−7



Electronics 2019, 8, 1111 18 of 23

5. Experiment

5.1. Experimental Setting

Based on the parameters in Table 1, a semi-physical experiment system of a space robot principle
prototype is constructed. The main hardware architecture includes: a computer for data processing,
an FPGA control card as the core control module, and a space robot prototype. The communication
module of the joint control system adopts CAN bus. The prototype is placed on an air floating
platform supported by air feet and has three yaw freedoms. It is constructed mainly by the joint
motors (Kollmorgen TBM(S)–12955-X) and the six-dimensional force sensors (ATI–Nano17) are used for
measuring the axial forces and moments. The encoders (EAC58P) are used for measuring the angular
displacement and speed. The motor drives (HAR–5/60) are used for controlling motor motion. There
is another stiffness motor which we closed for a constant stiffness in this experiment. The diagram
of the experimental system is shown in Figure 9. The workflow of the semi-physical experiment
system is as follows: the operator operates on the PC and issues commands to the joint control system.
The joint control system then sends the command to the motor drive, which rotates to change the joint
angle. At the same time, the joint control system uses the motor encoder to monitor the movement
of the motor, and the position and speed information of the feedback motor are transmitted to the
joint control module and the driver, respectively, and the motor movement is adjusted according
to the error, thereby adjusting the movement of the joint to achieve the purpose of movement and
precision. Requirements to make the joints have better positioning. The experiment system uses a
single pendulum to strike the end of the joint to produce an external disturbance torque τe. In order to
be able to generate the force in the yaw direction, the experiment was designed to strike the end of the
joint at a certain angle to the pitch axis of the joint. The method of calculating the end impact force is
as follows:

τe= Fsinθ× at =
m× (v0 − vt)

4t
sinθ× at (50)

where F is the total collision force, fyaw is the collision force in the yaw direction, m is the mass of the
pendulum block, 4t is the collision duration, v0 is the initial velocity of the pendulum block during the
collision, and vt is the velocity of the pendulum block after the collision, and we have:

v0 =
√

2gl(1− cosα0); vt =
√

2gl(1− cosαt) (51)

where g is the acceleration of gravity, l is the distance from the fixed end of the inelastic light rope
to the centroid of the pendulum block, α0 is the angle between the rope and the vertical direction at
the starting position of the pendulum block, and αt is the angle with the vertical direction when the
pendulum block reaches the highest position after the collision. In this experiment, the parameters
setting are as follows: θ = 30◦, α0 = 10◦, l = 0.2 m, g = 9.8 m × s−2, m = 5 kg, 4t = 0.01 s,
the experimental measurements obtain that αt ≈ 3.8◦, so F ≈ 10N and τe ≈ 0.5 N ·m.
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The control algorithms used in the experiment system are written by MATLAB. The control
algorithm parameter settings are shown in Table 2.

5.2. Experimental Results

Figure 10 shows the space robot attitude parameters by experiment. Figure 10a shows the base
angle. Figure 10b shows the base angular velocity. Figure 10c,d show the joints angle via VFF–RLS and
RLS. Figure 10e,f show the joints angular velocity via VFF–RLS and RLS.
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Figure 10. Space robot attitude parameters by experiment. (a) The base angle; (b) The base angular
velocity; (c) The joints angle via Variable Forgetting Factor Recursive Least Squares (VFF–RLS); (d) The
joints angle via RLS; (e) The joints angular velocity via VFF–RLS; (f) The joints angular velocity via RLS.



Electronics 2019, 8, 1111 20 of 23

Figure 11 shows the tracking error of each joint trajectory of control algorithms by experiment.
Table 4 shows the average error of joint tracking of control algorithms by experiment.
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Table 4. The average error of joint tracking of control algorithms by experiment. (SSADE–ELM =

Strategy Self-Adaptation Differential Evolution–Extreme Learning Machine, PSO–ELM = Particle
Swarm Optimization–ELM).

Algorithm SSADE–ELM ELM PSO–ELM

Average error −5.3 × 10−6
−7.6 × 10−6

−6.9 × 10−6

6. Discussion

It can be seen from Figure 6 that when the space robot is in contact with the target, the entire complex
system maintains angular momentum conservation. In the simulation, the adaptive reactionless path
planning achieves adaptability by using the RLS algorithm and the VFF–RLS algorithm, respectively.
It can be seen from Figure 7a,b that the VFF–RLS algorithm can achieve the minimum disturbance
planning of the base attitude, but the RLS algorithm cannot. It can be seen from Figure 7d,f that for the
system with time-varying characteristics, the RLS algorithm does have a saturation phenomenon, and
the time-varying parameters of the tracking system cannot be realized to plan the manipulator attitude
parameters. Meanwhile, the VFF–RLS algorithm exhibits good parameter tracking performance for
time-varying system, and can realize the time-varying parameters of the tracking system to plan the
attitude parameters of the manipulator, thus ensuring the stability of the base attitude. The same results
can be obtained in the experiment. It can be seen from Figure 10a,b that the VFF–RLS algorithm can
achieve the minimum disturbance planning of the base attitude, but the RLS algorithm cannot, and the
offset of the base angle is much bigger than the simulation caused by the unknown disturbance of the
semi-physical experiment system. It can be seen from Figure 10d,f that saturation phenomenon of the
RLS algorithm makes it unable to plan the manipulator attitude parameters in the time-varying system,
while the VFF–RLS algorithm achieves this goal very well. The differences between the manipulator
attitude parameters between the simulation and the experiment are also caused by the unknown
disturbance of the semi-physical experiment system. The SSADE–ELM algorithm proposed in this
paper is compared with the adaptive control algorithm based on ELM and the POS–ELM control
algorithm proposed in Reference [21]. As can be seen from Figure 8a–c and Table 3 by simulation, since
the adaptive control algorithm based on ELM does not need to perform control parameter optimization,
it is superior to the SSADE–ELM control algorithm and the POS–ELM control algorithm based on the
trajectory tracking speed. However, in terms of control precision, the SSADE–ELM control algorithm
is the best, with the POS–ELM control algorithm following closely. The ELM-based adaptive control
algorithm is the worst. This is due to the use of the group intelligence algorithm to optimize the input
weight of the ELM algorithm. We can get the same results in the experiment. As can be seen from
Figure 11a–c and Table 4, the SSADE–ELM control algorithm has the best trajectory tracking ability,
and due to the time overhead of control parameter optimization, the trajectory tracking speeds of the
SSADE–ELM control algorithm and the POS–ELM control algorithm are a little slower than the ELM
control. Through the above analysis of simulation and experiment, the effectiveness and superiority of
the ARNS planning and control algorithm based on SSADE–ELM proposed in this paper are proven.

7. Conclusions

An ARNS path planning and control algorithm is proposed for free-floating space robots. The RNS
planning strategy is adopted to plan the movement of the robot arm to ensure the stability of the space
robot base. At the same time, in order to contact the unknown target, the reactionless motion of the
manipulator is realized to ensure the stability of the basic attitude of the space robot, in order to adapt
the requirement of time-varying disturbance of the system. The VFF–RLS algorithm is introduced to
construct an ARNS path planning algorithm to avoid the saturation phenomenon of the RLS algorithm.
This paper proposes a stability control algorithm for space robot contact via the SSADE–ELM algorithm,
which can track the dynamic change planning path and improve the speed and accuracy of tracking
performance. The proposed algorithm does not require accurate system dynamics modeling, nor does
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it require information about unknown time-varying disturbance, enabling dynamic reactionless path
tracking control. The simulation results verify the effectiveness and superiority of the proposed
algorithm, which makes it important for future on-orbit operation. The algorithm proposed in this
paper still has some shortcomings, such as the slow execution speed of the algorithm, which will be
the direction of further research.
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