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Abstract: In order to resolve the issue of tremendous energy consumption in conventional artificial
intelligence, hardware-based neuromorphic system is being actively studied. Although various
synaptic devices for the system have been proposed, they have shown limits in terms of endurance,
reliability, energy efficiency, and Si processing compatibility. In this work, we design a synaptic
transistor with short-term and long-term plasticity, high density, high reliability and energy efficiency,
and Si processing compatibility. The synaptic characteristics of the device are closely examined and
validated through technology computer-aided design (TCAD) device simulation. Consequently, full
synaptic functions with high energy efficiency have been realized.

Keywords: energy consumption; hardware-based neuromorphic system; synaptic device; Si
processing compatibility; TCAD device simulation

1. Introduction

Conventional computer architectures are mostly based on von Neumann’s architecture since
modern computer systems have been represented by electronic delay storage automatic calculator
(EDSAC)—since 1949. The architecture consists of two main parts of processing and memory units
performing the processes in the series’ manner through single instruction and single data. Due to
the physically differentiated system architecture, memory bus has been considered to be a bottleneck
in determining the system processing speed, which is getting even worse in these days when big
data are more increasingly demanded. In order to overcome this limit in the von Neumann computer
architecture parallel processing capability of the artificial intelligent, of parallel processing with
tremendous amount of data, contributions have been dedicated by the software-based neural networks.
Although unimaginably many kinds of tasks have been accomplished by the software-driven technology
in the given hardware system, with great resemblance to the way the human brain works, there is much
room for enhancement of energy efficiency, which is the incomparable essence of biological system.

As a solution for the energy consumption issue, spiking neural network (SNN) is considered
as one of the powerful schemes inspired by the biological system, which requires fundamental
hardware innovation with synaptic transistors and neuron circuits [1,2]. Intellectual functions in
human brain are determined by the strength and accuracy in connectivity among neurons. In human
brain, there are a few tens of quadrillions of synapses and, through the synapses, humans become
able to recognize, calculate, memorize, and learn. Thus, for hardware-driven neuromorphic systems
to achieve more human-brain like computing efficiency, the synaptic device is required to have high
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scalability, multi-level weight adjustability, large inference margin, strong tolerance, and ultra-low
energy consumption. Moreover, in order to gain higher access to the chip-level production lowering
time and cost barriers, the SNN should be realized on the Si platform being helped by the mature Si
processing technology.

A number of synaptic devices have been proposed with memristors such as resistive-switching
random-access memory (ReRAM) and phase-change random-access memory (PcRAM). They are
considered to be good candidates for the electronic synapse owing to their high structure simplicity
and volume scalability, mainly by their great geometrical resemblance to the two-terminal structure of
the biological synapse and energy efficiency [3–6]. Although memristors have these advantages, there
is still room for further improving the rather low endurance and reproducibility and for enhancing the
completeness in realizing the biological synaptic functions. Moreover, some of the existing memristor
devices are not in consideration of Si processing compatibility. The simple structure requires functional
compensation by additional devices or circuits, which might cause increased overhead in the SNN
architecture [7–9]. In this work, a novel synaptic device has been designed, which has SiGe quantum
well (QW) and Si3N4 charge-trap layer to realize the short-term potentiation (STP) and long-term
potentiation (LTP), respectively, and its synaptic operations have been validated through technology
computer-aided design (TCAD) device simulation, Silvaco Atlas [10]. Although the designed synaptic
device is in a more complicated structure with a larger number of terminals compared with the
two-terminal synaptic devices, it is capable of complementing the aforementioned weak points of the
memristors, with an emphasis on higher energy efficiency and Si processing compatible materials.
While most of the memristor synaptic devices have shown energy consumption higher than 1 pJ [11],
the largest energy consumption required for a potentiation event has been demonstrated to be 1.51 fJ.

2. Device Structure and Design Strategies

More detailed explanations on the operation principles of the synaptic device and the models
used in the device simulation along with the related physics are provided as follows. Figure 1 shows
the schematic of the proposed synaptic device which has a p+ SiGe layer at the drain-side channel and
a charge-trap layer on the channel.
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Figure 1. Schematic of the proposed synaptic device having an embedded SiGe quantum well and 
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Figure 1. Schematic of the proposed synaptic device having an embedded SiGe quantum well and
charge-storage layer for realizing the short-term and long-term plasticity, respectively.

As the number of potentiation pulses increases, the electrons in the SiGe valence band tunnel into
the drain conduction band and fill the empty energy states. As a result, the holes generated in the
SiGe layer are confined in the layer owing to a large valence-band offset (VBO) between Si and SiGe.
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The confined holes give an effect of elevating the hole potential energy and the probability of hole
tunneling into the nitride charge-trap layer, which realizes the LTP operation.

Designing a synaptic device with high reliability is paramount in building up a hardware
architecture for the neuromorphic system. In order to demonstrate the device operation more
accurately, multiple models are simultaneously activated. The mathematical and physical backgrounds
of the used models can be glanced as follows. One of the essential differential equations used in the
TCAD simulation is Poisson equation in Equation (1).

div(ε∇ψ) = −ρ (1)

Here, ε is the local electrical permittivity of the material, ψ is the electrostatic potential, and ρ is the
volume charge density.

∂n
∂t
−

1
q

div
→

Jn = Gn −Rn (2)

Continuity equation in Equation (2) can be applied for obtaining the electron and hole current densities.
n, Jn, Gn, and Rn are concentration of mobile electrons, areal electron current density, generation rate
of electron, and recombination rate of electron, respectively. n can be substituted with p for hole
description. q is the magnitude of electron charge. Based on the above equations, various models are
equipped for higher accuracy and reliable simulation results. For an inversion layer mobility model,
Lombardi model was used, which is suitable to non-planar devices, with dependences on both parallel
and vertical electric fields, doping concentration, and temperature. The underlying physics comes
from Matthiessen’s rule.

µ−1
T = µ−1

AC + µ−1
b + µ−1

sr (3)

Here, µT, µAC, µb, and µsr indicate the total mobility, the surface mobility limited by scattering with
acoustic phonons, the mobility limited by scattering with optical intervalley phonons, and the surface
roughness factor, respectively.

f (E) =
1

1 + exp
(

E
kTL

) (4)

For carrier statistics, Fermi–Dirac statistics was employed. In Equation (4), f (E) is the probability
that an available electron state with energy E is occupied by an electron, k is Boltzmann constant,
and TL is lattice temperature. Moreover, the model is useful for the proposed device to describe the
STP-to-LTP transition. The accumulated holes in the SiGe quantum well, which should be at the Fermi
distribution tail, have higher probabilities of injection into the charge-trap layer. Moreover, non-local
band-to-band tunneling calculation method was adopted, which has higher accuracy than the several
tunneling models given as default in the TCAD simulation. This is due to the fact that the proposed
device has the degenerately doped SiGe channel and drain, and the method calculates the tunneling
probabilities by considering not only both forward and reverse tunneling currents but also the spatial
variation of energy band and generation/recombination rates as shown in Equations (5) and (6).

J(E) =
q
π}

x
T(E)[ fl(E + ET) − fr(E + ET)]ρ(ET)dEdET (5)

T(E) = exp
(
−2

∫ xend

xstart

k(x)dx
)

(6)

Here, J(E) is the net current density for a carrier with longitudinal (E) and transverse energy
(ET) under the assumption that the tunneling current is the result of bidirectional transfers of carriers
across the junction. f l and f r are the Fermi–Dirac functions using the quasi-Fermi levels in the left-side
and right-side materials of the respective junctions. ρ(ET) and k(x) represent the density of states
corresponding to the transverse wavevector components and the wavevector at x. T(E) indicates
the tunneling probability for a carrier having an energy of E from the Wentzel–Kramers–Brilluoin
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(WKB) approximation. Moreover, Shockley–Read–Hall recombination model, impact-ionization model,
and bandgap narrowing model have been used. The aforementioned models are reflected for all
the regions, and the non-local band-to-band model was applied locally between SiGe and Si where
the tunneling events actually take place. In order to demonstrate the charge-trapping mechanism of
nitride, a macro model (DYNASONOS) was employed, which includes various transport mechanisms
such as thermionic emission, Poole–Frenkel emission, direct tunneling model, Fowler–Nordheim (FN)
tunneling, and hot carrier injection at the same time. These models for the gate current are automatically
applied for the Si3N4 layer and the regions in contact, which substantially affects the dynamics of the
carriers moving into and out of the charge-trap layer. Without just using the default values given in the
TCAD simulation package, the mobilities (µ) [12,13], saturation velocities (vsat) [14–19], bandgap energy
(Eg) [20], and electron affinity (χ) [21–27] of Si and SiGe have been fed into the device simulation [28].
This is because the SiGe layer, which stores holes, is considered as the important region for the synaptic
operation. The values of the parameters are tabulated in Table 1.

Table 1. Parameters used in this work for Si and SiGe.

µn [cm/V·s] µp [cm/V·s] vsat,n [cm/s] vsat,p [cm/s] χ [eV] Eg [eV]

Si 1590.0 570.00 1.02 × 107 7.33 × 106 4.050 1.10
Si0.7Ge0.3 170.02 178.81 6.08 × 106 5.17 × 106 3.975 0.965

The SiGe layer is 50 nm long in the vertical direction and 50 nm wide (channel thickness =

50 nm). The p-type Si region is 100 nm long and the physical gate length (Lg) is 100 nm. Thus,
whole SiGe region and the half of Si region are brought under the gate. In order to confine the holes
generated over the potentiation process in the SiGe quantum well (QW) effectively, Ge fraction should
be optimally controlled for a large valence-band offset (VBO) and the Si/SiGe interface status in the
epitaxy processing as well, which is fixed to 0.3 throughout the design work. The gate oxide thickness
for the gate 1 is 3 nm. The storage node is made up of oxide/nitride/oxide = 2/4/6 nm between the
channel and the gate 2. The doping concentrations of source and drain junctions are both n+-type 1020

cm−3, and those of p+ SiGe QW and p-type Si channel are 1018 cm−3 and 1016 cm−3, respectively.

3. Design Results and Discussion

3.1. Design of Synaptic Device

In designing the synaptic device, the focus was placed on successfully emulating biological neural
system with Si compatibility, high scalability, high reliability, and high energy efficiency. In order to
meet the requirements, various approaches were performed including embedding SiGe layer. There is
a large difference in Eg between Si and Ge and small difference in electron affinity (χ) so that most of
the difference in energy bandgaps is transferred to VBO, which forms a hole QW in the SiGe region.
Furthermore, SiGe is not only helpful in implementing potentiation mechanism but also in large current
ratio between different weight states because its smaller Eg has the effect of lowering the potentiation
voltage compared with the all-Si case. Employing these features of SiGe, the SiGe layer can be used as
short-term storage node, making the device more energy-efficient.

Figure 2a shows the block diagram schematically explaining the learning rule of human brain
by Hebbian’s law [29]. Hebbian’s law effectively dictates the correlation-based plasticity in the
biological nervous system where the connectivity between pre-neuron and post-neuron, i.e., the
synaptic conductance is strengthened by repeated firing events of the pre-neuron. An increased
number of pulses in a given time, or equivalently, an increased pulse frequency enhances the transition
probability of the synaptic device from short-term to long-term memory. Figure 2b,c shows the
energy-band diagrams in the channel direction and metal-oxide-semiconductor direction from gate 1
to gate 2, respectively. For the potentiation operation, BTBT is adopted as the primary mechanism
considering device reliability, scalability, and energy efficiency (Figure 2b). As shown in Figure 2b,
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for a potentiation pulse, the valence-band electrons in the SiGe QW can see the empty states of the
conduction band of the Si drain junction. As the result, holes are generated and effectively confined
in the SiGe layer due to the large VBO between SiGe and Si. The locally confined holes by QW VBO
give an effect of elevating the QW potential and increasing the channel conductance temporarily [30],
which corresponds to the STP. Then, if the potentiation pulses are repeatedly applied to the transistor
before the generated holes are annihilated by either recombination or diffusion, i.e., if the holes are
accumulated and their amount exceeds a certain threshold value in the SiGe QW, LTP is introduced.
The accumulated holes with the energies at the Fermi-Dirac distribution tail have higher probabilities
of injection into the nitride charge-trap layer. Once the holes are trapped in the nitride layer, they do not
vanish for long time, which establishes the LTP function. Moreover, work functions of those two gates
are optimally adjusted to locate the BTBT site not in the vicinity of the right-side channel in order to
prevent a soft potentiation and to store the generated holes at the right-side of the channel, which leads
to a stable and reproducible LTP operation as shown in Figure 2c. By reflecting the aforementioned
approaches, design of a synaptic device meeting the requirements is realized.
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Figure 2. Operation principles of the synaptic device. (a) Hebbian’s learning rule. (b) Energy-band
diagram in the channel direction under the potentiation condition. (c) Energy-band diagram at the
initial state and after potentiation state. The inset shows the band-to-band tunneling rate over a
potentiation event.

3.2. Validation of Short- and Long-Term Plasticities

The proposed device has strong advantages particularly in energy-efficiency. There are many
resources to make the device energy-efficient, such as introduction of SiGe QW, band-to-band tunneling
mechanism, and STP characteristics. STP helps the device discriminate less important signals.
Otherwise, when the weight of a synaptic device is changed at every input signal, the overall current
over the synaptic device array would increase and large energy consumption is resulted.
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Figure 3. Drain current and nitride-trapped charges vs. learning pulses. The training pulse has a 1-µs
width and a 1-µs interval.

Figure 3 indicates the timing diagram of drain current (ID) and the amount of nitride-trapped
charges as a function of time. The potentiation pulse is a set of (gate 1 voltage (VG1), gate 2 voltage
(VG2), drain voltage (VDS) = (−0.2 V, −0.7 V, 0.55 V), and the hold bias is (VG1, VG2, VDS) = (−0.3 V,
0 V, 0 V). When a potentiation pulse is applied, holes are generated by band-to-band tunneling and
confined in the SiGe layer. At the fourth pulse, ID rapidly increases since the number of holes in the
SiGe exceeds a certain threshold value and induces a drastic injection into the nitride charge-trap
layer as shown in Figure 3. The trapped holes lower the threshold voltage of the synaptic device and
increase the channel conductance.

Figure 4a shows the conduction-band edges obtained after different number of pulses are applied:
0, 1, 5, 10, 20, 30, 40, and 50 pulses. The insets depict the three-dimensional (3-D) contours of conduction
band edge surfaces at the initial state and at a state after 30 pulses are applied, respectively. The line
spectra representing the conduction band edges have been extracted from the channel vicinity of VG2

where the main current conduction path is formed. It is revealed that most of potential barrier lowering
takes place by the holes in the SiGe region. Figure 4b plots the electron current density contours at the
inference operations after different number of potentiation pulses: 1, 5, and 30 pulses. The inference
process in the biological nervous system is analogous to the read operation in the memory array, and
the electrical disturbance of the current data should be avoided. For the nondestructive inference, a
voltage scheme was found to be VGS1 = VDS = −0.1 V. As the number of pulses increases, more holes
are populated in the charge-trap layer, and the potential barrier seen by the source electrons is lowered.
Consequently, higher ID is read at the same inference voltage as can be confirmed by Figure 4b.

Figure 5a demonstrates the transient characteristics of the synaptic transistor after different
number of potentiation pulses. Through Figure 5a, it is confirmed that the proposed synaptic device is
capable of both STP and LTP functions. The STP increases the channel conductivity for a short time,
and the effect is diminished as time passes. As a result, ID is eventually converged to the initial-state
current level: The starting point can be varied but the final ID is the same in the STP operation. On the
other hand, ID higher than the initial low current is consistently retained for up to 104 sec or more

When the synaptic device is brought into the LTP states. Here, it is notable that a large current
difference takes place between states as the number of potentiation pulses increases. In Figure 5b,
the actual transfer curves of the synaptic device obtained after the corresponding different number
of pulses are applied in Figure 5a are depicted. In the STP operation, there is steady-state threshold
voltage (Vth) shift. Once the device is in the LTP condition, a larger number of pulses lead to lower
Vth without a temporal change. This is because the trapped holes in the nitride layer result in the
inversion layer under the gate 2 at the inference bias. In Figure 5b, the proposed device demonstrates
the large current ratio between high and low conductance states, which can be a beneficial aspect of a
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fully-Si electron device. The successfully suppressed leakage current stems from the high potential
barrier constructed by the large VBO. If there is only STP, there would be no Vth shift. Only in the LTP
condition, Vth begins the left-shifts due to the holes trapped in the nitride layer. It is shown that Vth of
the proposed synaptic device is shifted by 1.5 V after 40 potentiation pulses are applied.
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the number of potentiation pulses: initial (left) and after 30 pulses (right). Line traces of the conduction
band edges in the vicinity of gate 2. (b) Electron current densities after 1, 5, and 30 potentiation pulses
applied to the synaptic device.
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3.3. Interval Time Effects on STP and LTP Characteristics

Figure 6a–c shows how the transition from STP to LTP is made. As shown in Figure 6a, increasing
the interval time between potentiation pulses makes it difficult to get into the LTP state. The holes in
the SiGe layer temporarily generated by the pulses vanish by recombination and diffusion, which does
not provide the boosting effect in band-to-band tunneling into the charge-trap layer. With the interval
time of 1 ms, the synaptic device is not allowed to move to the LTP states as shown in Figure 6a and
confirmed by Figure 6b. Figure 6b demonstrates the transient and DC characteristics under different
interval time conditions for the same total number of potentiation pulses of 10. It is assured that a short
enough time interval allows the synaptic device to enter the LTP states and modulate the electrical
conductivity for learning.
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Figure 6. Operation characteristics depending on the number of pulse interval times. (a) Current
changes with different pulse interval times: 10 µs, 100 µs, and 1 ms. (b) Transient (left) and DC sweep
(right) characteristics with different interval times. For a shorter interval time at a given number of
potentiation pulses, the saturation current increases and the Vth shift gets wider.

3.4. Spike-Timing-Difference Plasticity and Array Architecture

Table 2 summarizes the bias conditions for the synaptic operations and the required energy
consumption per the realizable synaptic event along with the calculated synaptic device density.
In order to exactly calculate the energy consumption, the current is integrated with time and multiplied
by voltage. In Table 2, the energy consumption was obtained in the case of maximum value to consider
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the worst case. There are approximately 1015 synapses in the brain, about 1% of them are activated at
the same time, and the frequency of neuron spike is about 10 Hz [31–33]. On this bases, human brain
consumes power of ~20 W, and 55% out of the total power is consumed by the action potential [34–37].
In other words, it is assumed that power of 11 W is consumed for the synaptic activities. The power
consumption per biological synaptic event is derived to be 1.1 × 10−12 W. Considering that each
synaptic event has a ~100 ms duration, the energy consumption per synaptic event is calculated to be
about 10 fJ. For the inference operation, 20 ns of rising and falling times and 10 ns of pulse duration are
schemed, and then, this time period is multiplied by the inference voltage of −0.1 V and the current
depending on weight for calculation of the energy consumption. The energies required for respective
synaptic operations are summarized in Table 2, and most of them are very close to those for the
biological synapse. Potentiation operation increases the conductance of the synaptic device so that a
relatively large energy consumption is required; however, the amount is still low. Owing to the low
operation voltage and tunneling-based injection mechanism, maximum energy consumption of only
0.52 pJ is needed for a potentiation event. For a depression event, the trapped holes tunnel back to
the channel, which necessitates a relatively high operation voltage on the gate 2. However, even in
the worst case, the required energy consumption is much lower than that for a potentiation event.
Although the energy consumption for individual potentiation or depression event can be higher than
that for an inference operation, the energy for an inference event can be spanned over a large range
depending on the conductance. With the help of low-power and high-speed operation capabilities, the
proposed synaptic transistor requires only a femto-joule energy even after 40 potentiation pulses are
applied. Assuming that a unit cell has a footprint of 158 nm by 150 nm, the density of synaptic device
array is calculated to be 9.09 × 109/cm2. Here, the critical dimensions of the designed device and the
metal pitches in one of the most recent memory technologies have been considered [38], where the
wordline (WL) and bitline (BL) pitches are 48 and 54 nm, respectively.

Table 2. Energy consumption per realizable synaptic event and the calculated synapse density.

VG1 VG2 VDS Time Energy

Potentiation −0.2 V −0.7 V 0.55 V 1 µs 0.52 fJ
Depression 0 V 6 V 0 V 1 µs 1.51 fJ

Inference −0.1 V 0 V −0.1 V 10 ns
Initial 6.42 × 10−24 J

20 pulsed 1.87 × 10−16 J
40 pulsed 5.24 × 10−16 J

Synapse density 9.09 × 109/cm2 (
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Furthermore, the spike-timing-dependent plasticity (STDP) characteristics have been obtained by
adjusting the pulse profile and time difference as demonstrated in Figure 7. The inset describes the
potentiation and depression pulse schemes in the STDP simulations. The spiking pulse has 950 ns
of rising time and 100 ns falling time, respectively, and the positive and negative voltage peak is
0.72 V in magnitude. The pre-neuron is connected with drain, and the post-neuron is with gate 1
and gate 2. When a pre-neuron spike comes earlier than a post-neuron one, the synaptic transistor is
potentiated since the holes generated by tunneling operation from channel to drain are stored in the
nitride charge-trap layer, which improves the conductance of the device. In the reversed order, the
device is depressed owing to ejection of the trapped holes out of the nitride layer. When the timing
difference between pre- and post-neuron spikes is larger than 900 ns, the conductance of the device is
not changed but left as the initial value, which indicates that two neurons are not so closely correlated,
and there is neither potentiation nor depression. It is noticeable that the synaptic transistor has a
large current difference for the different spike timing, which substantially reduces the complexity of
the sensing circuits and enhances the system reliability. Figure 8 demonstrates a presumable array
architecture with the designed synaptic transistor for a hardware-driven neuromorphic system.
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4. Conclusions

In this work, a synaptic transistor having SiGe quantum well and nitride charge-trap layer
was schemed and characterized by a series of rigorous simulation works. The synaptic device has
successfully demonstrated the synaptic operations including STP, LTP, and inference with high energy
efficiency not exceeding a two femto-joules in the worst case. Further, spike-timing-dependent plasticity
was verified through a properly adjusted pulse scheme. A presumable array architecture is also
conceived with the four-terminal synaptic device, and its density was calculated to be 9.09 × 109/cm2

based on the interconnect schemes in the 18-nm DRAM technology node.
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