
electronics

Article

Hardware Support to Minimize the End-to-End Delay
in Ethernet-Based Ring Networks

Tomás P. Corrêa 1,* and Luis Almeida 2

1 Electrical Engineering Graduate Program, Federal University of Minas Gerais,
Belo Horizonte 31270-901, Brazil

2 CISTER, Instituto de Telecomunicações, FEUP-University of Porto, 4200-465 Porto, Portugal; lda@fe.up.pt
* Correspondence: tc.ufmg@gmail.com

Received: 29 August 2019; Accepted: 25 September 2019; Published: 28 September 2019
����������
�������

Abstract: Ethernet is a popular networking technology in factory automation and industrial
embedded systems, frequently using a ring topology for improved fault-tolerance. As many
applications demand ever shorter cycle times and a higher number of nodes, the popular ring
endure to remain as a valid topology. In this work, we discuss the factors that determine the
ring network delay and show how they affect the network cycle time. Since increasing the link
capacity has limited reach, we explore a time-triggered protocol that brings the nodes forwarding
delay near to the physical layer delay. Additionally, we propose hardware accelerators based on
FPGA technology that minimise the packet reception delay from physical reception to delivery to an
application handler, preserving Ethernet layers and being compatible with its standard. This paper
explains the accelerators concept and implementation, presents measurements using standard Media
Access Control implementations, and shows the solution effectiveness with experimental results.
We achieved a delay, from physical reception to the triggering of a user-level handler, of 1.1 µs
independent of the packet length.

Keywords: end-to-end delay; ethernet; hardware accelerator

1. Introduction

In last years, the number of applications requiring high-speed communications, such as
motion control [1], Modular Multilevel Converters (MMC) [2,3], power train or chassis control [4],
has increased. Those applications demand short update cycles of less than 200 µs and represent a
challenge to the communication network design.

The network topology, one of the designer’s degrees of freedom, has a strong impact on the
number and length of the communication links, on the network delay, and the tolerance to failures.
Among the topologies that can be considered (e.g., star, tree, ring, bus and hybrid, see Figure 1), the
ring topology is often the preferred one, because it has clear benefits in network cabling, reducing the
number of links and their length, thus simplifying deployment and maintenance. Moreover, the ring
topology is the simplest one that offers two disjoint paths between any two nodes, so it is tolerant to
single node or link failures. However, the ring structure implies longer delays than other alternatives,
such as a tree topology, and fails to reach the required performance as the number of nodes increases.

In this work, we discuss the factors that determine the ring network delay and show how they
affect the network cycle time. As shown below, increasing the link capacity has limited benefits, thus,
when performance is at a premium, a co-design between the control and the communication might be
necessary. We also explore a time-triggered protocol and the synchronisation of the nodes physical
layer (PHY), such that the forwarding delay of a packet passing through an active node is reduced to

Electronics 2019, 8, 1097; doi:10.3390/electronics8101097 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-3574-5972
https://orcid.org/0000-0002-9544-3028
http://dx.doi.org/10.3390/electronics8101097
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/8/10/1097?type=check_update&version=2

Electronics 2019, 8, 1097 2 of 15

the PHY delay and a single clock cycle of the interface between PHY and the Media Access Control
(MAC) layer.

Hybrid

Star Ring

Bus

Tree

Figure 1. Network topologies. The small white dots represent the master node and the black dots
the slaves.

Another contribution of this work is the use of hardware accelerators to eliminate the node delay
dependency on the packet size, a point often overlooked. This reduction is relevant, because it decreases
the end-to-end delay that affects the application control performance [5], which is the sum of cycle
time plus the node internal delays in transferring data to and from the network. Those accelerators can
be easily implemented in Field Programmable Gate Array (FPGA) or Application Specific Integrated
Circuit (ASIC) technologies.

This paper is organised as follows. Section 2 discuss related work. Section 3 introduces the
concept of Minimum Cycle Time (MCT), compares different network topologies, and explains how link
capacity and protocol influence the MCT. Section 4 shows reception delay measurements of three MAC
implementations, making evident that the MAC choice is relevant when the application demands
a reduced end-to-end delay. Section 5 describes a technique to reduce the active node forwarding
delay to the latency of the Physical Layer (PHY) latency plus a single clock cycle of the MAC interface.
Section 6 details two proposed hardware accelerators and explains how they enable removing the
dependency of the MAC reception delay on the payload size. Section 7 states the conclusions of
this work.

2. Related Work on Reducing the Cycle-Time

Curiously, when discussing the cycle time, node internal delays are often ignored or
underestimated, but recently authors have recognised their relevance. Briscoe et al. [6] classified
the sources of Internet latency into five categories, among them the Intra-end-host delays.
Ramaswamy et al. [7] found that functionalities allocated inside network middle hops (routers),
such as encryption, introduce processing delays that may represent up to 50% of the total network
delay. Bertocco et al. [8] pointed to the relevant delays that access points introduce when employed
to interface wired and wireless networks. Those works, as well as most that discuss network latency,
are mostly concerned with large networks and non-real-time or soft real-time applications.

Orfanus et al. [9] and Cottet et al. [10] touched the subject of reducing the node internal delays
when they implemented an EtherCAT Master stack capable of reaching cycle times of 20 µs, but they
did not consider the influence of the MAC type or the delay dependence on payload. Corrêa et al. [11]
found the transmission and reception internal delays in a Zynq System-on-Chip (SoC) to be as high as
30 µs for large packets using Ethernet technology. The MAC architecture and the number of times data

Electronics 2019, 8, 1097 3 of 15

are copied are key aspects. In general, we did not find a work that minimises the delays incurred by a
ring topology, which is what we propose here.

3. Networks and Their Minimum Cycle Time

As referred above, the ring topology presents several advantages in cabling reduction and
management as well as in fault-tolerance. However, applications such as high-speed servoing and
MMC control demand update cycles of less than 200 µs. Such short cycles represent a challenge to
this topology, as the number of nodes influences the Minimum Cycle Time (MCT), i.e., the delay in
updating all slave nodes in the network with new data, considering master–slave logical interactions as
typical in industry. In the ring topology, the MCT is expressed by Equation (1), where κ is the number
of slaves, P is the payload in bytes, Poverhead is the number of bytes necessary for frame packing, Pmax is
the maximum payload that fits in one frame, Tbyte is the time to transfer one byte, Tfw is the forwarding
delay, and dxe is the ceiling function, returning the nearest integer not smaller than x.

MCTRing = P · Tbyte +

⌈
P

Pmax

⌉
· Poverhead · Tbyte + κ · Tfw, (1)

To put the ring MCT in perspective, consider Equation (2) that corresponds to the equivalent cycle
time in a tree topology using switches. The tree MCT depends on the packet length and the number of
hops (Equation (3)), where ports is how many downwards (i.e., leaves side) ports the switches have,
and Thop is the hop forwarding delay. Cut-through switches take forwarding decision immediately
after the destination address field has arrived, so the forwarding delay is in the order of microseconds
and can be less than 3 µs with Fast Ethernet and less than 1 µs with Gigabit Ethernet [12,13].

MCTTree = P · Tbyte +

⌈
P

1500

⌉
· 50 · Tbyte + hops · Thop (2)

hops =
⌈
logportsκ

⌉
+ 1 (3)

In Figure 2, we show the MCT of concrete representative technologies and a payload of
4 Bytes/node. On the one hand, we have EtherCAT ring (Pmax = 1488 Bytes, Poverhead = 50 Bytes,
Tbyte = 80 ns, and Tf w = 0.8 µs) and, on the other hand, we use Fast Ethernet switches with four and
eight downward ports per switch. As the number of nodes increase, the performance difference is
remarkable and, more important, it shows how ring topology performance may become inadequate
for larger networks.

Figure 2. Minimum Cycle Time for the ring (EtherCAT) and tree (Fast Ethernet) network topologies,
when broadcasting information from the master controller to cells, only.

Electronics 2019, 8, 1097 4 of 15

Looking carefully at Equation (1), we can see that different aspects influence the MCT. When the
goal is to reduce it, the designer needs to consider several dimensions—the link technology (relates to
Tbyte, Tf w, Pmax), the protocol (relates to Pmax, Poverhead, and Tf w), and the application (relates to P and
κ)—to reach the least MCT possible, as we explain next.

3.1. Link Technology

Link technology, and more specifically speed, is likely the first digital communication aspect that
comes to mind when the designer wants to reduce communication delay and increase throughput.
The link technology has direct influence on the time to transmit one byte (Tbyte) and may limit the
maximum amount of data a node can transmit at once (even when the link can continuously transmit
data, the protocol might still impose a finite Pmax). The third variable that the link technology influences
is the forwarding delay (Tfw), but the technical literature has little on how the link capacity affects this
parameter. Before we investigate this relation, let us first discuss how link speed and forwarding delay
limit the reduction of the MCT.

Consider the ring MCT expression in Equation (1). Note that its first two terms depend on the
time spent in transmitting an entire frame (the “frame” delay), which is related to the link transmission
rate. The last term in Equation (1) depends on the forwarding delay incurred when packets cross active
elements in the network (the “propagation” delay). Both frame and forwarding delay depend directly
on the link technology.

To better understand their impact, we represent the MCT in a bi-dimensional space of latency
versus bandwidth. There, we can identify two regions: the bandwidth dominated region, in which the
frame delay represents most of the MCT; and the latency dominated region, in which the propagation
delay represents most of the MCT [14]. The boundary between those two regions corresponds to a
situation in which both effects have equal influence on the MCT and it is defined by Equation (4).

Often, applications have a payload proportional to the number of nodes (P = κ · PBytes/node) or
such dependency is a good approximation. If we neglect the protocol overhead (in an efficient
protocol it should represent a small fraction of the payload) then the critical forwarding delay
(Tcritical

fw), defined as the forwarding delay that equals the frame delay, becomes proportional to the
communication bandwidth and payload per node Equation (5). Note that the number of nodes in the
network becomes irrelevant. (

P + Poverhead
)
· Tbyte =κ · Tfw (4)

Tcritical
fw =Tbyte · PBytes/node (5)

Figure 3 shows a plot of Equation (5) in logarithmic scale for 4, 8, and 16 Bytes/node.
The bandwidth and the latency dominated regions are, respectively, below and above the critical
forwarding delay line. As the bandwidth increases, the critical forwarding delay falls accordingly.
For example, when increasing the bandwidth from 100 Mbit/s to 1 Gbit/s, the critical forwarding
delay falls from around 300 ns to near 30 ns.

In practice, the forwarding delay is lower bounded by the PHY transceivers that impose
minimum latencies larger than the corresponding critical forwarding delays, particularly for higher
link bandwidths. This is due to physical limitations of their internal analog and digital circuitry,
since they become more complex to support the higher speeds. To observe this fact, we plot in
Figure 3 the typical forwarding delays of Ethernet PHY transceivers (combined Tx + Rx latency)
for three bandwidths (10, 100 and 1000 Mbit/s). For completeness, we also plot the latencies of the
Serialiser/Deserialiser (SerDes) transceivers provided by Xilinx for high-speed technologies such as
Serial RapidIO, Interlaken, PCI Express 2.0 and SATA, namely GTP, GTX and GTH. As it can be seen,
for bandwidths higher than Fast Ethernet, all transceivers fall in the latency dominated MCT region.

Electronics 2019, 8, 1097 5 of 15

107 108 109 1010 1011

Bandwidth (bps)

10-9

10-8

10-7

10-6

10-5

Fo
rw

ar
d

in
g

d
el

ay
/P

H
Y

 la
te

nc
y

(s
)

4B/node
8B/node
16B/node
Eth
Fast Eth
Gigabit Eth
GTP
GTX/GTH

Latency dominated region

Bandwidth dominated region

Figure 3. Critical Forwarding Delay and the forwarding delay of Ethernet and SerDes high-speed
transceivers (with minimum and maximum values depending on configuration).

3.2. Protocol and Application

A data communication protocol sets the rules for the transmission of data between nodes [15],
which includes how data are packed, which nodes can transmit data, when and how the nodes are
addressed, how to avoid or deal with collisions, if a node is responsible for managing the network and
how it will do that, etc. Therefore, the protocol is a central aspect in defining the network functionality
and performance indexes, among them the MCT.

As an example, Equations (6)–(9) correspond to the MCT of PROFINET IRT and EtherCAT
(two established real-time Ethernet protocols), of VABS [16] (a recently proposed protocol), and of
TTRing [17] (a protocol proposed specifically for the control of MMCs that uses the time triggered
paradigm to reduce the forwarding delay). As all protocols use Ethernet, the minimum payload is
46 Bytes (P2 = P3 = max(46, PBytes/node · κ), where max(x1, x2) returns the parameter with the largest
value). Additionally, PROFINET IRT uses the dynamic packing strategy that requires a minimum
payload per node of 38 Bytes [18], i.e., P1 = max(46, 38 · κ, PBytes/node · κ). In TTRing, Pmaster and
Pslave are master and slave payloads and GW is the duration of the guard window between phases.
The distributed nature of the control in TTring makes both payloads independent of the number of
nodes, although they must still be at least 46 Bytes long, Pmaster ≥ 46 and Pslave ≥ 46. As each protocol
has a different HW implementation, the forwarding delays are also different. For calculating the MCTs
presented in Figure 4, we adopted the following values: T2

fw = 775 ns, T3
fw = 550 ns, andT4

fw = 490 ns.

MCT1 = P1 · Tbyte +

⌈
P1

1492

⌉
· 36 · Tbyte (6)

MCT2 = P2 · Tbyte +

⌈
P2

1488

⌉
· 50 · Tbyte + κ · T2

fw (7)

MCT3 = P3 · Tbyte +

⌈
P3

1024

⌉
· 10 · Tbyte + κ · T3

fw (8)

MCT4 = (Pmaster + Pslave) · Tbyte + κ · T4
fw + 2 · GW+(⌈

Pmaster

1500

⌉
+

⌈
Pslave
1500

⌉)
· 50 · Tbyte (9)

Figure 4 shows a comparison of the protocols MCT for different number of nodes and a
payload of 4 Bytes/node. In this specific example, PROFINET IRT is the worst performing protocol.
Concerning TTRing, the protocol sends two packets per cycle, which has a strong performance penalty
for small networks and lower link bandwidth. Thus, at 100 Mbit/s TTRing yields a worst result than

Electronics 2019, 8, 1097 6 of 15

EtherCAT and VABS. For a network larger than 22 nodes, the TTRing protocol outperforms the others.
When compared to EtherCAT, the MCT of TTRing 100 Mbit/s becomes less than half when the network
is larger than 228 nodes and equal to 209 µs against 446 µs of EtherCAT with 400 nodes. The TTRing
Gigabit implementation is faster than the other protocols for any network size.

Figure 4. Minimum Cycle Time for several protocols depending on the network size.

When we consider Equation (1) as a general equation for ring topologies, it is clear that the
protocol directly defines the packet maximum payload (Pmax) and overhead (Poverhead). More subtle,
though, is the influence that the protocol has in the forwarding delay (Tf w). It manifests itself through
the rules that a node needs to obey for forwarding the packet. If, for instance, the node needs to
check that the frame is valid (similar to store-and-forward switches) or to read the destination address
(similar to cut-through switches) before forwarding, then the protocol imposes a higher minimum
forwarding delay and the MCT increases.

Another dependence between forwarding delay and protocol, not a direct one but anyway
important, is the performance of the node implementation at system deployment time. For example,
the forwarding delay of the VABS implementation is 500 µs [16] but it could be possible to reduce
this delay by using more recent components. A similar situation happens with EtherCAT, but it
is more difficult to put a number on its forwarding delay: Prytz [19] mentioned a delay of 500 ns;
Vitturi et al. [1] measured an average delay of 1 µs; and Orfanus et al. [9] wrote that it is lower than
1µs. This divergence is mainly due to different implementations, PHYs and configurations adopted.
The latest ASIC from Beckhoff (EtherCAT inventor) can arguably be considered one of the fastest
alternatives. According to the ET1100 Hardware datasheet [20], the maximum forwarding delay from
the Media Independent Interface (MII) in the receiver to the MII in the transmitter is 335 ns plus the
PHY delay, when the Rx Buffer is set to the default size of seven [21]. Again, if EtherCAT is the protocol
of choice, the best the designer can do is to pick the quickest slave implementation.

If using a higher link capacity, choosing a fast protocol, and adopting the fastest implementation
is insufficient for achieving the necessary performance, the designer can lastly resort to modifying
the application such that the amount of data flowing in the network is reduced or even the number
of nodes minimised. In this case, we can conceive a complete control and communication co-design,
in which details of the control strategy influences the design of the network and vice versa. Since this
is not the focus of this work, a discussion of the co-design is not included here.

4. MAC and Reception Delay

As mentioned in the Introduction, the node internal delays are often ignored, but they can
represent a considerable fraction of the end-to-end delay, especially in the high performance

Electronics 2019, 8, 1097 7 of 15

applications considered here. The internal delay takes place as the node moves data internally
and the protocol stack processes the packet.

In Ethernet, the next layer above the physical one is the Media Access Control. It performs,
together with the Logical Link Control, the functions of the Data Link Layer, as described by the Open
Systems Interconnection (OSI) model. Its main functions are [22]:

1. Data encapsulation (transmit and receive):

(a) Framing (frame boundary delimitation, frame synchronisation);
(b) Addressing (handling of source and destination addresses); and
(c) Error detection (detection of physical medium transmission errors).

2. Media Access Management:

(a) Medium allocation (collision avoidance); and
(b) Contention resolution (collision handling).

Therefore, it is the MAC sublayer that defines the Ethernet packet format, including its fields
and size, the addressing possibilities (unicast, multicast, and broadcast), the order of bit transmission,
and the mode of operation (half- or full-duplex). It is also responsible for generating and verifying
the Frame Check Sequence (FCS), for supporting nodes segregation in a same physical network with
VLAN tags, and for enforcing the minimum and maximum frame length, the interframe gap, and the
media access rule—Carrier Sense Multiple Access with Collision Detection (CSMA/CD, ignored in
full-duplex mode).

MAC Implementations and Delay Measurements

To verify the impact of the MAC in the communication delay, let us use the concrete case
of the Zync SoC that combines an ARM processor with an FPGA fabric and offers the designer
three MAC implementations, namely the Gigabit Ethernet MAC (GEM), the Ethernet Lite, and the
Tri-Speed MAC (TEMAC). A previous work [11] found Ethernet Lite delays to be lower than GEM,
but it had no information on the TEMAC, which we include here. These three different MAC
implementations are representative of different classes that can be found in a variety of devices.
For example, Texas Instrument’s Keystone architecture, employed in the C667x and C665x multicore
processor families, uses a MAC peripheral that has a local First In First Out (FIFO) buffer and transfers
the information from/to the main memory using a Direct Memory Access (DMA) engine [23], as with
the Zynq GEM.

The test setup employed was a Zynq SoC board (Trenz TE0729) and carrier board (Trenz TEB0729)
running a modified version of the Echo Server demo application. It was connected to a host PC
that sends packets with the desired characteristics. We designed a capture unit in VHDL to count
the number of clock cycles between two different events, such that we could measure the packets
timing with an adequate resolution (10 ns). When measuring the incoming delays, the trailing edge
of the signal that the PHY sends to the MAC when receiving a packet (RX_DV) causes the capture
unit to start counting and a software-controlled output stops it. When measuring outgoing delays,
the software-controlled output triggers the start and the rising edge of the signal that the MAC sends
to the PHY to start transmission (TX_EN) stops it. We verified the capture unit measurement by
connecting the start and stop signals to an oscilloscope. For every test run, the program logged
512 measurements and sent them to the host PC for processing.

Figure 5 shows the mean value and deviation for each measurement point (64, 256 and 1024 Bytes
packet payload) and for each MAC alternative, where “EL,DM” stands for Ethernet Lite with
Device Memory and “EL,SO” with Strong-Ordered memory models [11]. For the incoming packets,
the measurements were taken from the moment the MAC received a packet to the moment the
processor: (i) finished copying the respective data to the final memory destination; and (ii) when
entering an UDP receive callback function, assuming it is an UDP packet (as commonly used in
real-time applications) and that the receiver suffers no interference from higher priority tasks.

Electronics 2019, 8, 1097 8 of 15

The results show Ethernet Lite outperforming GEM and TEMAC in terms of reception delay
independently of the packet size. It is surprising, as GEM is a dedicated hard peripheral, integrated to
the processor, and TEMAC employs the higher performance AXI-stream interface.

0 100 200 300 400 500 600 700 800 900 1000 1100

Packet payload (bytes)

0

5

10

15

20

25

30
R
ec

ep
ti
on

 d
el

ay
 (

µ
s)

GEM
TEMAC
EL,DM
EL,SO
EDC

Figure 5. Incoming packet delay (essentially the MAC delay): (i) time from the reception of a packet to
transferring the respective data to its final memory destination (dashed lines); and (ii) time to enter a
UDP callback function (full lines). The EDC line (lower line) corresponds to the results achieved with
the EDC hardware accelerator described in Section 6.

Moreover, the Ethernet Lite MAC generates an interrupt upon packet reception, because it saves
the data internally in the MAC and henceforth further data movement needs the participation of the
processor. Therefore, Ethernet Lite presents the lowest interrupt service latency (680 ns) at the expense
of higher CPU utilisation (though it is still possible to configure a DMA to transfer data to the main
memory). In contrast, both GEM and TEMAC interrupt service latencies (7.3 µs and 5.3 µs, respectively,
with packet size of 1024 Bytes) have a dependence on the packet size, because the associated DMA
engine transfers the packet to the main memory before flagging the interrupt.

The measurements reported in Figure 5 show that the MAC and protocol stack delays are relevant.
They are of the same order of magnitude of the MCT in small networks and they contribute to the
end-to-end communication delay. As discussed in [24], the end-to-end latency adds to the loop delay
and has negative influence in the closed loop system response. Moreover, in certain protocols (e.g.,
POWERLINK), the MAC may also be involved in the packet forwarding, causing the respective delay
to impact the MCT, too.

5. Crunching the Forwarding Delay

Many applications of fast ring networks require broadcasting packets as well as collecting
information from the nodes. These two types of interactions can be carried out in alternate
phases [17]. Then, in the broadcast phase, the forwarding of each bit can be done almost immediately.
Taking advantage of this phase separation it is possible to squeeze the forwarding time in data
broadcasts to levels that have not been reported in the literature before. In this section, we present
a node interface that identifies these phases and does a direct connection from the receiver to the
transmitter PHY while supplying the data to the node MAC block. This node interface can be readily
implemented in FPGA technology.

5.1. An Enhanced Node Interface

We show in Figure 6 details of the implementation of the slave nodes network interface,
using FPGA technology and assuming a typical master–slave functional architecture. Both receiver

Electronics 2019, 8, 1097 9 of 15

and transmitter PHY interfaces are RGMII (Reduced Gigabit Medium-Independent Interfaces).
This requires data rate conversion blocks in both sides that convert the dual data rate to single
data rate (IIDR) and vice versa (ODDR). The output of a multiplexer (MUX) drives the transmitter.
It has two inputs: the received data and the output of a FIFO buffer. The FIFO stores the data coming
from the MAC layer, because it is in a different clock domain. A scheduler controls the multiplexer
through the Select signal, which determines when the broadcast phase is on. In that phase, the input
data are immediately supplied to the output block. Else, the node transmits the data coming from the
MAC and stored in the FIFO. In any case, the incoming data are also supplied to the MAC layer.

PHY TX
ODDR IDDR

MAC

DMA

TX MUX

APPLICATION

config

PHY RX

FIFO

Tx En

Select

Td(7:0)
Td(7:0), Tx_En
Rd(7:0), Rx_Dv

Rxc

Scheduler

Time-
Stamp

Figure 6. Details of the slave node interface implementation for a dual-phase ring protocol (broadcast
and data collection phases). During the broadcast phase, the logic directly connects the incoming data
to the transceiver of the node second port.

This implementation allows a single clock delay in the internal logic during the broadcast phase,
i.e., 40 ns with Fast Ethernet (4-bit symbols at 10 ns/bit at the IDDR output) and 8 ns with Gigabit
Ethernet (8-bit symbols at 1 ns/bit at the IDDR output). The remaining components of the forwarding
delay are the PHY transmitter and receiver latencies. Table 1 lists the latency values of common Ethernet
PHYs taken from the respective datasheets. Thus, the forwarding delay of a Faster Ethernet node can
be as low as 282 ns (40 + 72 + 170 ns) when using the currently quickest PHY (the KSZ8091MLX from
Microchip).

Since this implementation causes a single clock delay in the node internal logic, the additional
delay and uncertainty necessary for clock domain crossing becomes relevant, as we explain next.

Table 1. Latency of PHYs operating at 100 Mbit/s.

Device Manufacturer Max. Latency

DP83867 [25] Texas Instrument 90 ns (Tx) + 288 ns (Rx)
88E1510P/Q [26] Marvell 362 ns (Tx + Rx)

88E1510 a Marvell 1.2 µs (Tx + Rx)
KSZ8091MLX [27] Microchip 72 ns (Tx) + 170 ns (Rx)

VSC8601/VSC8641 [28] Microsemi 200 ns (Tx) + 380 ns (Rx)
a Measured.

5.2. Physical Layer Synchronisation

High-speed links (a relative concept, but here we consider data rates equal to or higher than
100 Mbit/s), such as Ethernet, rely on synchronous modulation, in which the transmitter embeds the

Electronics 2019, 8, 1097 10 of 15

clock signal together with the data so the receiver can recover the clock and make it available for its
internal logic. In multi-port nodes, as in ring networks, the PHY of the incoming port supplies the
data, directly (broadcast) or indirectly (via the MAC), to the outgoing port(s) for transmission. Since
the received clock of the incoming port may be different from the one employed for transmission in an
outgoing port, each node has potentially different clock domains that must be crossed appropriately to
guarantee reliable operation of the network.

A typical strategy for Clock Domains Crossing (CDC) is double flopping, which causes a
variable delay from one to two clock cycles depending on the phase shift between the clocks [29].
The consequence of this phenomenon is that each node has a variable delay to forward the incoming
packet if the PHY transmitter uses a clock that is not phase-locked to the recovered clock of the
receiver. To make this clear, consider the ring network with three nodes depicted in Figure 7. The PHY
integrated circuits have a clock input pin that serves as the reference for the internal and the transmitter
logics. When a node has two ports, as in a ring, a common design practice is to use the same crystal
as a reference for both PHYs, as in Figure 7a. In such case, the transmitters on a node are in the
same clock domain, but, as the receiver locks to the clock of the neighbouring node, CDC is necessary.
Certain PHY implementations (e.g., PHYs with RGMII interface) handle the CDC internally, while in
others (e.g., PHYs with MII) the node logic must take care of proper clock domain crossing.

A different possibility uses PHYs that can output the recovered clock upon reception to a dedicated
pin. Then, if this signal is forwarded to the PHY of the other port and employed as the reference for
the transmitter, the network will have a single clock domain (Figure 7b). With all the PHYs operating
in sync, we avoid CDC as well as the variable delay associated with it. Note that the implementation
shown in Figure 7b can only synchronise the PHYs in one direction (clockwise in this case) because the
first PHY in each node, i.e., the one at the left side of the node, has a local clock reference that it will
use for transmitting data in the other direction (counter-clockwise in this case).

FPGA FPGAFPGA

xtal

Tx Rx Tx RxTx RxRx Tx Rx TxRx Tx
clk_out 25MHz

125MHz

Master Node Slave Node 1 Slave Node 2

xtal xtal

(a) Not synchronised.

FPGA FPGAFPGA

xt
al

xt
al

xt
al

Tx Rx Tx RxTx RxRx Tx Rx TxRx Tx
clk_out clk_outclk_out25MHz

125MHz

Master Node Slave Node 1 Slave Node 2

(b) Synchronised.

Figure 7. Physical Layers synchronisation. The continuous lines represent one direction of the ring
network and the dashed lines the other one.

Electronics 2019, 8, 1097 11 of 15

Rigorously, a variable error will still be present in Fast Ethernet mode, because of the different rates
between the media (125 Mbit/s, due to the 4B5B encoding) and the MII (25 Msymbols/s, 4-bit symbols),
but it remains constant while the link is established [30].

6. Reducing the Reception Latency

To reduce the reception delay, we proposed two specific components that provide hardware
support to the reception process and which can be easily instantiated in common FPGAs or employed
in ASICs. The first such component is a Packet Identifier (PI) that will read all incoming packets and
extract certain fields, such as EtherType, IP addresses, UDP port numbers, etc. The PI then writes those
fields on a specific set of registers that are made available to the packet reception handler. The handler
applies a set of filters with desired values and, in the case of match, it extracts the packet and provides
it directly to the user application, thus bypassing the protocol stack processing.

The PI implementation is a long state machine that navigates through the packet fields,
extracting the relevant information, and, when it is the case, comparing them with predefined values.
For example, the state machine waits the field EtherType. If the frame is of Internet Protocol (IP) type
(0x0800), the bit IsIP on the interface registers is set to one and the state machine follows the branch
that corresponds to an IP frame.

Though the PI bypasses the protocol stacks for identified (e.g., real-time) packets, the main
responsible for the reception latency, i.e., the data copying, is left untouched. The reception process
copies the packet data at least twice, first from the MAC to the main memory, and then from this
temporary position to its final location. Equally important, the data copying starts only after the MAC
has completely received the frame and confirmed that the Frame Check Sequence is valid.

Under those circumstances, we propose a second hardware accelerator, the Ethernet Direct Copy
(EDC), to further reduce the reception latency. It listens to data coming from the PHY and saves them
directly to the main memory, to a position predetermined by the node user application layer.

The diagram of Figure 8 represents the EDC architecture. On the PHY side, the accelerator receives
the clock, data valid and data signals. Once the data are valid, it waits for the start of frame delimiter
to fill an asynchronous FIFO buffer, collecting the data into 32-bit words. The FIFO is responsible for
the clock domain crossing of the data and, once it reaches a certain threshold signalled by the Almost
Full signal, the accelerator starts writing the packet to the predefined location, either at the On Chip
Memory or the external Dual Data Rate (DDR) Random Access Memory (RAM).

MAC

Z
Y

N
Q

/P
S

FIFO

CONTROLLER

AXI MASTER

BURST IPIF

Clock Domain
Crossing

S

S

M

M S

Rx_dv

Almost Full

PHY

Interrupt

Rd[3:0], Rx_clk, Rx_dv

AXI4 bus

EthernetDirectCopy

Figure 8. Ethernet Direct Copy hardware accelerator block diagram.

Electronics 2019, 8, 1097 12 of 15

The main signals involved in the EDC operation are shown in Figure 9, captured with Vivado
Integrated Logic Analyser. The rising edge of mii_rx_dv marks the start of packet reception (t = 0).
The accelerator monitors the incoming data and waits for the start of frame delimiter to collect them
into a 32-bit word and write it to the FIFO (t = 92), which happens every time the signal fifo_WrEn is
high. Once the FIFO reaches the almost full level (fifo_AlmostFull, t = 356), the controller triggers a
write burst (16 Bytes, in this case) using the AXI Master Burst IPIF. This happens when ip2bus_mstwr_req
goes high and, after some handshake, data are read from the FIFO (fifo_RdEn). Note that the AXI
master has a unique address phase (the master assigns an address when axi_awvalid is high) followed
by a write phase in which several words are written to the memory in a burst (when axi_wvalid and
axi_wready are high).

Figure 9. Capture showing EDC internal signals while receiving a packet with 64 Bytes. X-axis in
samples, sampling period equal to 10 ns.

As the IPIF reads data from the FIFO faster than the PHY writes, the FIFO comes out of the almost
full condition. While data are arriving, the FIFO gets filled again and triggers write transactions
a number of times. Once the reception of the packet completes (mii_dv falling edge, t = 608),
the controller performs the last bursts to empty the FIFO (t = 707).

Simultaneous to the EDC operation, the MAC receives the packet and stores it internally. If the
MAC has identified a valid packet with a correct Frame Check Sequence (FCS), it flags an interrupt
and the processor switches context to service it. At the entrance of the Interrupt Service Routine,
the processor checks the fields extracted by the PI. Then, in the case of a high-priority packet,
the processor jumps directly to the user callback function. Note that this sequence keeps the frame
checking and the protocol stack processing, but the system does them on-the-fly together with moving
data to the final destination. As a consequence, the time to complete the transfer and to enter the user
callback is independent of the packet length. This is visible in the results shown in Figure 10 and,
comparing with the other MACs, in Figure 5 (EDC).

Since the EDC writes data to a given memory region when packets arrive and we are unable to
control when they will come, the system must take care of data consistency. One solution is to use a
pool of memory regions where the EDC writes incoming data, and employ buffers descriptors (similar
to the ones implemented in a DMA engine) to control the state of each region and hold a pointer
to them. A simpler solution is to prevent the EDC from writing new data to the memory while the
processor is using it or, in other words, to pause EDC while a packet is being processed. In this case, it
is necessary to have a minimum interval between packets to ensure that, while the EDC is paused, no
high priority packet will arrive and pass through the long latency path, i.e., MAC→ protocol stack→
user callback.

Electronics 2019, 8, 1097 13 of 15

1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2 1.22
Delay (µs)

0

50

100

150

200

250

300

350

R
el

at
iv

e
nu

m
b

er
 o

f o
b

se
rv

at
io

ns

64 B
256 B
1024 B
1500 B

Figure 10. Delay to enter a UDP callback function after receiving packet using Ethernet Direct
Copy accelerator.

7. Conclusions

As industrial applications demand higher update rates and the network size grows,
the node-to-node data flow of the ring topology starts to impose important restrictions on the Minimum
Cycle Time.

In this work, we discuss the most important aspects that influence the MCT of ring networks and
explain why increasing the link capacity alone has limited benefits. With this in mind, we explore a
time-triggered protocol that resorts to a broadcast and a local phase, such that the forwarding delay
of the nodes in the broadcast phase can be reduced to the PHY delay plus a single clock cycle of the
PHY/MAC interface.

Besides the reduction of the MCT, we present the concept, implementation details,
and experimental results of hardware accelerators that minimise the reception delay of Ethernet
packets. The main innovation of the proposed solution is to transfer the packet data directly to the main
memory of the processor while it is being received, thus removing the delay dependence on packet
length. The experimental results show the proposed solution to be 6.4 µs and 11 µs faster than Gigabit
MAC (likely the most popular choice) when the packet size is 64 Bytes and 1024 Bytes, respectively.

The paradigm of transferring incoming data directly to the main memory, to a location defined by
application software, is not constrained to implementations in FPGAs and can be incorporated into the
design of high-performance MACs, where industrial embedded applications that demand minimal
latency and MCTs in the order of tenths of microseconds can benefit from it.

Beyond enabling faster cycle times and lower end-to-end latencies, the proposed solution
preserves Ethernet layer structure and keeps the implementation of higher layers in software.
As real-time Ethernet protocols move to higher data rates, the minimisation of the internal delays
becomes more important, thus the higher performance brought using the accelerator gains relevance.

Author Contributions: Conceptualisation, T.P.C. and L.A.; methodology, T.P.C. and L.A.; investigation, T.P.C. and
L.A.; writing—original draft preparation, T.P.C.; writing—review and editing, T.P.C. and L.A.; and supervision,
L.A.;

Funding: This research was funded by the Conselho Nacional de Desenvolvimento Científico e Tecnológico,
Brazil, under the grant 233411/2014-3.

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2019, 8, 1097 14 of 15

References

1. Vitturi, S.; Peretti, L.; Seno, L.; Zigliotto, M.; Zunino, C. Real-time Ethernet networks for motion control.
Comput. Stand. Interfaces 2011, 33, 465–476. [CrossRef]

2. Mathe, L.; Burlacu, P.D.; Teodorescu, R. Control of a Modular Multilevel Converter With Reduced Internal
Data Exchange. IEEE Trans. Ind. Inform. 2017, 13, 248–257. [CrossRef]

3. Yang, S.; Tang, Y.; Wang, P. Distributed Control for a Modular Multilevel Converter. IEEE Trans.
Power Electron. 2018, 33, 5578–5591. [CrossRef]

4. Nasrallah, A.; Thyagaturu, A.S.; Alharbi, Z.; Wang, C.; Shao, X.; Reisslein, M.; ElBakoury, H. Ultra-Low
Latency (ULL) Networks: The IEEE TSN and IETF DetNet Standards and Related 5G ULL Research.
IEEE Commun. Surv. Tutor. 2019, 21, 88–145. [CrossRef]

5. Corrêa, T.P.; Bueno, E.J.; Rodriguez, F.J. Communication Network Latency Compensation in a Modular
Multilevel Converter. In Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE),
Cincinnati, OH, USA, 1–5 October 2017. [CrossRef]

6. Briscoe, B.; Brunstrom, A.; Petlund, A.; Hayes, D.; Ros, D.; Tsang, I.; Gjessing, S.; Fairhurst, G.; Griwodz, C.;
Welzl, M. Reducing Internet Latency: A Survey of Techniques and Their Merits. IEEE Commun. Surv. Tutor.
2016, 18, 2149–2196. [CrossRef]

7. Ramaswamy, R.; Ning, W.; Wolf, T. Characterizing network processing delay. In Proceedings of the IEEE
Global Telecommunications Conference (GLOBECOM), Dallas, TX, USA, 29 November–3 December 2004;
Volume 3; pp. 1629–1634. [CrossRef]

8. Bertocco, M.; Narduzzi, C.; Tramarin, F. Estimation of the delay of network devices in hybrid wired/wireless
real-time industrial communication systems. In Proceedings of the 2012 IEEE International Instrumentation
and Measurement Technology Conference, Graz, Austria, 13–16 May 2012; pp. 2016–2021. [CrossRef]

9. Orfanus, D.; Indergaard, R.; Prytz, G.; Wien, T. EtherCAT-based platform for distributed control in
high-performance industrial applications. In Proceedings of the 2013 IEEE 18th Conference on Emerging
Technologies & Factory Automation (ETFA), Cagliari, Italy, 10–13 September 2013; pp. 1–8. [CrossRef]

10. Cottet, D.; van der Merwe, W.; Agostini, F.; Riedel, G.; Oikonomou, N.; Rueetschi, A.; Geyer, T.; Gradinger, T.;
Velthuis, R.; Wunsch, B.; et al. Integration technologies for a fully modular and hot-swappable MV multi-level
concept converter. In Proceedings of the PCIM Europe 2015. International Exhibition and Conference for
Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany,
19–20 May 2015; pp. 1–8.

11. Corrêa, T.P.; Almeida, L.; Peña, E.B. Hardware/Software Implementation Factors Influencing Ethernet
Latency. In Proceedings of the 2018 IEEE 16th International Conference on Industrial Informatics (INDIN),
Porto, Portugal, 18–20 July 2018; pp. 323–328. [CrossRef]

12. Flatt, H.; Jasperneite, J.; Schewe, F. An FPGA based cut-through switch optimized for one-step PTP
and real-time Ethernet. In Proceedings of the 2013 IEEE International Symposium on Precision Clock
Synchronization for Measurement, Control and Communication (ISPCS), Lemgo, Germany, 22–27 September
2013; pp. 7–12. [CrossRef]

13. Woods, J. Cut-Through Considerations and Impacts to Industrial Networks. In Proceedings of the IEEE
802.1 WG Meeting, Stuttgart, Germany, 15–18 May 2017.

14. Kleinrock, L. The latency/bandwidth tradeoff in gigabit networks. IEEE Commun. Mag. 1992, 30, 36–40.
[CrossRef]

15. Insam, E. TCP/IP Embedded Internet Applications; Newnes: Oxford, UK, 2003.
16. Schlesinger, R.; Springer, A.; Sauter, T. New approach for improvements and comparison of high performance

real-time Ethernet networks. In Proceedings of the IEEE Emerging Technology and Factory Automation
(ETFA), Barcelona, Spain, 16–19 September 2014; pp. 1–4. [CrossRef]

17. Corrêa, T.P.; Almeida, L. Ultra Short Cycle Protocol for Partly Decentralized Control Applications.
In Proceedings of the 22nd IEEE International Conference on Emerging Technologies and Factory Automation
(ETFA), Limassol, Cyprus, 12–15 September 2017. [CrossRef]

18. Schlesinger, R.; Springer, A. VABS-A new approach for Real Time Ethernet. In Proceedings of the 39th Annual
Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 10–13 November 2013; pp. 4506–4511.

http://dx.doi.org/10.1016/j.csi.2011.01.005
http://dx.doi.org/10.1109/TII.2016.2598494
http://dx.doi.org/10.1109/TPEL.2017.2751254
http://dx.doi.org/10.1109/COMST.2018.2869350
http://dx.doi.org/10.1109/ECCE.2017.8095766
http://dx.doi.org/10.1109/COMST.2014.2375213
http://dx.doi.org/10.1109/GLOCOM.2004.1378257
http://dx.doi.org/10.1109/I2MTC.2012.6229137
http://dx.doi.org/10.1109/ETFA.2013.6647972
http://dx.doi.org/10.1109/INDIN.2018.8472002
http://dx.doi.org/10.1109/ISPCS.2013.6644755
http://dx.doi.org/10.1109/35.135787
http://dx.doi.org/10.1109/ETFA.2014.7005356
http://dx.doi.org/10.1109/ETFA.2017.8247719

Electronics 2019, 8, 1097 15 of 15

19. Prytz, G. A performance analysis of EtherCAT and PROFINET IRT. In Proceedings of the IEEE International
Conference Emerging Technologies & Factory Automation (ETFA), Hamburg, Germany, 15–18 September
2008; pp. 408–415.

20. Beckhoff Automation GmbH & Co. HW Datasheet ET1100—Section 3. Available online:
https://download.beckhoff.com/download/document/io/ethercat-development-products/ethercat_
et1100_datasheet_v2i0.pdf (accessed on 22 June 2017).

21. Beckhoff Automation GmbH & Co. EtherCAT Slave Controller—Section II. Available online:
https://download.beckhoff.com/download/document/io/ethercat-development-products/ethercat_
esc_datasheet_sec2_registers_2i9.pdf (accessed on 22 June 2017).

22. IEEE Standard for Ethernet. IEEE Std 802.3-2015 (Revision of IEEE Std 802.3-2012); IEEE: Piscataway, NJ, USA,
2016; pp. 1–4017. [CrossRef]

23. Texas Instrument. Ethernet Media Access Controller (EMAC)/ Management Data Input/Output (MDIO) User
Guide; Texas Instrument: Dallas, TX, USA, 2012.

24. Corrêa, T.P.; Francisco, J.; Rodríguez, F.; Bueno, E.J. Model-Based Latency Compensation for Network
Controlled Modular Multilevel Converters. Electronics 2018, 8, 22. [CrossRef]

25. Texas Instrument. DP83867E/IS/CS Robust, High Immunity, Small FormFactor 10/100/1000 Ethernet
Physical Layer Transceiver. Available online: http://www.ti.com/lit/ds/symlink/dp83867is.pdf
(accessed on 2 February 2017).

26. Mittra, K. Marvell PHYs for Low-Latency Industrial Ethernet. Available online: http://blogs.marvell.com/
2016/10/marvell-phys-for-low-latency-industrial-ethernet/ (accessed on 2 February 2017).

27. Microchip. Datasheet KSZ8091MLX—10BASE-T/100BASE-TX Physical Layer Transceiver. Available online:
http://ww1.microchip.com/downloads/en/DeviceDoc/00002297A.pdf (accessed on 21 March 2017).

28. VITESSE. Gigabit Ethernet PHY Device Latency. Available online: https://ethernet.microsemi.com/
products/download.php?fid=4307&number\=VSC8224 (accessed on 2 February 2017).

29. Kilts, S. Advanced FPGA Design: Architecture, Implementation, and Optimization; John Wiley & Sons, Inc.:
Hoboken, NJ, USA, 2007.

30. Blattner, J.; Weibel, H. Study on propagation delay variation of 100BASE-Tx Ethernet PHY chips.
In Proceedings of the Conference on IEEE-1588. Gaithersburg, MD, USA, 27–29 September 2004.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://download.beckhoff.com/download/document/io/ethercat-development-products/ethercat_et1100_datasheet_v2i0.pdf
https://download.beckhoff.com/download/document/io/ethercat-development-products/ethercat_et1100_datasheet_v2i0.pdf
https://download.beckhoff.com/download/document/io/ethercat-development-products/ethercat_esc_datasheet_sec2_registers_2i9.pdf
https://download.beckhoff.com/download/document/io/ethercat-development-products/ethercat_esc_datasheet_sec2_registers_2i9.pdf
http://dx.doi.org/10.1109/IEEESTD.2016.7428776
http://dx.doi.org/10.3390/electronics8010022
http://www.ti.com/lit/ds/symlink/dp83867is.pdf
http://blogs.marvell.com/2016/10/marvell-phys-for-low-latency-industrial-ethernet/
http://blogs.marvell.com/2016/10/marvell-phys-for-low-latency-industrial-ethernet/
http://ww1.microchip.com/downloads/en/DeviceDoc/00002297A.pdf
https://ethernet.microsemi.com/products/download.php?fid=4307&number\ =VSC8224
https://ethernet.microsemi.com/products/download.php?fid=4307&number\ =VSC8224
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work on Reducing the Cycle-Time
	Networks and Their Minimum Cycle Time
	Link Technology
	Protocol and Application

	MAC and Reception Delay
	Crunching the Forwarding Delay
	An Enhanced Node Interface
	Physical Layer Synchronisation

	Reducing the Reception Latency
	Conclusions
	References

