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Abstract: Recently, dramatic improvements in memory performance have been highly required
for data demanding application services such as deep learning, big data, and immersive videos.
To this end, the throughput-oriented memory such as high bandwidth memory (HBM) and hybrid
memory cube (HMC) has been introduced to provide a high bandwidth. For its effective use, various
research efforts have been conducted. Among them, the near-memory-processing (NMP) is a concept
that utilizes bandwidth and power consumption by placing computation logic near the memory.
In the NMP-enabled system, a processor hierarchy consisting of hosts and NMPs is formed based
on the distance from the main memory. In this paper, an evaluation tool is proposed to obtain the
optimal design decision considering the power-time trade-off in the processor hierarchy. Every time
the operating condition and constraints change, the decision of task-level offloading is dynamically
made. For the realistic NMP-enabled system environment, the relationship among HBM, host, and
NMP should be carefully considered. Hosts and NMPs are almost hidden from each other and the
communications between them are extremely limited. In the simulation results, popular benchmarks
and a machine learning application are used to demonstrate power-time trade-offs depending on
applications and system conditions.

Keywords: high bandwidth memory; power-time-based design decision; near-memory-processing;
task offloading

1. Introduction

For decades, efforts have been conducted to increase both the processor speed and memory size.
Consequently, the memory bottleneck problem has become increasingly serious and is a critical issue
to overcome urgently to improve overall system performance. Recently, data-intensive applications
such as deep learning, big data, and immersive video have attracted attention, and a significant
improvement in memory performance is in high demand. Hence, a through-silicon via (TSV)-based
stacked DRAM memory such as the high bandwidth memory (HBM) [1] or hybrid memory cube
(HMC) [2] has been introduced to provide a high bandwidth with a wide I/O. This next-generation
memory has a structure in which multiple layers of the DRAM die are stacked on a base logic layer, and
interlayer communication is achieved through high-speed TSV technology. Unlike the conventional
memory, it provides a high bandwidth with low power consumption.

Various research efforts have been conducted for the effective use of the HBM and HMC. Among
them, the concept of near-memory-processing (NMP) changes the traditional relationship between
a processor and memory for data-intensive applications. As shown in Figure 1a, the traditional
processor-centered approach has a deep memory hierarchy with several levels of cache. The closer
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the distance to the processor, the smaller and the more expensive is the memory used for fast access.
This hierarchy utilizes the data locality of the applications. The distance between the data location
and the processor is determined by how soon the data will be used. In such a structure, it is essential
to provide the necessary data quickly. In Figure 1b, the NMP exploits the bandwidth and power
consumption by placing the computation logic near the memory. Hosts outside the memory and NMP
inside the memory demonstrate a processor hierarchy depending on the distance from the memory.
Usually, lightweight processors are considered for the NMP, whereas powerful processors are suitable
for the host. When a large amount of data requires a simple calculation or when one data point does
not require repeated computations, it is appropriate to use NMP. On the contrary, when a highly
complex computation is necessary or when a sophisticated cache coherence protocol is essential among
processors, it is reasonable to handle it at the host, at the sacrifice of an additional overhead to pass
through the memory I/ O interface. Over the decades, a number of studies regarding optimal cache
size, type, and its replacement policy for a processor-centered approach [3–6] have been reported.
Furthermore, many design exploration and evaluation methods have been attempted to optimize the
performance of multi-core environments [7,8]. Therefore, it is opportune to study various tools and
schemes for system optimization and performance evaluation considering the processor hierarchy in
the memory-centered approach.
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2. Previous Works and Problem Statements

With the commercialization of a three-dimensional (3D) stacked memory, research on the NMP
is at a new turning point. Recently, the accurate modeling of the NMP performance is the primary
research topic because no products or simulators are available that can implement NMP. Some studies
have been reported that estimated and modeled the expected execution time and energy efficiency
in an NMP-enabled system using the actual results obtained from the existing processors [9,10].
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They conducted the performance comparison between a host and NMP on the assumption that NMP
has a much higher memory bandwidth than the host [9–12]. For specific benchmarks, an NMP
showed competitiveness by proving the possibility of performance enhancement due to its high
bandwidth advantage [9,10,13]. Various computation-bound or memory-bound benchmarks were
tested in hosts and NMPs. Subsequently, the performance in terms of execution time and energy
efficiency was analyzed in relation to the benchmark characteristics. Depending on the nature of
systems or benchmarks, running the host may have an absolute performance advantage over the
NMP processor and vice versa. However, it is typical to obtain the optimal solution through NMP
offloading in the host-NMP heterogeneous system [14–16]. Operation-level NMP offloading was
tested using the MapReduced benchmark, where the trends of power consumption and execution time
change are analyzed to obtain the optimal NMP offloading point [14,15]. Similarly, NMP offloading is
tried in the operation level using the graph processing benchmark [16]. Given the target benchmark,
the performance of an NMP-enabled system is evaluated with various configurations. By changing the
memory bandwidth, operating frequency, number of processors, and cache size, the NMP structure
that is suitable for the target benchmark is evaluated [10,17,18]. The energy-delay product indicator is
well known and used to compare various NMP structures in two areas of interest: execution time and
energy efficiency [10]. Furthermore, attempts to obtain the point at which execution time and data
parallelism are maximized are conducted by changing the number and configuration of NMP [18].
In References [19–21], the possible benefits from enabling in-memory computations are well analyzed
using various architecture and applications.

Investigations on the effective use of HBM are still in its infancy. The problems to be complemented
are summarized as follows. First, the combination of HBM and NMP is expected to be widely used.
However, realistic constraints are not considered carefully. For example, in the HBM, it is reasonable to
assume that both the host and NMP are connected to the logic die’s memory controller and have the
same bandwidth. However, many previous studies assume a stacked memory environment in which
the NMP has an absolute bandwidth advantage over the host. Next, the decision on which core to use
is typically made in the application level. In other cases, an operation-level allocation decision is made,
by assuming the NMP is on the very small logic die. Decision units are too coarse or too fine to obtain
optimal offloading points. In addition, no criterion based on power-time tradeoff exists for the design
decision and evaluation, even though the primary characteristic that NMP differentiates from the host
is low power consumption. Scalability near the memory processing [22] was tried but no analytical
tool was provided.

This paper focuses on the advantage of the power reduction due to the processor hierarchy in
the NMP-enabled system. The primary contributions are as follows. First, the proposed tool makes it
possible to test various design decisions in the early stage for the system with a processor hierarchy
without the actual experiment. In this case, the power consumption and execution time are the main
constrains to consider. Second, the design close to the optimal level for the whole application execution
was found by searching the best operating condition at the task-level.

3. Proposed Power-Time Exploration

The HBM-based NMP-enabled system assumed in this paper contain different constraints unlike
the conventional multi-core systems. First, NMP and the host are independent processors. However,
the host has absolute priority for memory access. For the host, the NMP is not explicitly present and,
therefore, does not compete for memory accesses, such as arbitration. After the memory controller
in the host side sends the memory request, the deterministic response time should not be changed
because of the NMP inside the memory. Next, the communication between the host and NMP is highly
limited. They are not connected through a bus. Thus, a cache coherence protocol that is typically
used in multi-core systems cannot be adopted. The idea that an NMP inside the memory uses an
additional pin to send an interrupting signal to the host is also not welcome due to the hardware
overhead. It is, therefore, reasonable to minimize the communication overhead between the host and
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NMP, and between one NMP and another by isolating the memory access time and space. Furthermore,
it is necessary to reduce the synchronization overhead by using a large processing unit such as a task,
rather than a small unit such as an operation.

3.1. Power-Time Optimization

In this paper, the Lagrangian core-selection technique is adopted. The popularity of this approach
in various research fields is due to its effectiveness and simplicity. In this section, the Lagrangian
optimization techniques and their application to task-level NMP offloading is briefly reviewed. Let A
be a specific application, and C be the assigned cores for A. The purpose of core-task allocation is to
obtain a C that minimizes the whole execution time T of A. However, for the NMP-enabled system
where the heat problem is critical, the total power consumption constraint Pc should be satisfied.
The problem to solve can be formulated as Equation (1).

minimize T(C),
subject to P(C) ≤ Pc

(1)

T(C) is the execution time when A is executed in the core set C, whereas P(C) is the power
consumed at that time. In practice, rather than solving the constrained problem in Equation (1), it can
be reformulated with unconstrained minimization, which is shown in Equation (2). In this case, λ is
the Lagrange multiplier. The solution C* is optimal in the sense that the total execution time T(C*)
has the minimum value with C* among all combinations of core allocation options, which satisfies
power consumption less than or equal to Pc. In this scenario, it is assumed that a power constraint Pc

corresponds to λ [23].
C∗ = argminT(C) + λ× P(C)(λ ≥ 0) (2)

If application A is partitioned into a number of tasks Ai (i = 1, . . . , n), the associated core allocation
decisions are independent of each other. An additive time measure is used assuming a serialized
execution manner. The minimization problem in Equation (2) can be written as Equation (3).

Minimize
n∑

i=1

Ti(Ci) + λ× Pc(Ci) (3)

In this case, Ti(Ci) and Pi(Ci) are the time and power consumed when task Ai is allocated to core
Ci, respectively. The optimum solution of Equation (3) is obtained by selecting the appropriate core
Ci for each task Ai. Herein, the problem can be simplified as shown in Equation (3), by assuming
task-level serial execution and considering the distinctive relation among NMP, host, and memory
mentioned in the beginning of Section 3.

3.2. Power-Time Cost Using Easy-to-Use Lambda for Design Decision

In the NMP-enabled system, there are various combinations of core allocations that determine
whether to execute the tasks on the host or NMP. For example, when running N tasks to a system
consisting of one host and one NMP, a combination of 2N exists. Among them, the best decision
should be made considering power and time tradeoff. As N increases, the available core allocation
combination increases rapidly. Searching for all cases is time consuming. To narrow the search range
for the core allocation, the Lagrangian optimization scheme is adopted. Equation (3) is represented by
the cost function as Equation (4). The best offloading decision is made by choosing the host or NMP to
have a low cost for each task. The searching complexity is reduced from 2N to 2N.

Cost =
n∑

i=1

Ti(Ci) + λ× Pi(Ci) (4)
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To solve the minimization problem shown in Equation (4), it is important to determine the λ
value. Given the cost function, if T is differentiated with respect to P, the best offloading point is
determined by obtaining the stationary point. In other words, the most convex point needs to be found
in the power-time curve shown in Figure 2. However, in the simulation-based design exploration,
a power-time curve can be obtained after testing all the numerous offloading options. As the numbers
of core and task increase, the computational complexity increases sharply. Note that the best offloading
point is determined by the relative difference in the performance of the NMP and the host. It is observed
that, for a given application, the shape and slope of the power-time curve are primarily determined by
the performance ratio of the host and the NMP. The lower the performance of the NMP is, the higher
the slope of the curve will be. In contrast, the higher the performance of the host is, the lower the slope
of the curve will be. Fortunately, in the NMP-enabled system, both end points of the curve are easily
obtained. One end point represents an application running in the host-only system, whereas the other
represents running in the NMP-only system. Therefore, herein, the λ value is determined based on
the performance ratio of the given host and NMP as Equation (5). This approach also satisfies the
qualifying condition for λ to solve the unconstrained problem [23]. The Pc constraint corresponds to
λ. The value of λ increases as the power constraint Pc is decreased, whereas λ decreases when the
high-performance processors are used due to the sufficient Pc.

λ =
TimePIM_only − Timehost_only

Powerhost_only − PowerPIM_only
(5)

Figure 2 shows an example of assigning four tasks to the host and the NMP. The horizontal axis
represents the power consumption, whereas the vertical axis represents the execution time. Black dots
represent the power and time results of 24 choices. For the NMP in the base layer of the HBM, it is
realistic to use a processor with low performance and low power when compared to the host. Therefore,
the offloading of some tasks to the NMP increases the total execution time of the application, whereas
the power consumption is decreased. A gray power-time curve consisting of dots on the lower left
represents the power and time tradeoff as tasks are offloaded to the NMP. The most convex point in the
curve will be the best NMP offloading choice with the least increase in the execution time versus power
reduction. In this paper, the best offloading point is determined by 2 × 4 = 8 runs. First, the value of λ
is set according to the performance ratio of NMP and host using Equation (5). The determined λ value
is indicated by a dashed line in Figure 2. Then, two costs of each task executed on the host and the
NMP are compared to decide whether or not to offload.
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is high.

It is very common to change the operating condition of the systems due to the energy status or user
requirements. After measuring the power and time values for each task in the initial system condition,



Electronics 2019, 8, 1096 6 of 12

the changed power and time values can be estimated for various system conditions. Based on the
estimated power and time data, the decision of task-level offloading is dynamically made through the
proposed evaluation tool based on the power-time cost. Given the same application, Figure 2a shows
the case where the power constraint Pc is small. In this case, an NMP with a low-power configuration
such as a low operating clock frequency is adopted. This indicates that the processor performance
of the NMP is significantly lower than that of the host. Naturally, the value of λ is high. In the most
convex point of this curve, three tasks are offloaded to the NMP. For certain reasons, the required power
constraint Pc is not severe such as in the case of Figure 2b. Thus, the operating clock frequency of the
host is increased. The power-time curve is estimated from the actual results of Figure 2a. The value
of λ, which is also estimated becomes low. In this case, in the best offloading point, two tasks are
offloaded to the NMP. Therefore, one task should move to the host.

4. Evaluation Environment

4.1. NMP-Enabled System Organization

The organization of the NMP-enabled heterogeneous system assumed herein is as follows.
A high-performance host processor and a low-performance NMP processor are used. The purpose of
this paper is to propose a tool to measure and search the power-time performance when the HBM
exhibits a processor hierarchy. Therefore, to reduce the complexity of the simulation, one host and
one NMP are used. Table 1 shows the specifications of the host and NMP used in the simulation.
Both are x86 processors and use a 32 KB L1 cache. To create a difference in the computing performance
between the host and NMP, the host assumes an out-of-order CPU and additionally includes 1 MB L2
cache. The NMP processor, meanwhile, assumes an in-order CPU and does not include an L2 cache.
No bus-like communication channel exists between the host and the NMP, and data are exchanged
only through the memory. The NMP is directly connected to the 4 GB HBM2 via TSV, whereas the host
can access HBM2 through the interposer and the memory I/O interface.

Table 1. Host and NMP specification.

Components Host NMP

CPU core parameters Out-of-order issue
1 core, 192 entry ROB

In-order issue
1 core

L1 cache
32 KB

2 cycle access
2 way I cache and D cache

L2 cache
1 MB

20 cycle access
8 ways

none

As mentioned earlier, the host must have absolute priority in the memory, and its memory access
response time should not be affected by the NMP. To ensure the reliability of the system with these
restrictions, the host and NMP do not access the memory simultaneously. Furthermore, the host-NMP
organization requires a way to avoid a cache coherence violation because they do not use the cache
coherence protocol through the bus. In this study, it is assumed that the cache write-backs the data
and flushes itself when the core accessing memory changes. Through the above process, the cache of
the newly accessing core is always empty, and the data of the previous core is recorded in the main
memory. Therefore, a coherence problem does not occur. The cache flush may cause a performance
degradation due to an increase in the cache miss. However, the overhead die to the cache flush will not
be large because the shared data between tasks are already minimized when dividing an application
into tasks.
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4.2. Simulation Environment

It is time consuming to simulate various NMP offloading cases of all tasks to obtain the power and
time. Therefore, for simplicity, each task is performed in the host-only and NMP-only environments.
Subsequently, the power and time in NMP offloading are calculated by combining the results obtained
in task units. To compare the optimal offloading point for various system conditions, the operating clock
frequency is changed. For the host processor, the simulation is performed for four clock frequencies
of 1, 2, 3, and 4 GHz, whereas, for the NMP processor, four clock frequencies of 200, 400, 600, and
800 MHz are used.

The execution time of each task is measured in the Gem5 full system mode [24], whereas the
power consumptions of the processors and caches are calculated using McPAT [25]. The supply voltage
changes according to the operating clock frequency [26]. The 32-nm logic technology is assumed.
The DRAM power consumption is modeled as a DRAM layer and logic layer, separately. When the host
accesses the HBM, the energy per bit is known to be 6 to 7 pJ/bit [27]. Conservatively, by assuming that
the energy consumed by the DRAM layer and TSV is similar to HMC, it is estimated that 3.7 pJ/bit [28]
and 2.3 pJ/bit are consumed in the logic layers, respectively. The NMP accesses the HBM directly
without using an I/O interface. Thus, only the energy required for the DRAM layer access is considered
for the power consumption calculation. In the case of DRAM static power, no difference is observed
between the NMP and host. The power consumption is calculated using Equation (6) through the
DRAM energy per bit, i.e., pJ/bit = mw/Gbps.

TotalPower = CPUdynamic_power+ CPUstatic_power + DRAMpower_per_bit × Bandwidth (6)

Three applications are used for the simulation. PARSEC [29] and SPLASH-2 [30] are widely
used as benchmarks in multi-core environments, and VGG-F [31] is a CNN algorithm of recent
interest. To construct an application consisting of tasks with different characteristics, each benchmark
of PARSEC is used as a task. PARSEC is composed of various benchmarks with characteristics
that are computation-intensive or data-intensive. Different benefits can be obtained from the host
or NMP according to the benchmark, which is suitable for observing the performance change due
to NMP offloading. In this simulation, nine benchmarks of bodytrack, canneal, dedup, fluidanimate,
freqmine, streamcluster, swaptions, vips, and x264 are used. SPLASH-2 is primarily used in distributed
shared memory machines and is dominated by high-performance computation and graphics-intensive
benchmarks. As a second application, a computation-bound application is composed of 10 benchmarks
known as barnes, cholesky, fft, fmm, lu_cb, ocean, radiosity, radix, volrend, and water_nsquared from
SPLASH-2. For the third application, a machine-learning application known as data-demanding is
chosen. VGG-F is a type of CNN developed by the VGG group. In this study, the VGG-F is divided into
eleven tasks based on the layer. The 11 tasks correspond to five convolution layers, three fully connected
layers, a relu layer with softmax, a local response normalization, and a max pooling layer, respectively.

5. Results and Discussion

The proposed cost-based search and the full search schemes are compared for PARSEC, SPLASH-2,
and VGG-F. Simulations are performed on four system configurations to compare the accuracy in
various power constraints. In each configuration, the NMP and the host have the following operating
clock frequencies of (200 MHz, 1 GHz), (400 MHz, 1 GHz), (400 MHz, 3 GHz), and (600 MHz, 4 GHz).
In Figure 3, the horizontal axis represents the power consumption, whereas the vertical axis represents
the execution time. The best offloading points are obtained in four configurations and the power-time
values at that time are shown. Although the full search curve is slightly lower on the left side than the
proposed curve, the two curves tend to be similar. Recall that the proposed and full search schemes
need 2N and 2N computations, respectively, given N tasks. PARSEC, SPLASH-2, and VGG-F consists
of nine, 10, and 11 tasks, respectively. In the full search scheme, 512, 1024, and 2048 computations are
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necessary for three applications, respectively. When the proposed scheme is used, the computational
complexity is reduced by about 98%.
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Figure 3. Comparison of NMP offloading decision between the proposed eight-search and the full
16-search (a) PARSEC, (b) SPLASH-2, and (c) VGG-F.

In Table 2, 16 system configurations are considered. The host can operate with the clock frequencies
of 1, 2, 3, and 4 GHz, whereas the NMP can operate with the clock frequencies of 200, 400, 600, and 800
MHz. For three applications, the λ value, the number of NMP offloading tasks, and its power and
time values are shown. Since the performance of the host or NMP processor is higher, the power-time
curve moves to the lower right direction. Thus, the λ value also decreases. At the small λ value, it can
be predicted that the task’s NMP offloading is less preferred. For example, when the NMP operates
at 200 MHz, the λ decreases as the host processor performance increases, and the number of NMP
offloading tasks decreases. In most cases, the optimal power-time moves to the lower right. However,
when the performance of the host processor is low and the performance of the NMP processor is high,
i.e., the performance difference between the two processors is not extremely large, the number of
NMP offloading tasks and the optimal power-time points are not well predicted. For example, in a
PARSEC application, when the host performance is 1 GHz, the λ value decreases as the operating clock
frequency of the NMP increases. However, the number of NMP offloading tasks increases, and the
optimal power-time point decision is also inconsistent. This is because the difference between the hosts
or the NMP selection is not large when it is more important to reduce the power consumption than the
execution time.

Table 3 shows the results of dynamically determined offloading when the system condition is
changed. The presented data are similar to Table 2. However, the power-time data of all tasks required
to decide the best offloading point is not obtained by simulation but is estimated. In this simulation,
the initial system configuration has the host with 2 GHz and the NMP with 400 MHz. Thus, the results
of shaded cells in Table 3 are from the actual simulation data and it is exactly the same with the values
in Table 2. To decide the offloading point in other system configurations, the required power-time data
are scaled from the initial system condition without a running simulation. For example, suppose that
the operating clock frequencies of the host and NMP are increased to 4 GHz and 600 MHz, respectively.
The execution time is proportional to the operating clock frequency. Thus, the execution time of tasks
on the host and the NMP are obtained by multiplying the initial data by 2 and 1.5 times, respectively.
In the case of power data in the NMP and host, it is calculated as 1.386 times and 1.163 times as
increasing by 200 MHz and 1 GHz, respectively. The scaling factor is obtained empirically. When
comparing with the actually obtained data in Table 2, the errors of estimated power and time data at
the best offloading point are 19% and 12%, respectively. However, the difference in the number of
offloaded tasks is very small, which is, on average, 0.3 task.
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Table 2. The best offloading point from the actual data and its power-time performance.

200 MHz 400 MHz 600 MHz 800 MHz

λ Tasks Power Time λ Tasks Power Time λ Tasks Power Time λ Tasks Power Time

PARSEC

1 GHz 32.40 4 1.97 93.32 15.69 4 3.10 55.72 10.38 6 1.83 63.42 8.13 6 2.07 56.20
2 GHz 25.99 3 2.45 60.27 12.99 4 2.79 48.76 8.85 4 3.51 37.95 7.11 4 4.15 32.27
3 GHz 16.79 3 3.04 58.85 8.46 4 3.53 46.61 5.80 4 4.57 35.97 4.68 4 5.34 29.97
4 GHz 13.21 3 3.57 58.21 6.67 3 6.06 33.08 4.58 4 5.43 35.44 3.70 4 6.07 28.80

SPLASH-2

1 GHz 20.08 4 1.59 52.34 10.79 4 2.48 30.98 7.23 4 3.16 23.97 5.44 5 2.94 24.39
2 GHz 15.98 3 2.02 35.41 8.75 4 2.28 28.91 5.97 4 3.04 21.14 4.58 4 3.70 17.23
3 GHz 10.08 3 2.51 34.24 5.55 3 4.23 19.29 3.80 4 3.87 20.05 2.92 4 4.77 16.15
4 GHz 7.76 3 2.79 33.65 4.28 3 4.79 18.70 2.94 4 4.36 19.50 2.26 4 5.41 15.60

VGG-F

1 GHz 157.67 8 1.73 502.40 75.12 8 2.69 301.22 47.68 8 3.41 234.28 34.33 8 3.95 201.01
2 GHz 129.16 7 2.88 275.42 63.50 8 2.49 272.95 41.66 8 3.23 206.06 31.04 8 3.83 172.79
3 GHz 83.83 7 3.76 264.18 41.58 8 3.20 263.58 27.48 8 4.23 196.69 20.63 8 5.06 163.42
4 GHz 66.01 7 4.32 258.10 32.90 8 3.65 258.52 21.85 8 4.86 191.63 16.47 8 5.85 158.35

Table 3. The best offloading point from the estimated data and its power-time performance.

200 MHz 400 MHz 600 MHz 800 MHz

λ Tasks Power Time λ Tasks Power Time λ Tasks Power Time λ Tasks Power Time

PARSEC

1 GHz 36.21 4 2.05 97.51 16.65 6 1.52 86.66 10.13 4 3.12 45.72 6.86 4 3.71 38.09
2 GHz 26.97 3 2.40 60.49 12.99 4 2.79 48.76 8.33 4 3.69 36.05 6.00 6 2.10 43.33
3 GHz 19.59 3 2.39 56.72 9.56 3 4.03 32.13 6.22 4 3.81 32.50 4.55 4 4.68 26.15
4 GHz 14.15 3 2.56 54.84 6.95 3 4.44 30.24 4.55 3 6.00 22.05 3.35 4 5.20 24.38

SPLASH-2

1 GHz 24.39 4 1.68 57.82 11.56 4 2.56 32.33 7.28 5 2.60 29.56 5.15 5 3.13 24.13
2 GHz 17.92 3 1.99 35.65 8.75 4 2.28 28.91 5.69 4 2.89 20.13 4.17 4 3.55 16.17
3 GHz 12.96 3 1.95 33.89 6.38 3 3.34 18.70 4.19 4 3.09 19.27 3.09 4 3.62 14.74
4 GHz 9.34 3 2.07 33.01 4.62 3 3.64 17.82 3.04 3 4.99 12.76 2.26 4 4.21 14.46

VGG-F

1 GHz 177.08 8 1.83 545.91 79.18 8 2.89 327.21 46.51 9 2.56 304.15 30.15 9 3.08 249.71
2 GHz 133.49 7 2.76 286.90 63.50 8 2.49 272.95 40.19 8 3.31 200.06 28.53 8 4.00 163.61
3 GHz 97.29 7 2.78 265.13 47.11 7 4.60 154.34 30.40 8 3.38 181.97 22.04 8 4.18 145.52
4 GHz 36.21 4 2.05 97.51 16.65 6 1.52 86.66 10.13 4 3.12 45.72 6.86 4 3.71 38.09
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6. Conclusions

In this study, task offloading from host to NMP was attempted in an NMP-enabled system, and a
power-time-based evaluation tool for an optimal design decision was proposed. In a high-performance
processor, heat due to power consumption is a serious problem that can degrade the operation speed
unexpectedly. The advantages of the host and NMP are high performance and low power consumption,
respectively, and this is distinguished from conventional multi-core heterogeneous systems. Therefore,
the search for the optimal point considering the power-time tradeoff is very meaningful in NMP-enabled
systems. The power-time performance is also an effective metric for comparison with other systems
such as the host-only or NMP-only system. In the simulation of this paper, only the operating clock
frequency was used to change the system condition, and it had to be complemented subsequently.
When introducing various processor types such as a GPU or hardware accelerator, or when the cache
size or its structure changes, the power-time curve will vary significantly. Hence, it is expected that
the scope of design exploration will be further expanded. When the proposed scheme is extended for
architectural designs with more complex and deeper processor layers, only simple conditions should
be considered further. The reason for this is due to the NMP having difficulty communicating with
other processors besides the host because it is hard to use additional physical pins due to the situation
of processing units inside the memory.
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