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Abstract: Carbon nanotubes (CNTs) can be used as atomic force microscope (AFM) probes since
they are ideal tip materials with a small diameter, high aspect ratio, and stiffness. In this study,
a model of CNTs clamped in an elastic medium is proposed as nanoscale force sensing AFM probes.
The relationship between vibration frequency and axial force of the CNT probe clamped in an
elastic medium is analyzed based on the Euler-Bernoulli beam model and the Whitney-Riley model.
The clamped length of CNTs, and the elastic modulus of elastic medium affect largely on the vibration
and the buckling stability of a CNT AFM probe. The result showed that the sensitivity to vibration
increases as the applied loads increase. The critical load in which the vibration frequency decreases
rapidly, moving to large ones with decreasing ratio of length to diameter of CNTs. The theoretical
investigation on the vibration frequency of CNT loaded in the axial direction would give a useful
reference for designing a CNT used as a nano-force sensor.
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1. Introduction

The atomic force microscope (AFM) has attracted great interest in many scientific and technological
fields, including measuring the force or potential energy between a small tip and a sample. Since
pioneering work by Iijima in 1991 [1], carbon nanotubes (CNTs) have been the subject of numerous
studies, such as one of the most promising nano-sensor materials [2–6]. The applications of CNTs used
as different sensors [6–8] have been broad due to their nanoscale dimensions and unique properties.
A combination of the superb mechanical and physical properties, chemical stability, and high aspect
ratio of CNTs make them ideal materials for use as scanning probe microscope tips, especially in atomic
force microscope (AFM) [3,5,9–12]. The AFM has been considered a powerful tool for morphology
analysis of nanoscale materials, and nano-structures such as quantum dots (QDs). Most of the AFM
probes are made out of silicon or silicon nitride, by the micromachining and electron beam deposition
techniques. At present, commercially available silicon probe tips commonly have a radius of curvature
of approximately 5–15 nm [13]. The poorly characterized silicon and nitride probe tips currently
employed in AFM, however, limited some applications since these conventional silicon tips could easily
break during an impact on the scanned surface. The resolution of AFM imaging for surface structure
analysis mainly depends on the tip diameter of CNTs and their aspect ratio [14]. Therefore, the CNTs
are potentially ideal materials to serve as components in an AFM probe and sensor because of their
robust mechanical properties and well-defined geometry with small diameter and high aspect ratio.
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Lieber’s group proposed the potential application of the CNT used as AFM tips ten years ago [10,15].
The investigation showed that individual single-walled and multi-walled CNT tips exhibited much
better lateral resolution than that of the Si tips in the tapping mode AFM measurement [16].

It is quite difficult to control experimentally individual CNTs due to an extremely small size.
However, chemical vapor deposition (CVD) technology allowed CNT growth, easily and directly on
desired substrates. A variety of forms, including controlling the diameter and the length of CNTs, can
be achieved since the advanced CVD technology was developed [17–19]. To investigate the potential
applications of CNTs as AFM tip and nano-force sensor, some experimental and theoretical studies
have been reported and studied on the mechanical stability of CNTs [20–27].

Using the direct growth of CNT on silicon-cantilever-tip, commercially available silicon AFM tips
of CNT can be fabricated by CVD. The grown CVD tips were so long that the molecular-scale CVD
nanotube probes could be used to image isolated biological macromolecules at high resolution [28].
The measurement accuracy of the image contrast depends on not only the stiffness of the CNT tips but
also their geometry. The CNT tips can retain and recover perfect structure of CNT attached to a hard
surface due to higher mechanical properties of CNT, which is not as brittle as silicon. The stability
of CNT tips subjected to compressive loading was investigated based on the continuum mechanics
method, and the molecule dynamics. Based on the molecular dynamics (MD) simulation, Yakobson
et al. firstly investigated and discussed different instability patterns of CNTs under compressive
load [29]. The simulation results showed that CNTs were remarkably resilient in sustaining extreme
strain without sings of brittleness. Using continuum mechanics and analytical techniques, the effects
of the parameters, such as the dimension and clamping boundary conditions on the buckling stability
and the vibration property of CNTs were analyzed and discussed [30,31]. The continuum model and
approximations allowed us to obtain formulations relatively simply and were less computationally
expensive than atomistic approaches. In the report [32], the dynamic properties of nano-resonators are
relevant in the context of multifrequency AFM. They reviewed the development of multifrequency
force microscopy methods, highlighting the five most prominent approaches.

Some theoretical approaches were employed to predict and analyze the mechanical properties
of CNT structures. These analytical theories and methods included with the nonlocal continuum
mechanics, in which stress field at a reference position depends not only on the strain at that
position but also on strains at all other points in the domain [33–36]. Barretta et al. presented
a stress-driven two-phases constitutive mixture by a convex combination of local and nonlocal
phases [37]. The local-nonlocal mixture was denoted as mixture Eringen integral model and the local
elastic fraction of the mixture had a beneficial effect. A contribution in the framework of non-local
constitutive models for non-homogeneous elastic materials was addressed by de Sciarra [38]. He also
presented a thermodynamically consistent formulation of the nonlocal plasticity in the framework of
the internal variable theory of inelastic behavior [39,40].

In this work, we proposed that CNTs could be used as nanoscale force sensing AFM probes
because the vibration frequency of CNTs is very sensitive to small loading values. The buckling
behavior significantly affects the performance of CNTs used as structural elements of sensor materials.
Thus, more efforts should focus on studying their buckling and vibration characteristics. In the
work, a cantilever beam model of CNTs clamped on an elastic substrate was proposed and used as
a nano-force sensor, and the relationship between the vibration frequency and the axial loading are
analyzed and discussed based on Euler-Bernoulli model and the Whitney-Riley model.

2. Modeling Procedure

2.1. Fundamental Equations

Figure 1 shows an analytical model of the CNT probe clamped in an elastic medium. As shown
in Figure 1b, L and D are the length and the diameter of the CNT probe, and L1 and L2 present the
clamped and exposed lengths, respectively. kw is a spring constant relative to the elastic medium, thus,
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the interaction force, p, between the CNT and the surrounding elastic medium can be described by the
spring constant (kw) using Whitney-Riley model [41], given by

p = kww (1)

where w is the vibrational deflection of the CNTs.
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Figure 1. (a) A proposed atomic force microscope (AFM) carbon nanotube (CNT) probe clamped in an
elastic medium, and (b) the analytical modeling of the clamped CNT.

The governing differential equation of the flexural vibration for a CNT under an axial compressive
loading N based on the Euler-Bernoulli beam model, is expressed in [22]

EI
∂4w
∂x4

+ N
∂2w
∂x2 + ρA

∂2w
∂t2 = p (2)

where x and t are the longitudinal coordinate and time, respectively. E is the elastic modulus, and I is
the moment of inertia. ρ and A are the cross-section of CNT, respectively. p is the distributed transverse
pressure acting on the CNT per unit axial length, described as Equation (1). In the motion equation,
the shear force stresses were negligible due to the assumption that the cross section remained normal
to then neutral axis after deformation.

Based on the Euler-Bernoulli beam equation in Equation (2), the governing differential equations
governing the motion of CNTs are described by the following two equations:

EI
∂4w1

∂x4
+ N

∂2w1

∂x2 + ρA
∂2w1

∂t2 = −kww1, 0 ≤ x ≤ L1 (3)

EI
∂4w2

∂x4
+ N

∂2w2

∂x2 + ρA
∂2w2

∂t2 = 0, L1 ≤ x ≤ L (4)

where wj (j = 1, 2) are the vibrational deflections of the clamped and exposed parts of the
CNTs, respectively.

The deflection of the CNT has different vibration amplitudes Y j(x), j = 1, 2 for the clamped and
exposed parts, the displacements of the vibration solution are given as

w j = Y j(x)eiωt, j = 1, 2 (5)

where ω is the vibrational frequency of the CNT.
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Substituting Equation (5) into Equations (3) and (4), the governing equations of the vibration
property for CNT are obtained as

Y(4)
1 + 2αY′′1 + β = 0, 0 ≤ x ≤ L1, (6)

Y(4)
2 + 2αY′′2 − γ = 0, L1 ≤ x ≤ L, (7)

where

α =
N

2EI
, β =

kw − ρAω2

EI
, γ =

ρAω2

EI
(8)

2.2. Solution of Governing Differential Equations

By solving the fourth-order polynomial function in Equations (6) and (7), the solutions of the
governing differential equations can be given as follows:

(1) If ω2
≤

1
ρA

(
kw −

N2

4EI

)
, we obtain

Y1(x) = eλx(A1 cosφx + A2 sinφx) + e−λx(A3 cosφx + A4 sinφx) (9)

where

λ =
1
√

2

√
p1 +

√
p2

1 + p2
2, φ =

1
√

2

√
−p1 +

√
p2

1 + p2
2 (10)

and
p1 = −α, p2 = β− α2 (11)

where Aj (j = 1, 2, · · · , 8) are arbitrary integration constants, which should be determined via
boundary conditions.

(2) If 1
ρA

(
kw −

N2

4EI

)
< ω2 < kw

ρA , we have

Y1(x) = A1 cos p1x + A2 sin p1x + A3 cos p2x + A4 sin p2x (12)

where

P1 =

√
α−

√
α2 − β, P2 =

√
α+

√
α2 − β (13)

(3) when ω2
≥

kw
ρA

Y1(x) = A1 cos hηx + A2 sin hµx + A3 cosθx + A4 sinθx (14)

where

η =

√
−α+

√
α2 − β, θ =

√
α+

√
α2 − β (15)

For the exposed part of CNT, the solution of Equation (7) gives

Y2(x) = eςx(A5 cosωx + A6 sinωx) + e−ζx(A7 cosωx + A8 sinωx) (16)

where

ζ =

√
−α+

√
α+ γ2, ω =

√
α+

√
α+ γ2 (17)

Considering that the CNT probe clamped length L1 in an elastic medium and exposed length L2,
the corresponding boundary conditions are given as follows:
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(1) at x = 0, for clamped part

∂2w1(x, t)
∂x2

∣∣∣∣∣∣
x=0

= 0,
∂3w1(x, t)
∂x3

∣∣∣∣∣∣
x=0

+ 2α
∂w1(x, t)
∂x

∣∣∣∣∣∣
x=0

= 0 (18)

(2) at x = L, for exposed part subjected to compressive loading

∂2w2(x, t)
∂x2

∣∣∣∣∣∣
x=L

= 0,
∂3w2(x, t)
∂x3

∣∣∣∣∣∣
x=L

+ 2α
∂w2(x, t)
∂x

∣∣∣∣∣∣
x=L

= 0 (19)

(3) at the position x1 = L1, which is the connecting position between clamped and exposed parts, the
continuous conditions of the vibrational deflection are:

w1(x, t)
∣∣∣
x=L1

= w2(x, t)
∣∣∣
x=L1

(20)

∂w1(x, t)
∂x

∣∣∣∣∣∣
x=L1

=
∂w2(x, t)
∂x

∣∣∣∣∣∣
x=L1

,
∂2w1(x, t)
∂x2

∣∣∣∣∣∣
x=L1

=
∂2w2(x, t)
∂x2

∣∣∣∣∣∣
x=L1

(21)

∂3w1(x, t)
∂x3

∣∣∣∣∣∣
x=L1

+ 2α
∂w1(x, t)
∂x

∣∣∣∣∣∣
x=L1

=
∂3w2(x, t)
∂x3

∣∣∣∣∣∣
x=L1

+ 2α
∂w2(x, t)
∂x

∣∣∣∣∣∣
x=L1

(22)

Substituting the vibrational deflections of the clamped and exposed parts of CNTs into the above
given boundary conditions of Equations (20)–(22), we obtain the simultaneous equation, given in
matrix form:

Ω[N, L1, L2]8×8


A1

A2
...

A8

 = 0 (23)

where Ω[N, L1, L2]8×8 is a 8 × 8 matrix concluding with parameters, such as the axial compressive load
N, and lengths L1 and L2 of the clamped and exposed parts. The relationship between the vibration
frequency and the compression load can be obtained from the eigenvalue |Ω|8×8 = 0, corresponding to
the nontrivial solution in Equation (23).

3. Simulation Results and Discussion

The vibrational properties of the CNTs were investigated based on the proposed analytical model.
When the axial load is applied to the CNTs, its vibration frequency will change with the loading
values. The change in the vibration frequency of CNTs with the compression load can be used as
a nano-loading sensor. In this simulation, the diameter and the length of a CNT were 2 nm and 40 nm,
respectively. The layer thickness of the CNT was 0.34 nm, the spacing of graphite. It was important to
note that the presence of CNT defects could affect the vibration frequency of CNTs. However, the CNT
defect caused the change of the elastic modulus of CNT. We can give the suitable elastic modulus to
consider the CNT defect and to simulate the vibration frequency of CNT. Here, the material constants
of CNTs were taken as: The elastic modulus of 3.3 TPa; the mass density of 2000 kg/m3. The foundation
modulus relative to the elastic medium, kw, which can be obtained from the Whitney-Riley model, and
is given as [42]:

kw =
EmLCNT

(1 + µw)rCNT
(24)

where Ew and µw are the elastic modulus and Poisson’s ratio of the elastic medium, respectively. rCNT
and LCNT are the radius of CNT and the length of the clamped part, respectively. The elastic matrix
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was considered to be an epoxy resin, which had an elastic modulus of approximate Em = 2.9 GPa and
Poisson’s ratio of µm = 0.25.

CNTs have the resonant vibration frequency with different modes. Figure 2 plots three kinds of
vibration mode shapes for CNTs under the axial compression load, in which the vibration frequency
varies from low to high. The relationship between the vibration frequency and axial compressive load
acting on CNT is shown in Figure 3 under the first and the second modes. The result shows that the
vibration frequency of CNT decreased as axial load increased, tending to zero in a certain value called
to the critical load, in which the vibration frequency decreased rapidly. In the simulation, the obtained
critical load was 2.5 nN, which was smaller than the buckling load of 6 nN according to our previous
report [43]. This indicated that the CNT remained the stability of mechanical property due to being
less than buckling load. Note that the value of the fundamental vibration frequency rapidly decreased
when the compressive load acting on CNT was increased. The fundamental vibration frequency
vanished when the axial compressive reached 2.5 nN. The critical load was about 23 nN for the second
vibration modes, and the vibration frequency became very sensitive to values of the critical load.
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Figure 3. Relationship between the vibration frequency of AFM CNT tip and the axial compressive
load for different vibration modes (CNT: Diameter 2 nm, length 40 nm, and lamped length 20 nm).

In the following simulation and discussion, we mainly focused on the fundamental vibration
mode. Figure 4 shows the relationship between the vibration frequency and the axial force acted on
the CNT with different clamped length ratio of L1/L2. The effects of the length ratio on the vibration
frequency of CNT were significant, especially for a smaller aspect ratio. The critical load decreased
with decreasing clamping length of CNT, and the vibration frequency of CNT decreased largely due
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to the increasing instability in clamping part. Figure 5 shows the influences of clamping conditions,
including the material constant of elastic medium and the clamping length on the vibration frequency
of CNT under a load of 1 nN. It can be found that the vibration frequency of CNTs changed when
the elastic modulus or the clamping length were smaller. The simulated result showed that the
vibration frequency of CNT approached unity when the clamping length ratio reached certain values.
The stiffness of the clamping medium was important for the measurement accuracy of the axial sensor,
especially for low medium elastic modulus. In order to increase the measurement accuracy, the ratio of
clamped to exposed lengths should be designed larger than 0.3 for an epoxy resin used as clamping
materials, whose elastic modulus is about 3.0 GPa.
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Figure 6 shows the influence of length-to-diameter ratio on the vibration frequency for CNT
with a clamping length of 20 nm. The CNT tips are subjected to the critical load of 0.5 nN, 1.0 nN,
and 2.0 nN, respectively. It is seen that the vibration frequency of CNTs decreased with increasing
length-to-diameter ratio. The vibration frequency vanishes for a certain length-to-diameter under
critical compressive loads.
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Figure 6. Variation of the vibration frequency of AFM CNT tip with the ratio of length to diameter
under different the axial compressive load.

4. Conclusions

An analytical model and solution are employed to investigate the vibration frequency of CNT
used as a nano-force sensor. The analytical model is considered as an AFM CNT tip, which has
an elastic clamping part at one end, and is subjected to an axial compressive load at the exposed end.
The clamping force between the elastic medium and CNTs can be determined by the Whitney-Riley
model. The result suggests that the CNT can be effectively used as a nano-force sensor because the
vibration frequency of a CNT is highly sensitive to an axial force load. The vibration frequency of the
CNTs decreases with increasing compressive load. The simulation is very useful in design and analysis
of CNTs used as a nano-force sensor.
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