
electronics

Article

Open IoT Architecture for Continuous Patient
Monitoring in Emergency Wards

Carlos Pereira 1,2 , João Mesquita 1,2, Diana Guimarães 1,2, Frederico Santos 1,3 ,
Luis Almeida 1,2,4,* and Ana Aguiar 1,2

1 IT—Instituto de Telecomunicações, Rua Roberto Frias, s/n, 4200-465 Porto, Portugal;
dee12014@fe.up.pt (C.P.); up201305568@fe.up.pt (J.M.); dlguim@fe.up.pt (D.G.); fred@isec.pt (F.S.);
anaa@fe.up.pt (A.A.)

2 FEUP—Faculty of Engineering, University of Porto, Rua Roberto Frias, s/n, 4200-465 Porto, Portugal
3 ISEC—Polytechnic Institute of Coimbra—Coimbra Institute of Engineering, Rua Pedro Nunes,

3030-199 Coimbra, Portugal
4 CISTER—Research Centre in Real-Time and Embedded Computing Systems, Rua Alfredo Allen 535,

4200-135 Porto, Portugal
* Correspondence: lda@fe.up.pt

Received: 9 August 2019; Accepted: 19 September 2019; Published: 23 September 2019
����������
�������

Abstract: Due to multiple reasons, emergency wards can become overloaded with patients, some of
which can be in critical health conditions. To improve the emergency service and avoid deaths
and serious adverse events that could be potentially prevented, it is mandatory to do a continuous
monitoring of patients physiological parameters. This is a good fit for Internet of Things (IoT)
technology, but the scenario imposes hard constraints on autonomy, connectivity, interoperability,
and delay. In this paper, we propose a full Internet-based architecture using open protocols from
the wearable sensors up to the monitoring system. Particularly, we use low-cost and low-power
WiFi-enabled wearable physiological sensors that connect directly to the Internet infrastructure and
run open communication protocols, namely, oneM2M. At the upper end, our architecture relies on
openEHR for data semantics, storage, and monitoring. Overall, we show the feasibility of our open
IoT architecture exhibiting 20–50 ms end-to-end latency and 30–50 h sensor autonomy at a fraction of
the cost of current non-interoperable vertical solutions.

Keywords: e-health; Internet of Things (IoT); Machine-to-Machine (M2M) communications;
system performance; Wi-Fi

1. Introduction

The Internet of Things (IoT) has established itself as the medium for global connectivity among
all sorts of devices, with 20.4 billion estimated connected devices worldwide by 2020 [1]. The IoT relies
on Internet protocols, such as Machine-to-Machine (M2M) communications, to achieve interoperability
and cater for the needs of domains such as e-health, smart grids, or smart cities [2–4]. In the particular
case of e-health, patients can be monitored using networked sensors that collect personal data and send
it to medical or processing centers for tracking chronic conditions or for prophylactic reasons [5,6].

Continuous patient monitoring for quick response is also common in intensive care units.
However, it can also be similarly important in emergency wards, where deaths and serious adverse
events can occur if a prompt response is not enforced [7–9]. This is particularly critical during overloads
caused by catastrophic events, extreme weather or periods of high propensity, raising the awareness to
the importance of continuous patient monitoring in emergency wards [7,10,11].

Currently, monitoring physiological parameters in wards can be done with existing wearable
devices, like wristbands or smartwatches, that collect heart beat frequency and variability,

Electronics 2019, 8, 1074; doi:10.3390/electronics8101074 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0001-6153-7555
https://orcid.org/0000-0002-4061-9786
https://orcid.org/0000-0002-9544-3028
https://orcid.org/0000-0002-6020-8087
http://dx.doi.org/10.3390/electronics8101074
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/8/10/1074?type=check_update&version=2


Electronics 2019, 8, 1074 2 of 15

blood pressure, oxygen saturation level, and body and room temperatures. However, current devices
rely on short-range communication protocols, typically Bluetooth, requiring a gateway (GW) for
sustained Internet connection [12–16]. GWs can be implemented using smartphones given their
usability and enhanced connectivity, but this comes at a price. The GW functionality increases
the power consumption of the smartphone severely reducing its autonomy, it also increases the
communication delay due to relaying, and it increases the cost of the monitoring system [12,17,18].
In the work by the authors of [18], considerable depletion of smartphones’ battery was observed when
using them as GWs for BT wearable devices, in an IoT e-health scenario with online remote monitoring,
mainly due to network accesses. Moreover, there is currently a range of disparate non-interoperable
e-health systems that use specific vertical solutions for communications and monitoring [19,20],
contributing to a global high system cost.

In this paper we propose an open IoT architecture to track the physiological parameters of
patients, fully integrated with the Internet from the wearable sensors up to the monitoring system.
For this purpose we leverage an interoperable framework [21] that relies on two de facto standards.
oneM2M [22] is a technical standard for interoperability concerning architecture, API specifications,
and security for M2M/IoT technologies based on requirements contributed by a global partnership.
openEHR [23] is an open standard specification for data semantics, storage, and making health data
available to the medical personnel in electronic health records (EHRs).

Then, we make use of low-cost and low-power WiFi-enabled sensor devices based on ESP8266
modules [24] and embedded in wristbands with a 1000 mAh battery for continuous patient ambulatory
monitoring. These devices connect directly to an existing Internet infrastructure, avoiding GWs
and potentially reducing cost and communication latency, while improving usability. However, it is
a significant challenge to control the power of the Wi-Fi devices to achieve sufficient autonomy
while keeping enough computing capacity to execute sensor processing functions and Internet
communication protocols.

Therefore, we carry out a feasibility study of the proposed open IoT architecture, showing the
configuration and implementation of the services, the use protocol of the wristbands, the device’s
consumption and autonomy in different module sleep modes, the end-to-end services latency, and the
impact of the WiFi network configuration. We believe that integrating WiFi-enabled wearable sensors
in e-health systems is novel and has the potential to provide a low-cost solution for continued tracking
of patients physiological parameters as needed in emergency wards.

The rest of the paper is structured as follows. The next section presents a storyboard that we
use as the motivating use case scenario. It is followed by the architecture and implementation of the
framework in Section 3. In Sections 4 and 5 we provide, respectively, a qualitative comparison and
quantitative performance analysis of the modules’ performance in terms of the power requirements
as well as the end-to-end latency using normal and energy-saving modes. We analyze the impact of
different WiFi network configurations on the modules power consumption in Section 6 and conclude
the paper in Section 7.

2. The Emergency Ward Scenario

We envision a use case scenario in hospitals emergency departments where wristbands,
containing not only a colored paper indicating the priority of patients’ treatments based on the
severity of their condition [25,26], but also an optical (photoplethysmography (PPG)) sensor that
tracks heart rate and pulse oxymetry [27], are given to patients at the initial triage, allowing medical
personnel or services to follow patients’ vital signs.

First, the medical personnel responsible for the triage accesses the patient’s EHR and registers
the identification of the wristband that will be given to the patient. This triggers the collection and
transmission of data by the wristband while a subscription is done to this data in a publish–subscribe
communication model (see next section). Then, the EHR service is set up to start receiving the data from
the wristband, updating the patient’s EHR history accordingly, allowing online remote monitoring



Electronics 2019, 8, 1074 3 of 15

while the wristband is connected. During this time, the wristband continuously uploads the sensor
data with a frequency that is configurable, using the Wi-Fi hospital infrastructure, until the patient
leaves the hospital, at which moment the medical personnel signals the stopping of the data collection
and collects the wristband from the patient. If the wristband loses Wi-Fi connectivity temporarily,
it can buffer the information for later upload.

The data sent by the wristband is also formatted at the end according to the semantics
required for the correct interpretation by the EHR interface service that runs in the healthcare unit.
Medical personnel can analyze the patient’s information anytime, or anywhere with Wi-Fi coverage,
accessing the EHR which is responsible for storing and making the data available. The EHR itself
can also be configured to trigger alarms whenever the sensor values cross predefined thresholds.
The scenario is shown in Figure 1. Communications are based on the publish–subscribe model, using a
message broker as intermediary.

Figure 1. Application scenario. Heart rate (HR) information is collected by wristbands from patients
inside the ward and forwarded to an openEHR service (center), where it is available to medical
personnel (right) and can trigger alarms.

3. OneM2M-Based E-Health Framework

Among the diversity of IoT communications middleware available, we picked oneM2M to
enable our interoperable framework for its suitable performance to support e-health real-time
applications [28–30]. OneM2M supports two communication models, namely, publish–subscribe
and request–response. In this work, we focus on the former only, as it is more efficient for sensing and
remote monitoring, while also providing more flexibility and scalability [31].

Figure 2 shows how the elements of our system are mapped onto a oneM2M standard-based
ecosystem. As referred before, current wearable wristbands do not possess M2M capabilities nor do
they use standardized interfaces, and thus the need for the use of GWs that act as proxies on their
behalf. However, by enabling the wristbands with such capabilities, we can surpass the use of GWs.

In the proposed oneM2M-based architecture, the wristbands are Application Dedicated Nodes
(ADN) in the field domain, containing at least one Application Entity (AE). As defined in the
standard, the AE is an entity in the application layer that implements an M2M application service
logic. The infrastructure domain contains central architectural elements for information management,
namely, Infrastructure Nodes (IN) containing Common Service Entities (CSE). According to the
standard, a CSE is an instance of a set of “common service functions” that are exposed to other
entities through defined reference points, namely, Mca and Mcc. The Mca reference point is
the communications interface between a CSE and an AE, whereas the Mcc reference point is the
communications interface between two CSEs. In our scenario, the AE in the ADN communicates with
a CSE in the IN using the Mca reference point.



Electronics 2019, 8, 1074 4 of 15

oneM2M uses “resources” to represent information, according to the RESTful architecture
style [32]. Resources can change over time and use unique addresses called Universal Resource
Identifiers (URI). The resources are hosted in a hierarchical tree structure within the IN-CSE,
where information is maintained. The subscriptions are resources in the resource tree, where they can
be dynamically handled.

The ADN-AE manages the wristband internal sensor and its data and runs in the ESP8266 module.
It can decide when it should transmit, periodically or aperiodically, to control the battery lifetime of
the wristband, or it can receive remote actuation commands for such. For such, the ADN-AE supports
the use of buffers, which can also be used for temporary connectivity losses. The data is sent to the
IN-CSE that acts as a broker in the communication model.

Figure 2. System architecture using standardized oneM2M entities. The oneM2M system is divided
in two domains: Field and Infrastructure. The Application Dedicated Node (ADN) contains an
Application Entity (AE) that implements the service logic. The Infrastructure Node (IN) holds
a Common Service Entity (CSE). The IN-AE is an AE that is registered with the CSE in the IN.
Both ADN-AE and IN-AE communicate over the Mca reference point with the IN-CSE. Red arrows
represent user data flow.

The IN-AE is an AE that is registered with the CSE in the IN, and communicates with the
IN-CSE through the Mca reference point. In our scenario, the IN-AE is the openEHR service instance
enabled with M2M capabilities. Every time a patient’s wristband is assigned to the patient’s EHR,
the IN-AE makes a subscription to the respective resource in the IN-CSE. Then, the IN-AE starts
receiving notifications of the data published by the device, i.e., the ADN-AE. Note that the device
starts transmitting after receiving a command, only, for efficiency reasons. Access control is verified
in every resource access by the IN-CSE. TLS or DTLS can be used to ensure privacy and security.
Reliability and fault tolerance of the system can be handled by the communications’ protocols or by
the service entities themselves.

The openEHR standard is non-proprietary and aims at providing interoperability and openness
in e-health concerning data, models, and application programming interfaces, for both systems and
components. It offers a standardized EHR architecture based on a multilevel modeling approach that
separates information from knowledge. The specifications define a reference model and archetypes
for health information together with a query language [23]. The archetypes define how to capture
the health information and are typically associated to a single clinical concept. The IN-AE receives
physiological data such as heart rate and oxymetry from the wristbands and converts it to a form
suitable for interpretation and storage in the EHR.

Figure 3 shows a normal message sequence among the entities during the start of operation of
a wristband, from the moment it is turned on until the patient puts it on at the triage. When the
wristband is switched on, the corresponding ADN-AE registers itself at the IN-CSE (at /∼/in-cse/dartes



Electronics 2019, 8, 1074 5 of 15

in the figure) and creates the heart rate (HR) container inside a content instance resource to store
the corresponding data that will be shared by means of publications. The ADN-AE also creates
a subscription under a specific container (“Actuation” in the figure) to receive remote commands
published by the IN-AE. The IN-AE subscribes at the IN-CSE to the HR container from the patient’s
ADN-AE, mapping the specific patient’s wristband to the patient’s EHR.

Figure 4 shows the messages exchanged to stop the remote monitoring when the patient leaves
the ward. The medical personnel collects the wristband from the patient and signals the openEHR to
request the dissociation. For this purpose, the IN-AE sends a command to the ADN-AE, via IN-CSE,
causing it to stop publishing, and then it deletes its subscription from the IN-CSE.

ADN-AE IN-CSE

Create /~/in-cse/dartes/ESP8266

Create /~/in-cse/dartes/ESP8266/HR

IN-AE

Subscribe /~/in-cse/dartes/ESP8266/HR

Publish /~/in-cse/dartes/ESP8266/HR

Publish /~/in-cse/dartes/ESP8266/HR

Publish /~/in-cse/dartes/ESP8266/HR

Notify 

Create /~/in-cse/dartes/EHRmonitor

Notify 

Notify 

Subscribe /~/in-cse/dartes/ESP8266/Actuation

Create /~/in-cse/dartes/ESP8266/Actuation

Notify 

Publish /~/in-cse/dartes/ESP8266/Actuation

Turn wristband on

Asssociate patient's 
wristband to its EHR

Idle/Sleep

On

Patient puts 
wristband on

Patient arrives to triage

Figure 3. Messages exchanged from the moment the wristband is turned on until the wristband is
assigned to a patient and starts publishing data.



Electronics 2019, 8, 1074 6 of 15

ADN-AE IN-CSE IN-AE

Delete Subscription /~/in-cse/dartes/ESP8266/HR

Notify 

Publish /~/in-cse/dartes/ESP8266/Actuation

Patient takes 
wristband off

Dissociate patient's
wristband to its EHR

Patient leaves

Idle/Sleep

Figure 4. Messages exchanged when the patient takes the wristband off and leaves the ward.

4. Qualitative Assessment

This section shows a qualitative comparison between wristbands that use Bluetooth relying on
smartphones as GWs and those that connect directly to WiFi and the M2M system, based on the
ESP8266 modules. This comparison also assesses the feasibility of the Wi-Fi wristbands as M2M
devices. We consider four important qualitative dimensions: capabilities, performance, ease of use,
and cost. Table 1 summarizes the qualitative analysis for each approach.

Table 1. Qualitative comparison of wearable wristbands using smartphones as GWs or ESP8266 modules.

Capabilities Performance Ease of Use Cost

Smartphone-GW Numerous Some limitations Extra device HighM2M-able Possibly reconfigured

ESP8266-based Limited N/A No extra device Very LowM2M-able No configuration

4.1. Capabilities

IoT applications frequently exploit the growing number of smartphone users. Smartphones have
acquired well-known powerful capabilities in terms of connectivity, memory and processing, which
surpass that of most constrained devices.

On the other hand, ESP8266 modules alone have very limited capabilities; however, they are
highly integrated. They bear a 32-bit processor @ 80 MHz (160 MHz maximum), 36 KB of on-chip
SRAM, and can support up to 16 MB of external SPI Flash memory [24]. Only 20% of its MIPS are
occupied by the Wi-Fi stack, therefore the rest can all be used for user application programming and
development. Therefore, storage and transmission scheduling can still be optimized when using these
modules. The WiFi interface is compliant with IEEE 802.11b/g/n/e/i (including transmission power
and receiver sensitivity), it is tightly integrated with a full TCP/IP stack, and supports WPA and
WPA2 security. These modules offer multiple sleep modes that grant the ultra-low-power feature,
allowing different trade-offs between time to wake-up and energy consumption, with all modes
maintaining a clock running for wake-up control. Thus, despite its lower capabilities, it is expected that
the ESP8266 module can run M2M middleware with very low energy demands. Finally, these modules
still offer a reasonable computing capacity, allowing them to perform actions such as preprocessing
the PPG sensor data, detection of critical conditions and sending alarms. This is particularly suited to
mission-critical IoT applications that require low latency, integrating well with recent paradigms like
Fog Computing [33].



Electronics 2019, 8, 1074 7 of 15

4.2. Performance—Latency and Power Requirements

Few studies have benchmarked the performance of devices in M2M middleware, as performance
evaluations of reference middleware implementations and protocols are only now becoming
available [28–30,34].

Smartphones’ ubiquity is mainly powered by the use of cellular networks, which are known to
have long and inefficient transitions between the different states of the network interface [28,35,36].
This fact becomes crucial as latency between GWs and broker plays an important role in the fulfillment
of time requirements [28]. Moreover, additional delay can be introduced by the GW functionality,
protocol conversion, etc.

M2M communications can be the middleware that glues together the IoT, but the interoperability
and standardization usually comes with the cost of additional overhead in communications.
This means an increased amount of information will be transmitted in each transmission and on
the additional time the transmissions take. Currently, smartphones are mainly used for other purposes
such as Web browsing, instant messaging, phone calls, etc, and the use of smartphones as M2M GWs
can have a considerable impact on the smartphones’ usability, introducing undesired battery depletion
due to continued network accesses [12,17,18]. The additional use of external BT wearables can lead
to considerable depletion of smartphones’ battery, easily reducing the battery life to less than 6 h for
transmissions every second [18].

Conversely, the performance of the ESP8266 modules for IoT communications is still unknown,
despite the claimed ultra-low-power consumption. The next section shows a quantitative analysis
focused on power requirements and latency performance of these modules in a test scenario.

4.3. Ease of Use

Ease of use is an important requirement for a wearable monitoring system. The use of smartphones
as GWs requires one additional device besides the wristband and can lead to extra configurations
required for the communications. The standalone use of the wristband clearly has advantage in terms
of ease of use, reducing the human interaction to the minimum.

4.4. Cost

The current costs of ESP8266 and BT modules range from 0.10 to 1.00 USD in regular component
suppliers, e.g., Alibaba (www.alibaba.com). ESP8266 modules have a very low retail price, and thus
the main cost comes from integrating the battery and the PPG sensor to produce the wristbands.
The final cost of these wristbands is expected to be similar to that of BT-based counter parts. However,
the BT solution, for online remote monitoring, also needs to consider the cost of a personal gateway,
such as a smartphone, of which the average selling price, according to a market statistics service
(www.statista.com), is currently in the range of 200 USD.

5. Performance of the ESP8266 Modules

This section shows a quantitative characterization of the energy consumption and latency
achievable with the ESP8266 modules when integrated in the M2M architecture shown in Section 3
and as a function of multiple sleep and message configurations. The energy consumption of the PPG
sensor (MAX86150), is negligible compared to the processor module.

5.1. Test Set-Up

We carried out several experiments in our department, using a oneM2M broker (IN-CSE) running
on a dedicated server and an openEHR subscriber client (IN-AE) running on another computer.
The server had an Intel(R) Core(TM) i5-2500 CPU, clocked at 3.3 GHz, 8 GB of RAM, and running
the CentOS 6.9 OS, whereas the client had an Intel(R) Core(TM) i7-4700HQ CPU, clocked at 2.4 GHz,

www.alibaba.com
www.statista.com


Electronics 2019, 8, 1074 8 of 15

8 GB of RAM, and running the Ubuntu 16.04 LTS OS. These two machines were connected through a
Fast Ehernet network (100 Mb/s).

The ESP8266 publisher client (ADN-AE) connects to the broker via WiFi through an ASUS
RT-AC87U dual-band AC2400 [37] access point (AP) using the default 802.11 protocol with a typical
beacon interval of 100 ms and DTIM of 3. The ESP8266 software framework is provided by Espressif
Systems, v1.2 [38], running on FreeRTOS. The specific module hardware version we used is powered
by a Tensilica 32-bit CPU clocked at 80 MHz, featuring 36 KB of on-chip SRAM and 4 MB of external SPI
Flash memory. The wireless AP is connected to the broker through the referred Fast Ethernet network.

The OM2M broker [39] was used as reference implementation for the oneM2M standard.
The CoAP protocol over UDP with nonconfirmable messages was used between the publisher and the
broker to reduce publishing overhead.

Between the broker and the subscriber, we used the HTTP protocol over TCP for high reliability.
We use the POST method for publications and notifications, and we added a short token to every
message for access control.

We implemented the ESP8266 publisher client in C and the openEHR subscriber client in
Java. The communication between the broker and both the publisher and subscriber clients was
accomplished through the Mca reference point.

5.2. Methodology

We first assessed the ESP8266 modules power requirements, measuring the current consumed by
the modules through a USB connection using the Monsoon power monitor [40]. The sampling rate is
5000 Hz, and our trace contains two fields: time and current. For the sake of completeness, we measured
the current in different modes of operation: Normal mode, which is the default configuration in which
the module’s CPU and Wi-Fi circuit remain always on; Modem-sleep mode, in which the module’s
Wi-Fi circuit is shut off when idle for a certain time, but without breaking Wi-Fi connectivity;
the Light-sleep mode, which differs from the Modem-sleep in that the module’s CPU also becomes
pending, shutting down the crystal oscillator-based system clock, keeping a less precise RTC clock; and,
finally, the Deep-sleep mode, where the whole module is shut down, breaking the Wi-Fi connectivity.

For measuring the end-to-end latency, synchronization is required between publisher and
subscriber as they are not located in the same machine. For that, we use the Network Time Protocol
(NTP) for clock synchronization over the network [41], selecting for that the same server on both ends,
residing on the machine running the OM2M broker. NTP time updates were set with a period of 20
s in the publisher. For the case of the Deep-sleep mode, as the module erases several counters and
memory related elements, we perform an NTP update every time the Wi-Fi connection to the access
point is reestablished. We acquire timestamps at application-level, and consider the end-to-end latency
as the time difference between the arrival of the notifications at the subscriber and the corresponding
publication at the publisher.

We do not consider the current required to periodically collect data from the sensor, as this is
negligible compared to the module current (below 0.5 mA in operation and 1 µA when shut down,
for the MAX86150). We use just HR sensor data that is stored in memory so that accesses to the
flash memory are minimized. Each HR measurement is published by creating a new content instance
resource in an individual container resource already existing in the broker and representing a single
ESP8266 module. The content instance’s payload is marshaled in JSON format.

By default the publisher transmits data every 1s, but we also performed measurements for
transmissions every 10 s to measure the impact of the transmission frequency on the power
consumption. We kept the CoAP data goodput in both cases, though, transmitting one HR
measurement in the first case (85 B) and 10 HR measurements in the second (850 B). The exception is
the Deep-sleep mode, in which we only used transmissions at 10 s intervals, due to the time required
for reestablishing the Wi-Fi connection. All publish requests used one of these two payload sizes, only.



Electronics 2019, 8, 1074 9 of 15

To eliminate possible deviations in channel conditions during measurements, we performed
every measurement by setting the module approximately one meter away from the wireless access
point. This minimizes the possibility of random errors and other interference. The measurements
were sequential to avoid interference between different measurements. We do not consider the initial
message exchange (registration, creating containers, etc.) in the measurements. We measured every
scenario for an interval corresponding to 100 publications.

5.3. Results on Power Requirements

Figure 5 shows the distribution of the current measurements for each referred test scenario.
The Y-axis was truncated for better visualization. The average current consumed throughout the entire
measurement in the Normal mode was approximately 70.9 mA for transmissions every second and
70.8 mA for transmissions every 10 s. As the Wi-Fi circuit remains on, the module does not explore
energy-saving techniques and requires more current than in the other modes. Moreover, the figure
shows that in Modem-sleep, the average current consumption is considerably reduced when compared
to the Normal mode. The scenario that transmits every 1 s required an average current of 27.0 mA
(61.9% reduction w.r.t. Normal), and the scenario that transmits every 10 s required an average current
of 23.6 mA (66.7% reduction w.r.t. Normal). Further power efficiency can be obtained using the
Light-sleep modes with which we achieved an average current of 22.1 mA (18.2% reduction w.r.t.
Modem-sleep) when transmitting every 1 s and 15.3 mA (35.2% reduction w.r.t. Modem-sleep) when
transmitting every 10 s.

Figure 5. Module current measured in each test case.

The most energy-efficient mode for transmissions with a frequency of 0.1 Hz is Deep-sleep,
as expected. This mode required an average current of 9.8 mA (36.0% decrease w.r.t. Light-sleep). This
difference is essentially controlled by the time taken to reestablish the Wi-Fi connection, during which
the current consumption is high.

On the other hand, these results also show that there are substantial differences of power
requirements between the two transmitting frequencies and that there is a clear advantage in reducing
the transmission frequency. This difference is higher in Light-sleep (30.8% reduction), as more
components are idle/off.

Table 2 summarizes the average current consumption values and shows the respective estimated
battery lifetime defined as the time to reach 10% of battery capacity, assuming the module was powered
by a battery with a capacity of 1000 mAh and the battery depletion was linear. Using energy-saving
moves, the battery lifetime can easily surpass one day, thus allowing daily charging cycles.



Electronics 2019, 8, 1074 10 of 15

Table 2. Average current and expected battery lifetime for each test scenario.

Test Scenario Average Current (mA) Battery Lifetime (h)

1Hz85B Normal 70.9 12.7
0.1Hz850B Normal 70.8 12.7

1Hz85B Modem-sleep 27.0 33.4
0.1Hz850B Modem-sleep 23.6 38.2

1Hz85B Light-sleep 22.1 40.7
0.1Hz850B Light-sleep 15.3 58.7
0.1Hz850B Deep-sleep 9.8 92.3

5.4. Results on End-to-End Latency

Figure 6 shows the distribution of the end-to-end latency measurements for each test scenario.
Additionally, Figure 7 shows the detailed end-to-end latency measurements for transmissions every
1 s. It allows observing a strong clock drift in Light-sleep, caused by the low precision of the RC clock
that is used in this mode. Every 20 s, the clock drift is corrected by NTP. The average drift rate per
second is approximately 0.73%, and we used this value to correct the measurements in Figure 6.

Figure 6. End-to-end latency measured for each scenario.

Figure 7. End-to-end latency measured for publications of 85B CoAP data every second, showing clock
drift of the Light-sleep mode.



Electronics 2019, 8, 1074 11 of 15

The scenarios with a transmission frequency of 1Hz experienced an average end-to-end latency
of 23.1 ms, 27.4 ms, and 29.1 ms for the Normal, Modem-sleep, and Light-sleep modes, respectively.
The scenarios with a transmission frequency of 0.1 Hz experienced an average end-to-end latency
of 23.8 ms, 27.6 ms, and 33.0 ms for the Normal, Modem-sleep, and Light-sleep modes, respectively.
We can observe that transmissions when the module is on Normal mode experience a smaller average
end-to-end latency than on Modem-sleep. This is due to the time it takes to activate the Wi-Fi circuit
from the sleep mode. Although the precise characterization of this difference would require more
investigation, we observe that in our measurements it is approximately 4 ms, which is compatible with
the average time to activate the Wi-Fi interface referred in the module datasheet.

The latency values for transmissions every 1 s are similar to those of transmissions every 10 s
for the same operation mode, which shows that this size difference has a negligible impact on the
experienced end-to-end latency.

Finally, we obtained an average end-to-end latency of 1193 ms for the Deep-sleep scenario, due to
the time needed to reestablish the Wi-Fi connection. This long latency has to be taken into account
when assessing the adequacy of the Deep-sleep mode to each specific application scenario.

Taken together, these results show that the ESP8266 modules can support a working M2M
standardized framework. Nonetheless, careful planning of applications must be performed,
as different transmission frequencies and operation modes can provide very different quality of
service levels, in terms of expected battery lifetime, end-to-end latency, and synchronization, which
are conflicting goals.

6. Impact of WiFi Network Configuration

In the previous section, we used the ESP8266 modules within an infrastructured Wi-Fi network,
which uses beacons for synchronization and (Delivery) Traffic Indication Maps (TIM / DTIM) to allow
battery operated nodes to exploit sleep modes. All nodes wake up every beacon (or every x beacons)
to receive the TIM (DTIM) and see whether they have any traffic for them (or broadcast/multicast
traffic) pending in the AP and retrieve it. Thus, the beacon interval and the DTIM period (x) impact on
the modules power consumption. These parameters are configured in the AP, and thus we carried out
another set of experiments to assess their impact on the ESP8266 modules power consumption in our
M2M scenario.

In this case, we followed a different methodology and inhibited all module transmissions and NTP
updates, leaving it in an idle state in which it would respond to automatic infrastructure interactions
only, such as beacons. This approach allows observing the impact of the infrastructure configuration
without interference of the actual traffic pattern. In particular, we measured the current consumption
for various beacon intervals (100 ms, 300 ms, 500 ms, and 1000 ms) and DTIM periods (1, 3, and 5).
We also considered two different sleep modes only, namely, Modem-sleep and Light-sleep. We did not
consider Normal mode, because it keeps the Wi-Fi interface on all the time, or Deep-sleep, because
it ignores the AP beacons. The average and median current measured for each scenario are shown
in Table 3.

We observed that modules in the Modem-sleep mode show a small reduction of the average
current consumption as the beacon interval and DTIM period increase. The median values,
however, remain constant. Curiously, the experiments with Light-sleep show the opposite behavior,
with the average current slightly increasing with the beacon interval and the DTIM period. The median,
in turn, shows two very different values, with the smallest for combinations of short beacon interval
and low DTIM period. By performing a visual inspection of the current consumption profile for the
Light-sleep mode, we observed that the module transitions to a very low energy consumption state for
a certain time but then returns to a state that has similar consumption to that of Modem-sleep until the
next DTIM arrives. This behavior still requires further investigation.



Electronics 2019, 8, 1074 12 of 15

Nevertheless, these results already provide guidelines for the right AP configuration according to
the sleep mode used. Curiously, the most favorable configuration we found for Light-sleep mode is
with a beacon interval of 100ms and a DTIM of 3, which is a typical default WiFi network configuration.

Table 3. Average (and median) current (mA) for Modem- and Light-sleep modes for different beacon
intervals (ms) and DTIM periods.

DTIM 1 DTIM 3 DTIM 5

Modem-sleep

BInt 100 30.7 (21.3) 26.6 (21.3) 25.5 (21.2)
BInt 300 26.9 (21.3) 25.2 (21.3) 24.7 (21.3)
BInt 500 26.0 (21.3) 24.5 (21.3) 24.4 (21.3)
BInt 1000 24.9 (21.3) 24.2 (21.4) 25.4 (21.4)

Light-sleep

BInt 100 18.3 (4.1) 16.5 (4.2) 17.4 (20.5)
BInt 300 18.1 (4.2) 19.3 (20.5) 22.2 (20.6)
BInt 500 17.3 (20.5) 22.2 (20.6) 22.7 (20.6)
BInt 1000 19.4 (20.5) 22.6 (20.8) 22.0 (20.6)

7. Conclusions

Following the current trend towards e-health IoT applications, we focused on a potentially
high-impact use case, which is the tracking of patients vital signs in emergency wards. We proposed a
vertical IoT architecture based on open standards, fully integrated with the Internet. Our proposal
includes an e-health framework that settles in the use of the oneM2M and openEHR standards,
thus allowing interoperability between different devices and software, from the wearable sensors to
the databases.

A critical element in this architecture is the design of efficient M2M-capable sensors. We showed
that such sensors can be designed resorting to new low-cost, ultra-low-power ESP8266 Wi-Fi
modules that can be integrated in wristbands and connect directly to the Internet, using M2M
standardized protocols.

We then carried out a feasibility study, assessing the performance of the ESP8266 modules in
terms of power requirements and end-to-end latency. Using sleep states allowed extending the lifetime
of a 1000 mAh battery between 1 and 2 days with end-to-end latency in the range of 20–40 ms.
Longer lifetime could be achieved with a deep-sleep mode which, however, caused a jump to over 1 s
in the latency, due to the time taken to reestablish Wi-Fi connection. We also carried out experiments to
provide guidelines for the WiFi network configuration concerning beacon interval and DTIM period.

We conclude that emerging Wi-Fi nodes, such as the ESP8266, are indeed adequate to develop
IoT-enabled wearables that can be integrated in open, interoperable e-health frameworks, thus playing
a key role in the rise and adoption of low-cost solutions. Nevertheless, further work is underway
to characterize the modules operation in more situations, particularly with different transmitting
powers and modulations as well as under loaded wireless media. Future work will also address time
guarantees or availability for scenarios where different quality of service might be required, focusing
on deployment in a real-life scenario. Due to their enhanced processing capacities and reduced battery
consumption, these modules could also be used to explore forms of edge computing concerning
patients’ data.

Author Contributions: Conceptualization, C.P., F.S., L.A. and A.A.; methodology, C.P. and L.A.; software, C.P.,
J.M. and D.G.; validation, C.P and L.A.; formal analysis, C.P.; investigation, C.P., J.M. and D.G.; resources, C.P.
and L.A.; data curation, C.P., J.M. and D.G.; writing–original draft preparation, C.P. and L.A.; writing–review
and editing, C.P. and L.A.; visualization, C.P.; supervision, L.A.; project administration, C.P., F.S., L.A. and A.A.;
funding acquisition, L.A. and A.A.



Electronics 2019, 8, 1074 13 of 15

Funding: This work is a result of the project MobiWise (SAICTPAC/0011/2015, POCI-01-0145-FEDER-016426)
and IT (UID/EEA/50008/2019) Research Units, funded by the applicable financial framework: Fundo Europeu
de Desenvolvimento Regional (FEDER), Programa Operacional Competitividade e Internacionalização (POCI),
FCT/MCTES (Portuguese Foundation for Science and Technology).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gartner. Press Release: Gartner Says 8.4 Billion Connected “Things” Will Be in Use in 2017, Up 31
Percent from 2016, 2017. Available online: https://www.gartner.com/newsroom/id/3598917 (accessed on
15 May 2019).

2. Chen, K. Machine-to-machine communications for healthcare. J. Comput. Sci. Eng. 2012, 6, 119–126.
[CrossRef]

3. Yan, Y.; Qian, Y.; Sharif, H.; Tipper, D. A Survey on Smart Grid Communication Infrastructures: Motivations,
Requirements and Challenges. IEEE Commun. Surv. Tutor. 2013, 15, 5–20. [CrossRef]

4. Caragliu, A.; Del Bo, C.; Nijkamp, P. Smart cities in Europe. In Proceedings of the 3rd Central European
Conference in Regional Science, Kosice, Slovakia, 7–9 October 2009; pp. 49–59.

5. Norris, A.; Stockdale, R.; Sharma, S. A strategic approach to m-health. Health Inform. J. 2009, 15, 244–253.
[CrossRef] [PubMed]

6. ETSI. ETSI TR 102 732 V1.1.1 (2013-09) Machine-to-Machine Communications (M2M); Use Cases of M2M
applications for eHealth, 2013. Available online: http://www.etsi.org/deliver/etsi_tr/102700_102799/
102732/01.01.01_60/tr_102732v010101p.pdf (accessed on 15 May 2019).

7. Cardona-Morrell, M.; Prgomet, M.; Turner, R.M.; Nicholson, M.; Hillman, K. Effectiveness of continuous or
intermittent vital signs monitoring in preventing adverse events on general wards: A systematic review and
meta-analysis. Int. J. Clin. Pract. 2016, 70, 806–824. [CrossRef] [PubMed]

8. Donaldson, L.J.; Panesar, S.S.; Darzi, A. Patient-Safety-Related Hospital Deaths in England: Thematic
Analysis of Incidents Reported to a National Database, 2010–2012. PLoS Med. 2014, 11, 1–8. [CrossRef]

9. Hillman, K.M.; Bristow, P.J.; Chey, T.; Daffurn, K.; Jacques, T.; Norman, S.L.; Bishop, G.F.; Simmons, G.
Antecedents to hospital deaths. Intern. Med. J. 2001, 31, 343–348. [CrossRef] [PubMed]

10. Jones, D.; Mitchell, I.; Hillman, K.; Story, D. Defining clinical deterioration. Resuscitation 2013, 84, 1029–1034.
[CrossRef]

11. Elliott, M.; Coventry, A. Critical care: The eight vital signs of patient monitoring. Br. J. Nurs. 2012, 21, 621–625.
[CrossRef]

12. Morón, M.J.; Luque, R.; Casilari, E. On the Capability of Smartphones to Perform as Communication
Gateways in Medical Wireless Personal Area Networks. Sensors 2014, 14, 575–594. [CrossRef]

13. Da Costa, C.A.; Pasluosta, C.F.; Eskofier, B.; da Silva, D.B.; da Rosa Righi, R. Internet of Health Things:
Toward intelligent vital signs monitoring in hospital wards. Artif. Intell. Med. 2018, 89, 61–69. [CrossRef]

14. Albahri, O.; Albahri, A.; Mohammed, K.; Zaidan, A.; Zaidan, B.; Hashim, M.; Salman, O.H. Systematic review
of real-time remote health monitoring system in triage and priority-based sensor technology: Taxonomy,
open challenges, motivation and recommendations. J. Med Syst. 2018, 42, 80. [CrossRef]

15. Bulić, P.; Kojek, G.; Biasizzo, A. Data Transmission Efficiency in Bluetooth Low Energy Versions. Sensors
2019, 19, 3746. [CrossRef]

16. Hasan, M.; Shahjalal, M.; Chowdhury, M.Z.; Jang, Y.M. Real-Time Healthcare Data Transmission for Remote
Patient Monitoring in Patch-Based Hybrid OCC/BLE Networks. Sensors 2019, 19, 1208. [CrossRef]

17. Pereira, C.; Rodrigues, J.; Pinto, A.; Rocha, P.; Santiago, F.; Sousa, J.; Aguiar, A. Smartphones as M2M
gateways in smart cities IoT applications. In Proceedings of the 2016 23rd International Conference on
Telecommunications (ICT), Thessaloniki, Greece, 16–18 May 2016; pp. 1–7. [CrossRef]

18. Pereira, C.; Pinto, A.; Aguiar, A.; Rocha, P.; Santiago, F.; Sousa, J. IoT interoperability for actuating
applications through standardised M2M communications. In Proceedings of the 2016 IEEE 17th International
Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM), Coimbra, Portugal,
21–24 June 2016; pp. 1–6. [CrossRef]

19. Kreps, G.L.; Neuhauser, L. New directions in eHealth communication: Opportunities and challenges.
Patient Educ. Couns. 2010, 78, 329–336. [CrossRef]

https://www.gartner.com/newsroom/id/3598917
http://dx.doi.org/10.5626/JCSE.2012.6.2.119
http://dx.doi.org/10.1109/SURV.2012.021312.00034
http://dx.doi.org/10.1177/1460458209337445
http://www.ncbi.nlm.nih.gov/pubmed/19713398
http://www.etsi.org/deliver/etsi_tr/102700_102799/102732/01.01.01_60/tr_102732v010101p.pdf
http://www.etsi.org/deliver/etsi_tr/102700_102799/102732/01.01.01_60/tr_102732v010101p.pdf
http://dx.doi.org/10.1111/ijcp.12846
http://www.ncbi.nlm.nih.gov/pubmed/27582503
http://dx.doi.org/10.1371/journal.pmed.1001667
http://dx.doi.org/10.1046/j.1445-5994.2001.00077.x
http://www.ncbi.nlm.nih.gov/pubmed/11529588
http://dx.doi.org/10.1016/j.resuscitation.2013.01.013
http://dx.doi.org/10.12968/bjon.2012.21.10.621
http://dx.doi.org/10.3390/s140100575
http://dx.doi.org/10.1016/j.artmed.2018.05.005
http://dx.doi.org/10.1007/s10916-018-0943-4
http://dx.doi.org/10.3390/s19173746
http://dx.doi.org/10.3390/s19051208
http://dx.doi.org/10.1109/ICT.2016.7500481
http://dx.doi.org/10.1109/WoWMoM.2016.7523564
http://dx.doi.org/10.1016/j.pec.2010.01.013


Electronics 2019, 8, 1074 14 of 15

20. Dogac, A. Interoperability in eHealth Systems. Proc. VLDB Endow. 2012, 5, 2026–2027. [CrossRef]
21. Pereira, C.; Frade, S.; Brandao, P.; Correia, R.; Aguiar, A. Integrating data and network standards into

an interoperable e-Health solution. In Proceedings of the 2014 IEEE 16th International Conference on
e-Health Networking, Applications and Services (Healthcom), Natal, Brazil, 15–18 October 2014; pp. 99–104.
[CrossRef]

22. OneM2M. OneM2M Standardization, 2017. Available online: http://www.onem2m.org (accessed on
15 May 2019).

23. OpenEHR. OpenEHR, 2018. Available online: http://www.openehr.org/ (accessed on 15 May 2019).
24. Espressif. ESP8266 Technical Reference. Available online: http://espressif.com/sites/default/files/

documentation/esp8266-technical_reference_en.pdf (accessed on 15 May 2019).
25. Robertson-Steel, I. Evolution of triage systems. Emerg. Med. J. 2006, 23, 154–155. [CrossRef]
26. Robertson, C. Emergency Triage. BMJ 1997, 314, 1056. [CrossRef]
27. Castaneda, D.; Esparza, A.; Ghamari, M.; Soltanpur, C.; Nazeran, H. A review on wearable

photoplethysmography sensors and their potential future applications in health care. Int. J.
Biosens. Bioelectron. 2018, 4, 195–202. [CrossRef]

28. Pereira, C.; Pinto, A.; Ferreira, D.; Aguiar, A. Experimental Characterization of Mobile IoT Application
Latency. IEEE Internet Things J. 2017, 4, 1082–1094. [CrossRef]

29. Medvedev, A.; Hassani, A.; Zaslavsky, A.; Jayaraman, P.P.; Indrawan-Santiago, M.; Delir Haghighi, P.;
Ling, S. Data Ingestion and Storage Performance of IoT Platforms: Study of OpenIoT. In Interoperability
and Open-Source Solutions for the Internet of Things: Second International Workshop, InterOSS-IoT 2016, Held in
Conjunction with IoT 2016, Stuttgart, Germany, November 7, 2016, Invited Papers; Podnar Žarko, I., Broering, A.,
Soursos, S., Serrano, M., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 141–157.
[CrossRef]

30. Cardoso, J.; Pereira, C.; Aguiar, A.; Morla, R. Benchmarking IoT middleware platforms. In Proceedings of
the 2017 IEEE 18th International Symposium on A World of Wireless, Mobile and Multimedia Networks
(WoWMoM), Macau, China, 12–15 June 2017; pp. 1–7. [CrossRef]

31. Davis, E.G.; Calveras, A.; Demirkol, I. Improving Packet Delivery Performance of Publish/Subscribe
Protocols in Wireless Sensor Networks. Sensors 2013, 13, 648–680. [CrossRef]

32. Fielding, R.T. Architectural Styles and the Design of Network-Based Software Architectures. Ph.D. Thesis,
University of California, Irvine, CA, USA, 2000.

33. Kraemer, F.A.; Braten, A.E.; Tamkittikhun, N.; Palma, D. Fog computing in healthcare—A review and
discussion. IEEE Access 2017, 5, 9206–9222. [CrossRef]

34. Ferrari, P.; Sisinni, E.; Brandão, D.; Rocha, M. Evaluation of communication latency in industrial IoT
applications. In Proceedings of the 2017 IEEE International Workshop on Measurement and Networking
(MN), Naples, Italy, 27–29 September 2017; pp. 1–6.

35. Balasubramanian, N.; Balasubramanian, A.; Venkataramani, A. Energy Consumption in Mobile Phones: A
Measurement Study and Implications for Network Applications. In Proceedings of the 9th ACM SIGCOMM
Conference on Internet Measurement Conference, Chicago, IL, USA, 4–6 November 2009; ACM: New York,
NY, USA, 2009; pp. 280–293. [CrossRef]

36. Huang, J.; Qian, F.; Gerber, A.; Mao, Z.M.; Sen, S.; Spatscheck, O. A Close Examination of Performance and
Power Characteristics of 4G LTE Networks. In Proceedings of the 10th International Conference on Mobile
Systems, Applications, and Services, Lake District, UK, 25–29 June 2012; pp. 225–238. [CrossRef]

37. Asus. Asus RT-AC87U. Available online: https://www.asus.com/pt/Networking/RTAC87U/ (accessed on
15 May 2019).

38. Espressif. Espressif ESP8266 SDK Based on FreeRTOS. Available online: https://github.com/espressif/
ESP8266_RTOS_SDK (accessed on 15 May 2019).

39. Eclipse. Eclipse OM2M. Available online: http://www.eclipse.org/om2m/ (accessed on 15 May 2019).

http://dx.doi.org/10.14778/2367502.2367568
http://dx.doi.org/10.1109/HealthCom.2014.7001821
http://www.onem2m.org
http://www.openehr.org/
http://espressif.com/sites/default/files/documentation/esp8266-technical_reference_en.pdf
http://espressif.com/sites/default/files/documentation/esp8266-technical_reference_en.pdf
http://dx.doi.org/10.1136/emj.2005.030270
http://dx.doi.org/10.1136/bmj.314.7086.1056
http://dx.doi.org/10.15406/ijbsbe.2018.04.00125
http://dx.doi.org/10.1109/JIOT.2017.2689682
http://dx.doi.org/10.1007/978-3-319-56877-5_9
http://dx.doi.org/10.1109/WoWMoM.2017.7974339
http://dx.doi.org/10.3390/s130100648
http://dx.doi.org/10.1109/ACCESS.2017.2704100
http://dx.doi.org/10.1145/1644893.1644927
http://dx.doi.org/10.1145/2307636.2307658
https://www.asus.com/pt/Networking/RTAC87U/
https://github.com/espressif/ESP8266_RTOS_SDK
https://github.com/espressif/ESP8266_RTOS_SDK
http://www.eclipse.org/om2m/


Electronics 2019, 8, 1074 15 of 15

40. Monsoon. Monsoon Power Monitor. Available online: https://www.msoon.com/online-store (accessed on
15 May 2019).

41. Mills, D. Network Time Protocol (Version 3): Specification, Implementation and Analysis. IETF RFC 1305,
1992. Available online: https://tools.ietf.org/html/rfc1305 (accessed on 15 May 2019).

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.msoon.com/online-store
https://tools.ietf.org/html/rfc1305
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Emergency Ward Scenario
	OneM2M-Based E-Health Framework
	Qualitative Assessment
	Capabilities
	Performance—Latency and Power Requirements
	Ease of Use
	Cost

	Performance of the ESP8266 Modules
	Test Set-Up
	Methodology
	Results on Power Requirements
	Results on End-to-End Latency

	Impact of WiFi Network Configuration
	Conclusions
	References

