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Abstract: Processing and applications of hyperspectral images (HSI) are limited by the noise 

component. This paper establishes an HSI denoising algorithm by applying dictionary learning and 

sparse coding theory, which is extended into the spectral domain. First, the HSI noise model under 

additive noise assumption was studied. Considering the spectral information of HSI data, a novel 

dictionary learning method based on an online method is proposed to train the spectral dictionary 

for denoising. With the spatial–contextual information in the noisy HSI exploited as a priori 

knowledge, the total variation regularizer is introduced to perform the sparse coding. Finally, sparse 

reconstruction is implemented to produce the denoised HSI. The performance of the proposed 

approach is better than the existing algorithms. The experiments illustrate that the denoising result 

obtained by the proposed algorithm is at least 1 dB better than that of the comparison algorithms. 

The intrinsic details of both spatial and spectral structures can be preserved after significant 

denoising. 

Keywords: image processing; hyperspectral image; image denoising; spectral dictionary; sparse 

coding 

 

1. Introduction 

Hyperspectral images (HSIs) are widely used in military, geological exploration, forestry, and 

agriculture domains as entry data [1,2]. Information contained in HSI can be decomposed into either 

unidimensional data, representing the spectral information, or bi-dimensional data, representing the 

spatial information. In real-world applications, the processing of HSI often includes unmixing [3,4], 

classification [5,6], and target detection [7,8]. However, the nature of HSI acquisition inevitably 

results in the blending of noise in HSI data. The noise information not only reduces the visual quality 

of images, but also complicates the processing of HSI, so the results of processing are less accurate 

[9]. Thus, HSI denoising is the first and a crucial phase of HSI processing, necessitating research for 

more effective and economic denoising methods. This domain has gained popularity, attracting 

many researchers [10]. 

In the research of HSI denoising methods, various theories have been proposed and tested. 

Initially, since each spectral channel in the HSI data cube can be treated as a grey-level image, typical 

two-dimensional (2D) image denoising algorithms, such as block-matching three-dimensional (3D) 

filtering (BM3D) [11], total variation (TV) [12], and the nonlocal-based algorithm [13], were applied 

to denoise HSIs band-by-band. Then, some denoising methods conceived for 3D data, such as video 

denoising by sparse 3D transform-domain collaborative filtering (VBM3D) [14] and block-matching 

four-dimensional (4D) filtering (BM4D) [15], were applied to HSIs. However, the above denoising 

methods fail to consider the high correlation between spectral bands and always produce low-quality 
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results. To take advantage of the correlation between spectral dimensions, a principal component 

analysis (PCA) combined with the block-matching 4D filtering method (PCA + BM4D) was proposed 

in Reference [16]. Since adjacent pixels in HSIs are highly correlated, HSIs exhibit a low-rank 

structure. Through investigating the low-rank property of HSIs, some denoising methods under low-

rank-based frameworks have been proposed, such as low-rank matrix recovery (LRMR) [17] and a 

noise-adjusted iterative low-rank matrix approximation (NAILRMA) [18]. Notably, the high-level 

noise intensity in HSIs may affect the quality of denoising results obtained by low-rank-based 

methods. 

With many applications in the field of image and signal processing, sparse representation 

performs better and continues to attract researchers’ attention [19]. Thus, sparse representation has 

been introduced into image denoising problems [20]. Since natural images or signals have a low-rank 

property [21], the latent clean image or signal is assumed to be a linear combination of basis vectors 

from a specific dictionary. In this assumption, noise is random and cannot be represented by any 

basic vector in the dictionary. Therefore, the noise component can be significantly reduced by 

projecting the image onto a subspace formed by the dictionary. In this theory, image denoising is the 

sparse signal recovery task supported by a specific dictionary. 

In order to solve the HSI denoising problem better, Zhang [22] stated that the high-precision 

sparse reconstruction optimization can be realized by constructing an appropriate dictionary from 

the noisy image. Through work on dictionary learning, several methods employed to train the 

dictionary with the noisy image have been introduced. Among them, Elad and Aharon [23] proposed 

the typical K-means singular value decomposition (K-SVD) algorithm to manage the image denoising 

problem. The K-SVD algorithm obtains an overcomplete dictionary using a preliminary training 

process. In K-SVD dictionary learning, sparse coding is performed by block coordinate relaxation 

(BCR) in each iteration, and the dictionary update is performed by eigenvalue decomposition. To 

minimize the objective function under certain constraints, each iteration of the dictionary learning 

needs to access all the elements in the training set, which is a batch method based on the second 

iteration. Thus, K-SVD has a high computational complexity and application to large-scale datasets 

like HSIs is difficult. K-SVD operates under the assumption that the exact noise variance is already 

known. In real life, the accuracy of image restoration is quite sensitive to the error of the estimated 

variance [20]. Zhou [20] proposed a nonparametric Bayesian dictionary learning method and applied 

it to HSI denoising. In this algorithm, dictionary learning is regarded as a factor analysis problem in 

which the factor loading corresponds to a dictionary atom, and potential correlation between spectral 

bands is adaptively considered by using beta process factor analysis (BPFA). The adaptive dictionary 

update is performed by applying Gibbs sampling to the noisy image and manifesting an 

approximation to the complete posterior probability. BPFA takes advantage of the correlation 

between spectral bands in the noisy HSI and produces a good denoising result. However, BPFA needs 

to access all the elements in the training datasets for each iteration, resulting in a high computational 

complexity, and requires variance in noise or residual as a priori knowledge. On the basis of BPFA, 

Shen [24] proposed an adaptive spectrum-weighted sparse Bayesian dictionary learning method 

(ABPFA). Under the compressed sensing framework, the correlation between spectral bands in the 

noisy HSI was adaptively considered using beta process factor analysis. Since the method was an 

improvement on BPFA, it has the same disadvantages as the method. 

In order to obtain a dictionary with a better training efficiency, an online dictionary learning 

algorithm (ODL) was proposed by Mairal et al. [25]. ODL selects only one subset or element from the 

training dataset each iteration, which is an effective statistical approximation of the batch method. 

This dictionary learning strategy can produce a dictionary that is adapted to the image in question 

by minimizing representation error, and improves the accuracy of the denoising of this [26]. Hao [27] 

introduced the ODL to the complex domain to solve the denoising problem of interferometric 

synthetic aperture radar (SAR) images. 

Considering the large scale of HSIs, we use the online method to construct an adaptive 

dictionary from noisy HSI for denoising. Due to the special imaging model, hyperspectral data are a 

three-dimensional (3D) cube. Since the dictionary learning algorithms are initially applied to 2D 
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images, they similarly manage the hyperspectral data. After expanding the noisy hyperspectral data 

cube into a pixel spectral matrix, dictionary learning algorithms select blocks in the matrix as the 

training set to obtain dictionary atoms. However, the spectral information of hyperspectral data 

cannot be fully utilized with this method. Therefore, we use the pixel spectral vectors instead of the 

traditional image blocks as the training data to perform dictionary learning. Obviously, the learned 

dictionary dimension is the same as the HSI spectral dimension. Under the linear mixture model 

(LMM), the dictionary atoms are regarded as spectral curves constituting the noisy HSI. Thereby, the 

dictionary atoms can better reflect the details of spectral features, and more precise HSI sparse 

reconstruction optimization can be realized, which means better denoising results. 

The HSI denoising algorithm proposed in this study is based on sparse coding and adaptive 

dictionary learning, which is termed HyDeSpDLS. In the denoising algorithm, we propose a novel 

approach for directly constructing a dictionary from hyperspectral data by progressively using the 

pixel spectral vectors as the training set. Compared with overall loading methods, such as the batch 

method, the proposed dictionary learning approach can significantly improve the training efficiency, 

and the learned dictionary can adaptively represent HSIs. With the learned dictionary, the sparse 

coding is performed using a variable splitting and augmented Lagrangian and total variation 

method. The total variation regularization is spatially homogenous, which means that nearby pixels 

have similar coefficients for the same endmember. As a priori knowledge, the total variation 

regularizer improves the sparse reconstruction accuracy. These improvements make HyDeSpDLS a 

competitive HSI denoiser. 

This paper has the following contributions: 

(1) The proposed novel dictionary learning method can construct a dictionary directly from noisy 

HSIs. To adopt the characteristics of HSI data, we use an online method to improve the training 

efficiency and use the pixel spectral vectors instead of the traditional image blocks as the training 

dataset to fully use the spectral information in noisy HSIs.  

(2) Considering the spatial-contextual information in HSI data, the TV regularizer is introduced into 

the sparse coding after the dictionary is obtained to guarantee that neighboring pixels have 

similar coefficients for one same endmember. With this prior information, the accuracy of sparse 

reconstruction improves. 

This work is an extension of a conference paper [28]. The new material is as follows:  

(1) The online spectral dictionary learning algorithm is introduced and characterized in detail. 

(2) Considering the spatial-contextual information, a new algorithm is introduced to perform the 

sparse representation, termed sparse regression by variable splitting and augmented Lagrangian 

and total variation (SpaRSAL-TV). 

(3) More exhaustive experiments and comparisons are listed. 

The contents of this paper are divided into five parts. The first part briefly introduces the 

background and current status of the research topic. The second part presents the mathematical noise 

model and the theory of HSI denoising. In the third part, the sparse coding method and the dictionary 

learning algorithm are explained. The fourth part formally outlines HyDeSpDLS, a denoising 

approach based on online dictionary learning and sparse representation in the spectral domain. The 

fifth part presents the results of the proposed method when applied to real and synthetic data, which 

are compared with the denoising methods produced by other authors. The final part concludes this 

paper. 

2. HSI Noise Model and Denoising Mechanism 

2.1. HSI Noise Model 

Under the additive noise assumption, the HSI noise model is written as below: 

f = s + n  (1) 
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where  1 2, , ... , Ls = s s s  is the original clean HSI, and its size is M N L  ; M  is the number of 

samples in a single scan; N  is the scan number in the image; L  is the band number; 

 1 2, , ... , Lf = f f f  is the noisy image, sized M N L  ; and  1 2, , ... , Ln = n n n  is the additive noise, 

and its size is f . 

The above noise model indicates that HSI denoising is actually the estimation of the potential 

clean image s  based on the prior knowledge of the noise image f . 

In practical applications, the hyperspectral data cube is usually expanded by scan lines into a 

matrix form composed of pixel spectral vectors as  1 2, , ... , L n

n

X x x x= R , where n  is the number 

of pixel spectral vectors and n  is equal to the product of M  and N . Therefore, in hyperspectral 

denoising, according to an additive noise assumption, we write the observation model as follows: 

Y = X + N  (2) 

where , L nRY N  are the observed HSI data and the observed noise, respectively; and 

 1 2, , ... , L n

n

Y y y y= R . 

2.2. Denoising Process 

HSI obtained in the real world is usually noisy, which means that the image can be considered 

decomposition of a random noise component and a clean image, which can be further decomposed 

using a dictionary. A clean image is a small number of basis vectors extracted from a dictionary, 

called a linear combination of atoms. In this assumption, noise is random and cannot be represented 

by any basic vector in the dictionary. Therefore, noise can be efficiently reduced by reconstructing 

the image with a dictionary and the corresponding sparse codes. 

Considering the special structure of HSI data, constructing a dictionary in the spectral domain 

to sparsely represent images is more consistent with the imaging mode and physical meaning of HSIs. 

Since the number of bands contained in an image is usually as high as several hundreds, it is more 

efficient and time-efficient to perform HSI denoising with a pixel spectral matrix expanded from the 

data cube. 

Therefore, we expand the noisy HSI by scan lines into a pixel matrix, which is used as a training 

set so that a spectral dictionary can be obtained. The noisy image can be reconstructed with the 

dictionary and the corresponding sparse codes. The denoising process is shown in Figure 1. 
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Figure 1. The process of the proposed denoising approach. HSI: hyperspectral image. M is the number 

of samples in a single scan, N is the scan number in the image, L is the band number, and k is the 

number of atoms in the trained spectral dictionary. The non-zero elements in the matrix are 

represented by the color blocks. The white blocks represent the zero elements. 
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2.3. Denoising Mechanism 

According to the above analysis of the HSI noise model and the denoising process, HSI denoising 

can be regarded as a sparse signal recovery task supported by a specific dictionary. 

Considering the sparse property of HSIs, the clean HSI may be represented as: 

X Dα  (3) 

where L kD R  represents the spectral dictionary, k  is the number of dictionary atoms, k nα R  

denotes the sparse codes, and only a few elements in each column are nonzero. 

Then, Equation (2) can be written as: 

Y = Dα + N  (4) 

Therefore, the HSI denoising problem is formulated as: 

 
21

min
2 F

   
α

Dα Y α  (5) 

where,    T
trace

F
   Dα Y Dα Y Dα Y  is the Frobenius norm of Dα Y . 

For the pixel spectral vector i , Equation (4) can be written as: 

i i i y Dα n  (6) 

where , 1,2,...,L

i i n y R  represents the observed pixel spectral vector, L

i n R  represents the 

corresponding noise components, and k

i α R  denotes the corresponding sparse codes vector. 

Then, the optimization in Equation (5) can be written as: 

2

2 0

1
min

2i
i i i 

α
Dα y α  (7) 

where 
0iα  is the nonzero element number of vector iα , which is termed as a 0l  norm, and the 

regularization parameter   (>0) is used to establish the relative weight between the two terms in the 

objective function. 

Since the optimization problem of the 0l  norm is non-convex, the problem is hard to precisely 

and easily solve. The 0l  norm can be replaced with the 1l  norm as a convex approximation to deal 

with the optimization in Equation (7). Then, Equation (7) can be written as a constrained sparse 

regression: 

2

1 2
min s.t.    

i
i i i  

α
α Dα y  (8) 

where 0   is the parameter controlling the reconstruction error. 

To obtain the sparse codes ˆ
iα  by solving the optimization in Equation (8), we can sparsely 

reconstruct the pixel spectral vector i  as: 

ˆ ˆ , 1,...,i i i n x Dα  (9) 

Thereby, the denoised HSI  1 2
ˆ ˆ ˆ ˆ, ,..., nX x x x  is obtained. 

In the above sparse representation-based HSI denoising mechanism, the two key steps are the 

acquisition of the spectral dictionary D  and the solution of sparse codes ˆ
iα .  
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2.4. Analysis of Noise Reduction 

The pixel spectral vector estimation error ˆ=i i i x x  is closely related to the sparsity level of 

ˆ
iα , termed 

0
ˆp  α . 

Let  ˆsupp iS  α  denote the set of indexes of nonzero elements in ˆ
iα . SD  composes the 

atoms of D  indexed by S . P  is defined as the projection matrix onto the range of SD . Concretely, 

SD  is a subset of D  and the atoms are selected by the corresponding nonzero elements in ˆ
iα . P  

is a diagonal matrix in which the elements of the main diagonal consist of zeros and ones. The trace 

of P  is p . 

With the assumption that ix  is in the range of SD , we have: 

 
22

2 2
min

L
i

S i i i


   
γ

D γ y I P n
R

 (10) 

where S i iD γ y  represents the error between the observed pixel spectral vector and the 

reconstructed one, that is, the components of the observed pixel spectral vector which fail to be 

projected into the space expanded by SD . Thus, the error is equivalent to   iI P n . 

Then, the minimum residual can be calculated as:  

 S i i i i i i    D γ Py P x n x Pn  (11) 

Due to ˆ
i S ix D γ , the estimation error of the pixel spectral vector is i i  Pn . The error is caused 

by projecting noise components into the signal space. With the assumption that the mean of the noise 

is zero and the variance is 2 I , we have: 

 
2 2 2

2
traceiE p     

 
P  (12) 

The noise attenuation is:  

2

2

2

2

i

i

E p

mE

 
 


 
 

n
 (13) 

where m  is the degree of freedom of noise. 

Therefore, we conclude that the sparse representation estimation error is proportional to the 

level of signal sparsity. The more sparse the codes, the better the denoising results. However, in 

reality, the ratio shown in Equation (13) is hard to attain due to the errors in ˆ
iα , since the encoding 

is always a non-deterministic polynomial hard (NP-hard) problem in sparse representation.  

To improve the accuracy of ˆ
iα , on the basis of the spectral dictionary in which the atoms can be 

regarded as spectral curves, the TV regularizer is introduced into the sparse coding. Since 

neighboring pixel spectral vectors having similar codes for the same atom in the dictionary, the TV 

regularizer imposes spatial consistency in the encoding results. Concretely, the TV regularizer fully 

uses the spatial-contextual information of the HSI data when doing the sparse coding, acting as prior 

information to improve the conditioning for solving the codes. Therefore, the noise attenuation ratio 

can be closer to Equation (13) when the accuracy of ˆ
iα  is improved by using the TV regularizer in 

this paper. 

The dictionary training process is aimed at finding the basis vectors to present the information 

in a noisy HSI. In order to obtain better denoising results, according to the ratio in Equation (13), it is 

necessary to ensure that the coding of the information contained in each pixel spectral vector has a 

high sparsity level. Therefore, we use an adaptive spectral dictionary to support the sparse coding. 

When training the dictionary, we use the pixel spectral vectors instead of the traditional image blocks 

as the training dataset to fully use the spectral information in the noisy HSI. Thus, the sparsity p  
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decreases when completing the sparse coding by using the spectral dictionary trained following our 

method. Then, better denoising results can be produced. 

3. Spectral Dictionary Learning and Sparse Representation 

3.1. Online Spectral Dictionary Learning  

In this paper, the spectral dictionary D  used to solve the sparse coding ˆ
iα  and finally 

reconstruct the denoised HSI X̂  is obtained by adaptive training—the dictionary learning process. 

Considering the large scale of HSIs, the overall loading methods, such as the batch method, 

usually lead to excessive calculation and a low training efficiency. We use the online method to train 

the dictionary and select only one subset or element from the training dataset in each iteration in 

dictionary learning. Due to the special structure of HSI data, we propose an online spectral dictionary 

learning method, termed OSDL, to train the spectral dictionary for denoising. Compared with the 

existing ODL, the two major improvements in OSDL are as follows. First, in order to fully use the 

spectral information in a noisy HSI, the observed pixel spectral vectors are used instead of the 

traditional image blocks as the training data. Second, we use the alternating direction method of 

multipliers (ADMM) [29] to replace the least angle regression (LARS) [30] applied in existing 

algorithms when completing the sparse coding in each iteration, since ADMM is more suitable for 

large-scale problems [30].  

Compared with other currently applied algorithms that directly construct a dictionary from HSI 

data, such as K-SVD and BPFA, OSDL has a lower computational complexity and improves the 

efficiency of dictionary learning. Since the existing dictionary learning algorithms do not well-utilize 

the spectral information, OSDL overcomes this disadvantage by using pixel spectral vectors as the 

training data. The dictionary atoms reflect the details of spectral features. 

Given a set of pixel spectral vectors from HSI data, dictionary learning is formulated in the 

regularization framework: 

p

1 p

2

2 1, , ... ,
1

1
min

2N

N

i i i
C

i






 
D α α

y Dα α  (14) 

The objective function of the optimization problem in Equation (14) is the sum of the 

representation error quadratic norm plus a sparsity promoting term. The 1l  norm represents the 

linear regression coefficients. The regularization parameter   (>0) is used to establish the relative 

weight between the two terms and pN  is the number of pixel spectral vectors. To prevent the 

dictionary atoms of D  tending to infinity due to the role of the 1l  norm, the constraint CD  is 

set, where  R : 1, 1, ... ,L k T

j jC d d j k   D . 

Though it is non-convex to simultaneously optimize all variables, the optimizations of the 

coefficients 
p1, ... , N

 
 

α α α  and the dictionary D  are convex. Therefore, one variable is kept 

constant when the other is minimized, which is the direct method to perform the optimization 

problem in Equation (14).  

Due to the large scale of the HSI data set, in a typical small image scenario consisting of 100 × 

100 pixels and 100 bands, we have = 10,000pN  and 100L  . Therefore, the optimization problem 

of Equation (14) is relatively light with respect to D , but extremely heavy with respect to iα . In order 

to efficiently obtain the spectral dictionary, an online method is introduced into dictionary learning. 

First, a random sequence of pixel spectral vectors is selected from the pixel spectral matrix as the 

training set in the current cycle and processed sequentially. For each new element in the current 

training set, sparse coding is calculated first, and the current dictionary is then updated. 

The optimization of Equation (14) is a basis pursuit denoising (BPDN) problem with respect to 

the optimization of iα . With a known dictionary, the sparse coding can manage the sparse-
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promoting-based regularization criterion such as the 0l  norm. Thus, this optimization can be 

written as a constrained sparse regression: 

2

1 2
min . .i i is t 
α

α Dα - y  (15) 

where 0   is the parameter controlling the reconstruction error. 

The most widely used algorithm used to implement the sparse regression is LARS. Considering 

the large scale of the HSI dataset, ADMM is applied instead. The ability to decompose a large problem 

into several smaller pieces is the major advantage of ADMM [30]. 

When the sparse coding is finished, the goal of the optimization of D  is to minimize the 

function as: 

 
2

12
1

1 1

2

t
j

t j j

j

g
t




  D y Dα α  (16) 

where t  is the current iteration number, j
y  is the training set consisting of j  spectral vectors that 

are randomly obtained from the pixel spectral matrix, and the sparse codes jα  are already known. 

Then, the dictionary columns are updated through a projected block-coordinate descent method in 

the optimization of Equation (16). 

The online dictionary learning principle is analyzed to determine the OSDL algorithm flow. 

First, the pixel spectral matrix, expanded from the noisy hyperspectral image, is used as the original 

training set. Then, a random sequence of pixel spectral vectors is selected from the pixel spectral 

matrix as the training set in the current cycle, which is processed sequentially. For each new element 

in the current training set, the sparse coding is calculated by solving the BPDN problem, and the 

current dictionary is then updated. Algorithm 1 shows the pseudo code for OSDL. 

Algorithm 1 Online spectral dictionary learning (OSDL) [8]. 

Input:  1

p, 1, ... ,L

i i N y R  (origin training set: entire pixel spectral vectors) 

        T N  (number of iterations) 

         N  (the number of the pixel spectral vectors per iteration) 

        0   (basis pursuit denoising regularization parameter) 

        t     (damping sequence) 

0

L kD R  (initial dictionary) 

Output: L kD R  (trained dictionary) 

1    begin 

2         Parameter initializations 

3         for 1t   to T  do   

4             Draw randomly , 1, ... ,t t

i i    y y  from Y  

             /* Sparse coding */ 

5            
2

1FR

1
arg min

2k

t t





  

α

α y Dα α  

6             
1

H
t t

t i ii





 A A α α    

7             
1

H
t t

t i ii





 B B y α  

              /* Dictionary update */ 

8             repeat 

9                  for 1j   to k  do   

10                     
 

 
1

,
j j j j

j j
  u b Da d

A
  

11                      
2

/ max ,1j j jd u u  

12            until convergence 
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13                 end for 

14        end for 

15    end 

In Algorithm 1, α  denotes the sparse codes matrix, and matrixes Α  and B  represent the 

accumulated “past” information. Thus, the value of both 0A  and 0B  is zero. 

The algorithm output cannot be influenced by the initial dictionary. Generally, the first k  pixel 

spectral vectors in the pixel spectral matrix are taken as the initial dictionary atoms. Since the 

dictionary columns are updated through a projected block-coordinate descent method with the high 

level of sparsity of codes iα , just one iteration per column is enough to finish the update. Therefore, 

to improve the rate of the convergence, the current iteration is implemented by using the dictionary 

in the previous iteration as a warm restart. 

Since “new” information can be more accurate, a parameter  0,1t   is introduced into the 

dictionary learning algorithm to gradually decrease the accumulated information weight in Α  and 

B  over time. t  is defined here as: 

1
1 , 1,2, ...t t

t




 

   
 

 (17) 

where 0  . 

3.2. Sparse Coding 

The learned spectral dictionary can be used to calculate sparse codes of the noisy HSI. Due to 

the correlation between pixel vectors and the neighbors, the spatial-contextual information in noisy 

HSIs is exploited as a priori knowledge when completing the sparse coding. Hence, sparse regression 

by variable splitting and augmented Lagrangian and total variation (SpaRSAL-TV) is applied to 

perform the sparse coding, and this optimization problem can be written as: 

 
2

c TV1,1

1
min + TV

2

s.t. 0

F
  



Dα Y α α

α

 (18) 

where 

 
 

1
,

TV i j

i j 

 α α α  (19) 

is a vector extension of the non-isotropic total variation (TV), which allows the abundance coefficients 

of the same end-member among neighboring pixels to change smoothly.   represents the 

neighborhood subsets in the image horizontally and vertically, and 
1,1 1

1

n

i

i

α α , in which iα  is 

the ith column of the matrix α . The regularization parameters  c  and TV  are both non-negative. 

If TV 0  , the optimization in Equation (18) is simplified to a BPDN problem without considering 

spatial information, which is the optimization in Equation (5). 

Due to the non-smooth terms and the large dimensionality, even though the optimization in 

Equation (18) is convex, it is hard to solve. Therefore, according to the methodology proposed in 

Reference [30], the variable splitting and augmented Lagrangian (SUnSAL) algorithm is used to 

introduce new variables for regularization into the sparse unmixing [31], so that the initial problem 

is converted into simpler problems. Essentially, the ADMM method is used here to solve the 

optimization in Equation (18). 

Let k n k n

h

 H R R：  be a linear operator through which the differences between the 

components of α  and their neighboring pixels in the horizontal direction can be calculated. 
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Similarly, k n k n

v

 H R R：  is defined as the linear operator that computes the abundance differences 

in the vertical direction. 

According to the above definitions, we denote: 

h

v

 
 
 

H α
Hα

H α
=  (20) 

Then, the optimization in Equation (18) can be written as: 

   
2

TVF 1,1

1
min TV

2
c     

α
Dα Y α α α

R+  (21) 

where    
1

n

i

i

 


α αR+ R+  is the indicator function. The function value is zero if iα  belongs to the 

non-negative orthant; otherwise, it is positive infinity. 

The optimization in Equation (21) is solved with the ADMM method, which can be expressed 

as: 

 
1 2 3 4 5

2

1 2 TV 4 5F 1,1 1,1, , , , ,

1
min

2
c     

U V V V V V
V Y V V V

R+
 (22) 

1

2

3

4 3

5

s.t.









 

 

V DU

V U

V U

V HV

V U

 (23) 

The optimization in Equation (22) is represented in a compact form: 

 
,

min

s.t.

g

 

U V
V

GU PV 0
 (24) 

where 

 

   

1 2 3 4 5

2

1 2 TV 4 5F 1,1 1,1

, , , ,

1

2

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0

0 0 0 0

cg   



    

   
   


   
     
   

   
      

V V V V V V

V V Y V V V

D I

I I

G PI I

H I

I I

R+

0

 

(25) 

We can rewrite the optimization in Equation (24) in an augmented Lagrangian form as: 

   
2

F
, , ,

2
L g


   U V Q U V GU PV Q  (26) 

where   is a positive constant and / Q  is the Lagrange multiplier of the constraint 0 GU PV

. Therefore, the sparse coding algorithm begins with the application of the augmented Lagrangian in 

Equation (26), and the flow is shown in Algorithm 2. 
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Algorithm 2 Sparse regression by variable splitting and augmented Lagrangian and total 

variation (SpaRSAL-TV). 

Input:    , 1, ... ,L n i n Y R  (origin noisy image) 

         L kD R  (trained spectral dictionary) 

T N   (number of iterations) 

         0      (regularization parameter) 

Output:   k nα R  (sparse codes) 

1    begin 

2         Parameter initializations 
         0 0 0 0 0

0 5 1 50, , , ... , , , ... ,t  U V V Q Q  

3         While not converge do 

4                      1

1 5 1 5arg min , , ... , , , ... ,
t t t t t

L



U
U U V V Q Q  

5                  for 1i   to 5  do   

6                             1

1 5arg min , , ... , , ... ,
i

t t t t

i iL



V
V U V V V   

7                  end for 

8                     

       

       

       

       

       

1 t 1 1

1 1 1

1 t 1 1

2 2 2

1 t 1 1

3 3 3

1 1 1

4 4 3 4

1 t 1 1

5 5 5

t t t

t t t

t t t

t t t t

t t t

  

  

  

  

  

  

  

  

  

  

Q Q DU V

Q Q U V

Q Q U V

Q Q HV V

Q Q U V

 

9          end  

10    end 

4. HSI Denoising Algorithm Outline 

By analyzing the HSI denoising process and the HSI noise model in Section 2 and studying the 

spectral dictionary learning method and the sparse representation approach in Section 3, an HSI 

denoising algorithm on the basis of spectral dictionary learning and sparse coding, HyDeSpDLS, is 

proposed. Algorithm 3 shows the pseudo code of the HyDeSpDLS algorithm. 

Algorithm 3 HyDeSpDLS. 

Input:  M N L f R  (Noisy HSI cube) 

Output:  ˆ M N L s R  (Denoised HSI cube) 

1  begin 

2    expand f  into pixel spectral vectors 1, 1, ... ,L

i i M N  y R  

3     OSDL , 1, ... ,i i M N D y=  (spectral dictionary training, Algorithm 1) 

4     SpaRSAL-TV ,α D Y=  (sparse coding, Algorithm 2) 

5    ˆ X Dα  

5   transform X̂  to estimated denoised HSI cube ˆ M N L s R   

6  end 

5. Experiments and Results 

In this section, the competitiveness and effectiveness of the proposed HyDeSpDLS are verified 

according to real and synthetic HSI data in exhaustive experiments. The proposed algorithm is 

comprehensively evaluated with both qualitative observation and quantitative indexes compared 

with the existing HSI denoising methods. MATLAB R2014a on a laptop that is equipped with eight 

Intel Core i7-7700HQ CPU with 16 GB RAM, is used to implement the algorithms. 
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The proposed HyDeSpDLS is compared with seven state-of-the-art HSI denoisers in both 

synthetic and real experiments,: BM3D, BM4D, PCA + BM4D, LRMR, NAILRMA, KSVD, and BPFA. 

Among them, KSVD and BPFA are also dictionary learning-based denoising methods. 

5.1. Synthetic Data  

5.1.1. Data Description and Experimental Condition 

The synthetic data is generated from a Washington DC Mall scene. The original data has 256 × 

256 pixels and 191 spectral channels with atmospheric correction, which is regarded as a clean image 

for our experiments. Each band is normalized to [0,1] in advance before adding simulated noise. 

Three kinds of noises, Gaussian independent and identically distributed (i.i.d) noise, Poissonian 

noise, and Gaussian non-i.i.d noise, are considered in the experiments. The studied variances of the 

Gaussian i.i.d noise are 0.04, 0.06, 0.08, 0.10, and 0.12, and the mean is zero. Gaussian non-i.i.d noise 

obeys the distribution  2

i dn DN 0, , where dD  is a diagonal matrix with diagonal elements 

sampled from a uniform distribution  U 0,1 . Poissonian noise obeys the distribution  P Y X , 

where  P W  is an independent Poisson random variable matrix of size W . The parameters are 

given by the corresponding elements of ijw   W： . The signal-to-noise ratio (SNR) 

   2

, ,
/ij iji j i j

w w    was set to 15 dB with the parameter  . 

The optimization parameter of the proposed HyDeSpDLS is the regularization parameter   in 

the dictionary learning process. The value of   is related to the HSI noise level. When the image 

contains more noise, it is suitable to select a larger  . Otherwise, a smaller one is selected. Generally, 

the value of   is set to 1. In addtion, the memory required for the proposed algorithm is 96 Mb. 

5.1.2. Evaluation Indexes 

The performances of different denoising approaches are quantitatively examined by calculating 

the peak signal-to-noise (PSNR) index and the structural similarity (SSIM) index.  

The PSNR index is defined as: 

    

2

10 2

, ,

MAX
PSNR=10log

ˆ , , , ,
i j l

i j l i j l
s

s s
 

(27) 

where s  is the clean HSI, and ŝ  is the reconstructed image. s  has a size of M N L  , the indexes 

of which are , ,i j l . The PSNR is the overall approximation degree of the denoised image to the clean 

image. 

The SSIM index is calculated as:  

  

  
ˆ ˆ1 2

2 2 2 2

ˆ ˆ1 2

2 2
SSIM

C C

C C

  

   

 


   

s s ss

s s s s

 (28) 

where s  and  s  represent the mean and the variance of the clean HSI, respectively; similarly, ˆs  

and ˆ s  denote the mean and the variance of the denoised HSI, respectively. Due to the weak 

denominator, we define two constants, 1C  and 2C , to make the division stabilized. The denoising 

performance of the spatial dimension of HSI can be evaluated through the SSIM index focusing on 

structure information. 
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5.1.3. Experimental Results 

Figures 2–4 present the denoising results from different denoising methods with different kinds 

of noise. Under the Poissonian noise assumption, the Poissonian noise is first transformed into 

approximate additive Gaussian noise with roughly equal variance by the Anscombe transform [32], 

and then denoising processing is performed. From the figures, we qualitatively find that the 

performance of the proposed HyDeSpDLS is better than that of the other denoising algorithms. It can 

be concluded that all the algorithms are able to denoise the image under all the noise conditions. 

BM3D, BM4D, and KSVD smooth the details of the denoising results to varying degrees. From 

Figures 2d,e,g–4d,e,g, we can find that the details of the buildings and green belts are smoothed and 

blurred. In contrast, PCA + BM4D, LRMR, NAILRMA, and BPFA are better able to preserve local 

details, as shown in Figures 2f,h–j–4f,h–j. However, these four approaches still leave small amounts 

of noise in the denoising results. From Figures 2–4k, we can find that the proposed HyDeSpDLS is 

best able to significantly preserve the intrinsic details of the spatial structure when removing the 

noise.  

      

(a) (b) (c) (d) (e) (f) 

 

     

 (g) (h) (i) (j) (k) 

Figure 2. Denoising results for band 60 of Washington DC Mall data with Gaussian i.i.d. noise: (a) 

Clean image; (b) zoomed area of clean image in red box of (a); (c) noisy image; (d) BM3D; (e) BM4D; 

(f) PCA + BM4D; (g) KSVD; (h) LRMR; (i) NAILRMA; (j) BPFA; and (k) HyDeSpDLS. 

     
 

(a) (b) (c) (d) (e) (f) 

 

     

 (g) (h) (i) (j) (k) 

Figure 3. Denoising results for band 60 of Washington DC Mall data with Gaussian non-i.i.d. noise: 

(a) Clean image; (b) zoomed area of clean image in red box of (a); (c) noisy image; (d) BM3D; (e) BM4D; 

(f) PCA + BM4D; (g) KSVD; (h) LRMR; (i) NAILRMA; (j) BPFA; and (k) HyDeSpDLS. 

      

(a) (b) (c) (d) (e) (f) 
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 (g) (h) (i) (j) (k) 

Figure 4. Denoising results for band 60 of Washington DC Mall data with Poissonian noise: (a) Clean 

image; (b) zoomed area of clean image in red box of (a); (c) noisy image; (d) BM3D; (e) BM4D; (f) PCA 

+ BM4D; (g) KSVD; (h) LRMR; (i) NAILRMA; (j) BPFA; and (k) HyDeSpDLS. 

Figures 5–7 present the denoised spectral signature results produced by different denoising 

methods and with different kinds of noise. The quality of the spectral signatures in HSIs is important 

for material recognition. Due to inadequate use of the spectral information in noisy HSIs, the 

reconstructed spectra obtained by BM3D, BM4D, and KSVD are quite low, as shown in Figures 5–

7b,c,e. Considering the low rank property of HSIs, the accuracy of reconstructed spectra obtained by 

PCA + BM4D, LRMR, NAILRMA, and BPFA improved, as shown in Figures 5–7d,f–h. Since the 

proposed HyDeSpDLS uses a spectral dictionary in which atoms better reflect the details of spectral 

features in the noisy HSI, this algorithm yields the best performance in restoring the spectral 

signatures, as shown in Figures 5–7i. 

 
 

   

(a) (b) (c) (d) (e) 

 

    

 (f) (g) (h) (i) 

Figure 5. Denoised spectral signature results of Washington DC Mall data with Gaussian i.i.d. noise: 

(a) Noisy; (b) BM3D; (c) BM4D; (d) PCA + BM4D; (e) KSVD; (f) LRMR; (g) NAILRMA; (h) BPFA; and 

(i) HyDeSpDLS. 

     

(a) (b) (c) (d) (e) 

 

 
   

 (f) (g) (h) (i) 

Figure 6. Denoised spectral signature results of Washington DC Mall data with Gaussian non-i.i.d. 

noise: (a) Noisy; (b) BM3D; (c) BM4D; (d) PCA + BM4D; (e) KSVD; (f) LRMR; (g) NAILRMA; (h) 

BPFA; and (i) HyDeSpDLS. 
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(a) (b) (c) (d) (e) 

 

    

 (f) (g) (h) (i) 

Figure 7. Denoised spectral signature results of Washington DC Mall data with Poissonian noise: (a) 

Noisy; (b) BM3D; (c) BM4D; (d) PCA + BM4D; (e) KSVD; (f) LRMR; (g) NAILRMA; (h) BPFA; and (i) 

HyDeSpDLS. 

Table 1 shows the mean SSIMs (MSSIM) and the mean PSNRs (MPSNR) in the Washington DC 

Mall data. The highest values are shown in bold and the second highest values are underlined. It can 

be concluded from Table 1 that the performance of the proposed HyDeSpDLS is the best in both 

indexes under all the noise conditions. With increasing noise, the improvements produced by 

HyDeSpDLS also increase, compared with other denoisers. Compared with the dictionary learning-

based denoisers, namely BPFA and KSVD, the denoising performance of the proposed HyDeSpDLS 

is significantly better.  

Table 1. Quantitative indexes of different denoising algorithms applied to the Washington DC Mall 

image. 

   Index 
Noisy 

Image 
BM3D BM4D 

PCA + 

BM4D 
KSVD LRMR NAILRMA BPFA 

HyDeSpD

LS 

Gaussian i.i.d 

noise 

0.04 MPSNR(dB) 27.9599 32.0285 38.9044 43.3227 37.8230 40.9294 43.1509 43.3978 1 44.4789 2 

 MSSIM 0.8102 0.9164 0.981 0.9917 0.9741 0.9887 0.9920 0.9925 0.9940 

0.06 MPSNR(dB) 24.4361 29.8152 36.2168 39.9911 34.8703 37.7729 40.2376 40.5005 41.7362 

 MSSIM 0.6825 0.8668 0.9652 0.9824 0.9496 0.9775 0.9848 0.9860 0.9893 

0.08 MPSNR(dB) 21.9372 28.3672 34.3281 37.9954 32.7267 35.5986 38.1823 38.5642 39.8037 

 MSSIM 0.5731 0.8207 0.9473 0.9754 0.9193 0.9641 0.9766 0.9788 0.9851 

0.10 MPSNR(dB) 20.00 27.3065 32.9145 35.6893 31.0701 34.0465 36.6888 37.0405 38.3517 

 MSSIM 0.4832 0.7786 0.9281 0.9555 0.8861 0.9504 0.9687 0.9783 0.9791 

0.12 MPSNR(dB) 18.4155 26.4758 31.7905 34.1409 29.7226 32.8334 35.3872 35.7854 37.0672 

 MSSIM 0.4100 0.7400 0.9087 0.9388 0.8515 0.9361 0.9597 0.9619 0.9735 

Gaussian non-

i.i.d noise 

 MPSNR(dB) 28.6158 32.9923 35.9756 37.0414 28.2282 37.7938 44.5577 44.5680 51.3974 

 MSSIM 0.7507 0.8928 0.9616 0.9330 0.7928 0.9754 0.9945 0.9914 0.9985 

Poissonian 

noise 

 MPSNR(dB) 26.9804 31.2915 38.8223 39.5616 30.7916 40.2634 42.1077 39.7885 42.7277 

 MSSIM 0.8003 0.9118 0.9814 0.9804 0.8658 0.9843 0.9888 0.9792 0.9913 

1 The second highest value in each row is underlined. 2 The highest value in each row is shown in bold. 

The running times of different denoising algorithms are shown in Table 2. We can find that, 

compared with the dictionary-learning-based denoisers, namely BPFA and KSVD, the running time 

of the proposed HyDeSpDLS is much shorter. It can be concluded that the dictionary learning method 

applied in HyDeSpDLS has less computational complexity. However, the proposed HyDeSpDLS 

needs more time than low-rank based algorithms, namely LRMR and NAILRMA, and it may be 

improved in future research. 
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Table 2. Computational time (seconds) of different denoising algorithms applied to the Washington 

DC Mall image. 

 BM3D BM4D PCA + BM4D KSVD LRMR NAILRMA BPFA HyDeSpDLS 

Gaussian i.i.d. noise 169 1024 985 3536 135 158 4315 566 

Gaussian non-i.i.d. noise 144 1028 997 3492 127 359 29907 564 

Poissonian noise 156 1102 1008 3808 128 96 26904 516 

5.2. Real-World Data 

5.2.1. Data Description 

HyDeSpDLS is applied to the Indian Pine data acquired by the AVIRIS (airborne visible/infrared 

imaging spectrometer) hyperspectral sensor over Northwestern Indiana, USA in June 1992. There are 

145 × 145 pixels in the image, with a spatial resolution of 20 m per pixel, and 220 bands with 

atmospheric correction. It is assumed that the noise in the dataset is non-i.i.d and displays a strong 

effect in a number of bands. 

5.2.2. Experimental Results 

Since there are mass bands in the dataset, only the 61st and 110th bands are selected to illustrate 

the denoising performance of different algorithms. The image displays strong noise and high 

brightness in the 61st band, as shown in Figure 8a. Qualitatively, the proposed HyDeSpDLS produces 

the best denoising result and the spatial structure details, such as edges of the image, are well 

preserved. In contrast, the image displays weak noise and low brightness in the 110th band, as shown 

in Figure 9a. BM3D, BM4D, and KSVD can more or less remove the noise, as shown in Figure 9b,c,e, 

respectively. PCA + BM4D, LRMR, and BPFA remove the noise moderately, as presented in Figure 

9d,f,h, respectively. However, the three approaches also smooth the details. NAILRMA and the 

proposed HyDeSpDLS produce the best denoising results and HyDeSpDLS better preserves the 

details of spatial structures compared to NAILRMA, as shown in Figure 9g,i, respectively. This 

further illustrates the robustness of the proposed method with different noise intensities and image 

brightness. 

     

(a) (b) (c) (d) (e) 

 

    

 (f) (g) (h) (i) 

Figure 8. Denoising results for band 61 of the Indian Pine data: (a) Original image; (b) BM3D; (c) 

BM4D; (d) PCA + BM4D; (e) KSVD; (f) LRMR; (g) NAILRMA; (h) BPFA; and (i) HyDeSpDLS. 
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(a) (b) (c) (d) (e) 

 

    

 (f) (g) (h) (i) 

Figure 9. Denoising results for band 110 of the Indian Pine data: (a) Original image; (b) BM3D; (c) 

BM4D; (d) PCA + BM4D; (e) KSVD; (f) LRMR; (g) NAILRMA; (h) BPFA; and (i) HyDeSpDLS. 

6. Conclusions 

In this paper, a novel denoising method for HSI, called HyDeSpDLS, is proposed based on 

dictionary learning and sparse coding and extended to the spectral domain. Firstly, the noisy HSI 

data cube is expanded into a pixel spectral matrix by the scan lines first. A training set consisting of 

pixel spectral vectors from the matrix is used to train the spectral dictionary for image sparse 

representation. The spatial-contextual information present in the noisy HSI is exploited as a priori 

knowledge when completing the sparse coding. Compared with the existing algorithms, including 

BPFA, NAILRMA, PCA+BM4D, BM4D, BM3D, KSVD, and LRMR, the performance of the proposed 

method is much better. The intrinsic details of both spatial and spectral structures are well preserved 

with significant denoising, according to qualitative observations and quantitative indexes. However, 

the proposed algorithm still has a time consumption problem. In future research, we will focus on a 

faster implementation of the algorithm. 
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