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Abstract: In general frequency-selective Ricean fading environments with doubly-ended spatial
correlation, this paper investigates the spectral efficiency of a broadband massive multiple-input
multiple-output (MIMO) system. In particular, in order to reduce overhead of channel estimation
effectively, it proposes a scheme of equal gain transmission and combining, which is only based on
line- of-sight (LOS) component and has low hardware complexity. With the scheme, several interesting
transmit power scaling properties without and with spatial correlation are derived when the number
of antennas at the transmitter or the number of antennas at the receiver grows in an unlimited way.
Furthermore, the asymptotical rate analysis is extended to the cooperative relaying scenarios with
decode-and-forward and amplify-and-forward protocols, respectively, and then two novel power
scaling laws are given.
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1. Introduction

Recently, massive multiple-input multiple-output (MIMO) has attracted great interest in both
academia and industry, and has been a promising solution to meet the demanding spectral efficiency
requirement of 5G systems [1]. Its promising benefits includes significant increase of both spectral
and energy efficiencies [2–4]. Interestingly, the two benefits of massive MIMO can be achieved
by maximum-ration transmission/maximum-ration combining (MRT/MRC) or zero-forcing (ZF)
precoding/detection [3,5].

With MRT/MRC and ZF linear processing, many scholars have given various asymptotic
performance analyses. In particular, the power scaling law in the limit of the large number of antennas
has been widely studied in order to quantify the power savings. For Rayleigh and Ricean fading
environments, with MRC and ZF detectors, authors in [3,6] analyzed uplink massive MIMO system
performance. If perfect channel state information (CSI) is available, they showed that, when the
number of base station (BS) antennas grows large and the transmit power of each user is scaled down
proportionally to it, the ergodic achievable rate can asymptotically be equal to a positive constant.

In order to obtain the needed CSI, channel estimation must be obviously carried on [7]. However,
the channel estimation will result in not only heavy overhead but also pilot contamination in multi-cells,
which will become a serious problem [2,8]. For a point to point massive MIMO system in Ricean
fading, to reduce the heavy overhead to estimate the CSI, we investigated a scheme with equal gain
transmission /equal gain combining (EGT/EGC), which is only based on the line-of-sight (LOS)
component (or say specular component) and has low hardware complexity [9]. It was showed that,
with this scheme, the ergodic achievable rate can converge to that of the corresponding MRT/MRC
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based on the perfect CSI as the two numbers of antennas at the transmitter and receiver go to infinity.
After that, we further considered the novel linear processing scheme for a downlink or uplink multiuser
massive MIMO system [10,11] and showed that each user in the downlink or uplink system can
have asymptotically the same rate as in the single-user case when the number of BS antennas goes
without bound.

It should be pointed out that the above-mentioned results with the novel scheme have only
considered uncorrelated Ricean frequency-flat fading channels without a relay [12]. Recently, we tried
to develop our analysis to frequency-selective Ricean fading channels [13], but only for a very simple
and special scenario [14]. The EGT/EGC linear transmission scheme is very attractive for massive
MIMO systems since it enables low-complexity and inexpensive hardware [15–18]. Motivated by
these facts, in this paper, we make use of a comparatively complicated and general frequency-selective
Ricean fading channel model [14,19,20] to investigate further the LOS-based EGT/EGC scheme.
We firstly derive several interesting power scaling properties for broadband massive MIMO systems
with and without spatial correlation. In particular, it is shown that the ergodic achievable rate of
LOS-based EGT/EGC scheme can have the same asymptotic value as the ergodic achievable rate of
the whole CSI-based MRT/MRC scheme if the two numbers of transmit and receive antennas go
without bound and with a fixed ratio. Then, we extend our asymptotical performance analysis to the
cooperative relaying scenarios with decode-and-forward (DF) protocol and with amplify-and-forward
(AF) protocol, respectively, and obtain two novel power scaling laws for the two scenarios. In particular,
it is also shown that the ergodic achievable rate of LOS-based scheme can have the same asymptotic
value as the ergodic achievable rate of the CSI-based scheme if the number of source antennas and
the two numbers of transmit and receive relay antennas go without bound and with two fixed
ratios, respectively.

The manuscript is organized as follows: in Section 2, the system model is introduced. In Section 3,
the proposed LOS-based transmission scheme is presented and its power scaling law without
correlation and with correlation is derived, respectively. Extension of our analysis to a cooperative
relaying system is given in Section 4. In Section 5, the analysis results are verified by simulation.
Finally, in Section 6, some concluding remarks are given.

Notation: boldface lower and upper case letters denote column vectors and matrices, respectively.
The superscripts (·)† and (·)T stand for conjugate-transpose and transpose operations, respectively.
The expectation operator is denoted by E{·}. α ∼ CN(0, δ2) stands for a circularly symmetric complex
Gaussian variable α which has zero mean and variance δ2.

2. System Model

Since a set of parallel independent frequency flat MIMO channels can be used to describe a
frequency selective MIMO channel, we start with introducing the frequency flat channels [14,19].

For a point-to-point MIMO system over frequency-flat channels, we assume that it has N transmit
antennas and M receive antennas. Then, we can represent a M× 1 received signal vector as

y =
√

pH0x + z, (1)

where z denotes the additive white Gaussian noise (AWGN) vector that has zero-mean and covariance
matrix σ2IM with IM being the M × M identity matrix, x denotes the transmitted signal vector,
H0 = [hmn]

M,N
m,n=1 stands for the M× N channel matrix whose element hmn denotes the channel gain

between the m-th antenna at the receiver and the n-th antenna at the transmitter, and p is the average
transmitted power. The channel matrix H0 under Ricean fading consists of a LOS matrix and a scattered
matrix, i.e.,
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H0 =
√

κ̄0H0 +
√

κ̃0H̃0, (2)

where κ̄0 = κ0
1+κ0

, κ̃0 = 1
1+κ0

. Note that κ0 > 0 represents the Ricean K-factor. The LOS matrix H0 can
be written as

H0 = r0tT0 . (3)

Here, r0 denotes the specular array response at the receiver and can be expressed as

r0 = [1, ej2πdr sin(θ), . . . , ej2π(M−1)dr ,sin(θ)]T, (4)

where θ is the angle of arrival of the LOS component and dr is the antenna spacing normalized by
wavelength at the receiver. Similarly, t0 denotes the specular array response at the transmitter and can
be given by

t0 = [1, ej2πdt sin(φ), . . . , ej2π(N−1)dt sin(φ)]T (5)

where φ is the angle of departure of the LOS component and dt is the antenna spacing normalized by
wavelength at the transmitter. The entries in the scattering matrix H̃0, [H̃0]mn ∼ CN(0, 1), i.e., they are
circular complex Gaussian random variables with zero mean and unit variance. Furthermore,
we assume that they are independent and identically distributed (i.i.d).

Now, we are concerned with a broadband orthogonal frequency-division multiplexing
(OFDM)-MIMO system with K subcarriers, where ideal OFDM transmission with proper cyclic prefix
extension is assumed. For the k-th subcarrier, the input–output relationship is expressed as

y =
√

pHx + z, (6)

where x is just the normalized signal vector, z is the AWGN vector, and H is the channel matrix.
The channel matrix can be given by as

H =
L−1

∑
`=0

ρ`H` exp(−j2π
k
K
`), (7)

where L represents the channel delay spread, {ρ2
`} is the power delay profile satisfying ∑L−1

`=0 ρ2
` = 1,

and H` stands for the channel matrix at time delay `. Furthermore, H`, ` = 0, 1, · · · , L− 1 are mutually
uncorrelated, Ricean distributed, and can be expressed as in Label (2)

H` =
√

κ̄`H` +
√

κ̃`H̃`. (8)

In particular, H` = r`tT` is just as in Label (3) and H̃` is also modeled as a random matrix consisting
of i.i.d. elements.

3. LOS-Based EGT/EGC and Power Scaling Laws

3.1. The Scenario without Correlation

The scattered component of k-th subcarrier’s channel matrix can be described as

H̃ =
L−1

∑
`=0

ρ`
√

κ̃`H̃` exp(−j2π
k
K
`). (9)

Now, it is assumed that H̃ is not available, but the LOS component
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H =
L−1

∑
`=0

ρ`
√

κ̄`H` exp(−j2π
k
K
`) (10)

can be available. In what follows, by employing only H, we will present a linear processing scheme
with EGT/EGC and then compare it with the MRT/MRC scheme based on the perfect CSI.

Since H̃ is not available, a couple of the normalized weighting vectors wt and wr can be chosen in
such a way that the effective output signal-to-noise ratio (SNR) can become maximum. The largest
eigenvalue of matrix H†H is now denoted by λmax(H

†H) . Due to the fact that w†
r zk ∼ CN(0, σ2),

the effective output signal-to-interference-plus-noise ratio (SINR) can be described as

γ
(k)
S =

p|w†
r HwT†

t |2

p|w†
r H̃wT†

t |2 + σ2
=

pλmax(H
†H)

p|w†
r H̃wT†

t |2 + σ2
. (11)

We denote by RS the ergodic achievable rate of the LOS-based scheme. Then,

RS = E{ 1
K

K−1

∑
k=0

log2(1 + γ
(k)
S )} = 1

K

K−1

∑
k=0

R(k)
S , (12)

where R(k)
S = E{log2(1 + γ

(k)
S )}. We have the following results through the derivation.

Lemma 1. Define λ
(k)
max = λmax(H

†H) and κ̃S = ∑L−1
`=0 ρ2

` κ̃`. Then,

log2(1 +
pλ

(k)
max

pκ̃S + σ2 ) ≤ R(k)
S ≤ log2(1 +

pλ
(k)
max

σ2 ). (13)

Proof of Lemma 1. Regarding the ergodic achievable rate of the k-th subcarrier, it is easy for us to
derive its following lower bound with the help of the well-known Jensen’s inequality:

R(k)
S ≥ log2(1 +

1

E(1/γ
(k)
S )

) = log2(1 +
pλ

(k)
max

p ∑L−1
`=0 ρ2

`E` + σ2
), (14)

where E` = E|w†
r H̃`wT†

t |2 = κ̃` for 0 ≤ ` ≤ L− 1. Thus,

Rk
C ≥ log2(1 +

pλ
(k)
max

pκ̃S + σ2 ). (15)

Moreover, we can obtain from Label (11) that

R(k)
S = E log2(1 +

pλ
(k)
max

p|w†
r H̃wT†

t |2 + σ2
) ≤ log2(1 +

pλ
(k)
max

σ2 ). (16)

Thus, Lemma 1 holds.

Lemma 2. Let κ̄U = ∑L−1
`=0 ρ2

` κ̄`. and κ̄L = max{ρ2
` κ̄`, 0 ≤ ` ≤ L− 1}. Then,

κ̄L ≤ lim
MN→∞

λ
(k)
max

MN
≤ κ̄U . (17)

Proof of Lemma 2. For 0 ≤ ` ≤ L− 1 and 0 ≤ b ≤ L− 1, we define ϕ`b = 2πdr(sin(θb)− sin(θ`)),
and then have that



Electronics 2019, 8, 79 5 of 14

H̄†
`H̄b

MN
= $`bU`b, (18)

where

$`b =
r†
` rb

M
=

{
1, for l = b;

1−ejMϕ`b

M(1−ejϕ`b )
, for ` 6= b (19)

and

U`b =
tT†
` tTb
N

= [uan]
N,N
a,n=1 (20)

with uan = 1
N e2πdt((a−1) sin(θb)−(n−1) sin(θ`)). Now, suppose that M ≥ N. Noting that limM→∞ $`b = 0

for ` 6= b and tr(U``) = 1, we can obtain that

lim
MN→∞

λmax(H
†H)

MN
≤

L−1

∑
`=0

ρ2
` κ̄` lim

MN→∞
λmax(

H†
`H`

MN
) = κ̄U . (21)

Moreover, we also have

lim
MN→∞

λmax(H
†H)

MN
≥ κ̄L (22)

since, for any `, we can get when wt =
t`√
N

and wr =
r`√
M

lim
MN→∞

λmax(H
†H)

MN
≥ lim

MN→∞

|w†
r H̃wT†

t |2
MN

= κ̄`. (23)

Therefore, Lemma 2 holds when M ≥ N. When N ≥ M, we can also similarly prove that Lemma 2
holds, based on the fact that λmax(H

†H) = λmax(HH†
).

Proposition 1. If E = MNp be fixed as MN → ∞, then we have

log2(1 +
Eκ̄L

σ2 ) ≤ lim
MN→∞

RS ≤ log2(1 +
Eκ̄U

σ2 ). (24)

Proof of Proposition 1. If E = MNp is fixed when MN → ∞, we readily show that Proposition 1
holds by using Lemmas 1 and 2.

Remark 1. This proposition gives the lower and upper bounds of the ergodic achievable rate of the LOS-based
scheme. In the following special cases, we can obtain further the exact expressions of the ergodic achievable rate.

Corollary 1. When N = 1, we have, if E = Mp be fixed as M→ ∞,

lim
M→∞

RS = log2(1 +
Eκ̄U

σ2 ). (25)

Similarly, when M = 1, we also have if E = Np be fixed as N → ∞

lim
N→∞

RS = log2(1 +
Eκ̄U

σ2 ). (26)

Proof of Corollary 1. When M = 1 or N = 1, due to the fact that limMN→∞
λmax(H

†H)
MN = κ̄U , it easily

follows that limMN→∞ RS = log2(1 +
Eκ̄U
σ2 ).
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Corollary 2. If E = MNp be fixed as M→ ∞ and N → ∞, then we have

lim
M,N→∞

RS = log2(1 +
Eκ̄L

σ2 ). (27)

Proof of Corollary 2. Without loss of generality, H can be rewritten as

H =
L−1

∑
`=0

ρ`
√

κ̄`r`t
T
` exp(−j2π

k
K
`), (28)

where ρ0
√

κ̄0 ≥ ρ1
√

κ̄1 ≥ · · · ≥ ρL−1
√

κ̄L−1. We can rewrite H in a matrix form as

H = ArDAT
t , (29)

where D is a L× L diagonal matrix, [D]ll = ρ`
√

MNκ̄`, and Ar and At are defined as follows:

Ar =
1√
M

[r0, r1, . . . , rL−1] (30)

and
At =

1√
N
[t0, t1 exp(−j2π

k
K
), . . . , tL−1 exp(−j2π

k
K
(L− 1))]. (31)

Since both {r0, r1, . . . , rL−1} and {t0, t1, . . . , tL−1} are orthogonal vector sets when M → ∞ and
N → ∞ [21], Ar and At are asymptotically unitary matrices. For matrix H, thus we can form a singular
value decomposition (SVD) as follows

H = UΣV† = [Ar|A⊥r ]Σ[At|A⊥t ]T, (32)

where Σ is a diagonal matrix including all singular values on its diagonal, i.e.,

[Σ]ll =

{
ρ`
√

MNκ̄`, for 0 ≤ l ≤ L− 1,
0, for l > L− 1.

(33)

Then,

lim
M,N→∞

λ
(k)
max

MN
= ρ2

0κ̄0 = κ̄L. (34)

Thus, we finally obtain the desired result.

On the other hand, suppose that the perfect CSI is known, i.e., both of the LOS and scattered
components are available at the transmitter and the receiver. Then, the weighting vectors wt and wr

should be chosen in such a way that the exact output SNR is maximized. Thus, the resulting output
SNR can be written as [11]

γ
(k)
P =

p
σ2 λmax(H†H), (35)

where λmax(H†H) stands for the largest eigenvalue of H†H. For the MRT/MRC scheme based on
the perfect CSI, let RP represent its ergodic achievable rate, i.e., RP = E{ 1

K ∑K−1
k=0 log2(1 + γ

(k)
P )}.

Now, we obtain the following power scaling law.

Proposition 2. When M→ ∞ and N → ∞, suppose that E = MNp is fixed and N/M→ µ . We have that

lim
M,N→∞

RP = lim
M,N→∞

RS. (36)
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Proof of Proposition 2. Due to the fact H = H + H̃, we can have

1
M

[H†H] =
1
M

[(H + H̃)†(H + H̃)]

=
H†H

M
+

H†H̃
M

+
H̃†H

M
+

H̃†H̃
M

. (37)

If we let

G =
H†H̃

M
= [guv]

N,N
u,v=1, (38)

it follows that

guv =
1
M

M

∑
k=1

[H†
]uk[H̃]kv. (39)

With the aid of (9) and (10), we can have that |[H†
]uk|2 ≤ κ̄S ≤ 1, and [H̃]kv ∼ CN(0, δ2) with

δ2 = κ̃S ≤ 1. As [H̃]kv , 1 ≤ k ≤ M are independent each other, we know that

guv ∼ CN(0, σ2
uv), σ2

uv ≤
1
M

. (40)

Thus, it can follow that, when M→ ∞, G→ Q, where Q denotes a matrix with all zero elements.
Similarly, we can have that, if M→ ∞,

G† =
H̃†H

M
→ Q. (41)

Now, M is assumed to be large enough. Then, we certainly have that

λmax(
H†H

M
) = λmax(

H†H
M

+
H̃†H̃

M
)

≤ λmax(
H†H

M
) + λmax(

H̃†H̃
M

). (42)

When M → ∞, suppose that N/M → µ. Then, we easily derive from ([22], Theorem 2.37),
only noting that [H̃]mn ∼ CN(0, κ̃S)

λmax(
1
M

H̃†H̃)→ κ̃S(1 +
√

µ)2. (43)

Thus, we further get

λmax(
1

MN
H†H) ≤ λmax(

1
MN

H†H) + κ̃S(1 +
√

µ)2/N. (44)

In addition, we can obtain

λmax(
1

MN
H†H) ≥ λmax(

1
MN

H†H). (45)

When M→ ∞ and N → ∞, we can get, by combining (44) with (45),

λmax(
1

MN
H†H)→ lim

M,N→∞

λ
(k)
max

MN
. (46)

It should be noticed that
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RP =
1
K

K

∑
k=1

E log2(1 +
p

σ2 λmax(H†(k)H(k)))

=
1
K

K

∑
k=1

E log2(1 +
pMN

σ2 λmax(
H†(k)H(k)

MN
)). (47)

Therefore, when M→ ∞ and N → ∞, if E = pMN is fixed, we can have finally

lim
M,N→∞

RP = lim
M,N→∞

RS. (48)

Thus, Proposition 2 holds.

Remark 2. This proposition implies that, when the two numbers of antennas at the transmitter and the receiver
grow large with a fixed ratio, the ergodic achievable rate of the LOS-based scheme has the same asymptotic value
as the ergodic achievable rate of the whole CSI-based scheme.

3.2. The Scenario with Correlation

Now, we consider extending the proposed LOS-based ECT/EGC without spatial correlation to the
scenario in which there exists doubly-ended spatial correlation. The MIMO system model presented
in Section 2 is necessarily modified. H̃`, ` = 0, 1, 2, · · · , L− 1 is now modeled as doubly-correlated
Rayleigh fading, with transmit and receive correlation matrices Ψ` and Φ`, i.e., [12],

H̃` = [Φ`]
1/2H̃ω

` [Ψ`]
1/2, (49)

where H̃ω
` is an i.i.d. matrix with each entry ∼ CN(0, 1). Since the scattered component of the channel

matrix remains unchanged, the needed weighting vectors wt and wr should also remain unchanged.
The ergodic achievable rate of the scenario with spatial correlation is denoted by

RC =
1
K

K−1

∑
k=0

R(k)
C , R(k)

C = E{log2(1 + γ
(k)
C )}. (50)

With respect to RC, we have the following results by a similar derivation.

Lemma 3.

log2(1 +
pλ

(k)
max

pκ̃C + σ2 ) ≤ R(k)
C ≤ log2(1 +

pλ
(k)
max

σ2 ), (51)

where κ̃C = ∑L−1
`=0 ρ2

` κ̃`‖w†
r [Φ`]

1
2 ‖2‖[Ψ`]

1
2 wT†

t ‖2.

Proposition 3. If E = MNp is fixed as MN → ∞, then

lim
MN→∞

RC = lim
MN→∞

RS. (52)

Remark 3. This proposition implies that the two ergodic achievable rates with and without spatial correlation
have the same asymptotic value when MN goes without bound.

4. Cooperative Relaying Systems

4.1. The Scenario with Decode-and-Forward Protocol

Ricean fading often happens in cooperative MIMO systems [23]. Therefore, we can use a
Ricean MIMO channel model to describe both the source-relay and relay-destination links. Still in
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frequency-selective Ricean fading environments, we especially study a classical cooperative relay
system with a source node, a destination node and a relay node. The relay node can be equipped
with a large-scale antenna array while both the source node and the destination node can be also
equipped with a large-scale antenna array. The cooperative system with the three nodes is assumed
to operate in a half-duplex mode, and the replay node employs the DF protocol for transmission.
Each transmission for the system can be completed through two stages. Obviously, the cooperative
system is a composite of two massive MIMO subsystems: one subsystem working at the first stage
and the other subsystem at the second stage. Therefore, the rate analysis results mentioned above can
be applied to the cooperative relay system.

We suppose that the relay makes use of M antennas to receive and transmit data and also
suppose that the source has N1 antennas and the destination has N2 antennas. We denote the average
transmitted power at the source and the relay by p1 and p2, respectively. In addition, we still let RP
and RS represent the ergodic achievable rates for the whole CSI-based MRT/MRC scheme and the
LOS-based EGT/EGC scheme, respectively. Then, we can obtain the following power scaling property
for the cooperative system.

Proposition 4. When M→ ∞ and N1 → ∞, let E1 = MN1 p1 be fixed and N1/M→ µ1 for the source-relay
link. When M → ∞ and N2 → ∞, let E2 = MN2 p2 be fixed and N2/M → µ2 for the relay-destination
link. Then,

lim
M,N1,N2→∞

RP = lim
M,N1,N2→∞

RS. (53)

Proof of Proposition 4. From [24], it follows that the ergodic achievable rate with the perfect SCI-based
MRT/MRC is written as

RP = min{R(1)
P /2, R(2)

P /2}, (54)

where R(1)
P and R(2)

P are the corresponding ergodic achievable rates of the source-relay and
relay-destination transmission links, respectively. Similarly, we also have that the ergodic achievable
rate with the only LOS-based EGT/EGC can be given by

RS = min{R(1)
S /2, R(2)

S /2}, (55)

where R(1)
S and R(2)

S are the corresponding ergodic achievable rates of the source-relay and
relay-destination transmission links, respectively. Under the condition of Proposition 4, we get
by Proposition 2

lim
M,N1→∞

R(1)
P = lim

M,N1→∞
R(1)

S (56)

and
lim

M,N2→∞
R(2)

P = lim
M,N2→∞

R(2)
S . (57)

Thus, it is easy to obtain the desired result (53).

Remark 4. This proposition implies that, when the number of source antennas and the two numbers of relay
antennas at the transmitter and the receiver grow large with fixed ratios, the ergodic achievable rate of the
LOS-based scheme also has the same asymptotic value as the ergodic achievable rate of the whole CSI-based scheme.

4.2. The Scenario with Amplify-and-Forward Protocol

The DF is a regenerative relaying transmission strategy. Now, we consider employing a
nonregenerative strategy involving AF to replace the DF. Then, we can have a power scaling law
as follows.
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Proposition 5. Suppose that N1 = N2 = 1. When M→ ∞, let E1 = Mp1 and E2 = MN2 p2 be fixed. Then,

lim
M→∞

RS = log2(1 + (
E1κ̄U1

σ2
1
· E2κ̄U2

σ2
2

)/(
E1κ̄U1

σ2
1

+
E2κ̄U2

σ2
2

+ 1)). (58)

Proof of Proposition 5. We denote by γ
(k)
S1 and γ

(k)
S2 the output instantaneous SNR of the source-relay

and relay-destination links, respectively. From [25], we obtain that

RS =
1
K

K−1

∑
k=0

E{log2(1 + γ
(k)
S )}

=
1
K

K−1

∑
k=0

E{log2(1 + (γ
(k)
S1 · γ

(k)
S2 )/(γ

(k)
S1 + γ

(k)
S2 + 1))}. (59)

Based on the proof of Lemma 2, we can have the following asymptotical SNR expressions

lim
M→∞

γ
(k)
S1 =

E1κ̄U1

σ2
1

(60)

and
lim

M→∞
γ
(k)
S2 =

E1κ̄U2

σ2
2

(61)

Thus, the power scaling law (58) holds.

5. Simulation Results

For OFDM-MIMO systems in frequency-selective Ricean fading channels, we in this section
provide our analytical results and simulation results. In all simulations, we assume that all of these
spacings between adjacent antennas at the transmitter and the receiver are 0.5. We set the number of
subcarriers K = 256, the channel delay spread L = 3, and the noise variance as σ2 = 1. In addition,
we let ρ2

0 = ρ2
1 = ρ2

2 = 1/3, θ0 = φ0 = π/6, θ1 = φ1 = π/4, and θ2 = φ2 = π/3. In Figures 1 and 2,
the Ricean K-factor κ is fixed and is equal to 5 dB.

In order to verify Propositions 1 and 3, we consider firstly the scenario with spatial correlation
when N = 3 and E = 20 dB. The spatial correlation among antennas is assumed to follow the
exponential model, i.e., the correlation magnitude between antenna p and q can be determined by
c(p, q) = g|p−q|, where g denotes the correlation coefficient [12]. Therefore, we represent the correlation
matrices (i, j)-th of Φ` by [Φ`]ij = (g`r )|i−j| and (i, j)-th of Ψ` by [Ψ`]ij = (g`t )

|i−j|, respectively,
` = 0, 1, 2. Moreover, we set g0

r = g1
r = g2

r = gr and g0
t = g1

t = g2
t = gt. For the correlation coefficients

gt = gr = g = 0, 0.3, 0.6, 0.9, as M increases from 6 to 60, Figure 1 provides a curve of the exact average
rate RC and two curves of the upper and lower bounds of RS. It can be observed that the exact ergodic
rate RC increases as the number of receive antenna M grows large, and is always between the two
bounds of RS. As both of the correlation coefficients (gt, gr) increase, RC is closer to the upper bound,
and becomes higher and higher than RS. This indicates that, compared to the uncorrelated scenario,
the presence of spatial correlation results in improving the rate performance under the LOS-based
EGT/EGC scheme. Therefore, if the LOS-based scheme can be employed, we can achieve performance
benefits from the spatial correlation, which is obviously different from the traditional point of view.
This implies that it would be practical if a large-scale antenna array is compactly arranged.
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Figure 1. The ergodic achievable rate versus the number of receive antennas for comparing the case
with correlation and the case without correlation.
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Figure 2. The ergodic achievable rate versus the number of receive antennas for comparing the
LOS-based scheme with the whole CSI-based scheme.
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Next, we consider validating Proposition 2. For that, we need to compare the ergodic achievable
rate of the proposed LOS-based EGT/EGC scheme with that of the perfect CSI-based MRT/MRC
scheme. We set µ = 1/2 when the numbers of antennas at the transmitter and receiver grow large.
For the parameter E = 10, 20, 30 dB, as M increases from 6 to 60, Figure 2 plots the two ergodic
achievable rates, RS and RP. It can be found from Figure 2 that both of the ergodic achievable rates can
tend to the same limit results for the given values of E. However, with an increase of E, the speed of
rate convergence appears to be slower and slower.

Finally, we pay our attention to the classical DF cooperative relay system consisting of the
source-relay and relay-destination links and set the identical parameters mentioned above in the two
links. When N1 = N2 = 6, as M increases from 6 to 60, Figure 3 plots the two average rates RS
and RP for κ = 5, 15 dB. It can be found from Figure 3 that, with an increasing κ, both RS and RP
improve and RS is closer to RP. It should be noticed that RP denotes the average rate for the traditional
linear processing scheme based on the whole CSI as considered in [6]. For obtaining a comprehensive
comparison with the scheme based on the whole CSI in Rayleigh fading discussed in [24], Figure 3 also
includes a rate curve which corresponds to κ = −∞ dB. Interestingly, with κ = 5 dB, the LOS-based
scheme always obviously outperforms the scheme based on the whole CSI in Rayleigh fading.
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Figure 3. The ergodic achievable rate versus the number of relay antennas for comparing the case with
Ricean fading and the case with Rayleigh fading.

6. Conclusions

In this paper, we have developed the transmission scheme of LOS-based EGT/EGC for
point-to-point massive-MIMO systems in frequency-selective Ricean fading channels without and
with spatial correlation. In particular, we have derived expressions of the system achievable rate and
determined several power scaling laws. In addition, we have also generalized our analysis to the
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cooperative relaying scenarios with DF and AF protocols, respectively. It is shown by our simulation
results that the spatial correlation can improve the system performance and thus is an advantage,
which is contrary to the traditional point of view. Compared to the Rayleigh fading environments,
deployment of large scale antenna arrays in Ricean fading environments would be more suitable.
For instance, massive MIMO can be applied in microwave backhaul links [26].
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