
electronics

Article

Hybrid PWM Strategy for Power Efficiency
Improvement of 5-Level TNPC Inverter and Current
Distortion Compensation Method

Taeyeong Lee, Hanyoung Bu and Younghoon Cho *

Department of Electrical Engineering, Konkuk University, Seoul 05029, Korea; intelligent@konkuk.ac.kr (T.L.);
bhy1014@konkuk.ac.kr (H.B.)
* Correspondence: yhcho98@konkuk.ac.kr; Tel.: +82-10-6207-0431

Received: 18 November 2018; Accepted: 4 January 2019; Published: 10 January 2019
����������
�������

Abstract: This paper proposes a pulse width modulation (PWM) strategy for improving the efficiency
of a 5-level H-bridge T-type neutral point clamped (TNPC) inverter. In the case of the proposed
PWM strategy, unlike the conventional PWM strategy in which both of the switching legs of the
H-bridge inverter operate at a high frequency, one switching leg of the inverter operates at a low
frequency. As the switching frequency is lowered, the switching loss is reduced, this improving the
efficiency of the system. The duty references for the switching legs and the operating principle of the
inverter are described in detail. The proposed PWM strategy, however, causes distortion of the output
filter inductor current. The cause of the distortion has been analyzed and a compensation method
is proposed to mitigate the distortion of the current. The effect of the proposed PWM strategy can
be predicted through the loss calculation of the inverter for each modulation strategy. Furthermore,
current distortion mitigation obtained by compensation method is confirmed through the simulation.
In order to verify the effectiveness of the proposed strategy, a 2 kW H-bridge TNPC inverter prototype
is implemented and tested. The simulation and experimental results show that the efficiency of the
inverter is improved when the proposed PWM strategy is applied.

Keywords: T-type neutral point clamped (TNPC) inverter; pulse width modulation (PWM) strategy;
power efficiency improvement; current distortion compensation

1. Introduction

As power consumption has increased recently, the power density of power electronic systems
has become a major concern for researchers. Studies focused on efficiency improvement and reducing
the volume of the system have been carried out to maximize power transfer. Most inverters used
in renewable energy systems, energy storage systems (ESS), uninterruptible power supply (UPS),
and solid-state transformers (SST) adopt the topology of a 2-level inverter [1–7]. The 3-level inverter
can synthesize the output by subdividing the voltage level by one more than the 3-level inverter.
Thus, the 3-level inverter has better dv/dt characteristics and total harmonic distortion (THD)
performance [8,9]. Therefore, if the inverter topology is changed to a 3-level inverter, a filter size that
is smaller than the output filter size of a 2-level inverter can be designed, thus reducing the size of
the entire system. Examples of a 3-level inverter, such as neutral point clamped (NPC) inverter [8,10],
T-type neutral point clamped (TNPC) inverter [11], and flying capacitor inverter [12] have been studied
and widely used.

Another way to reduce the size of the power converter is to change the switching devices.
Although Silicon (SI) -based switching devices have been used in all industries, they have been
replaced by the growth of wide bandgap (WBG) semiconductor devices such as Silicon Carbide (SiC)
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and Gallium Nitride (GaN). Many power converters using WBG devices with different characteristics
from conventional Si-based devices have been studied [13–17]. WBG devices have higher blocking
voltage, higher switching frequency, higher thermal conductivity, and lower on-state loss than Si-based
devices [14,18]. Therefore, the power density can be increased by using WBG devices.

Other studies on improving the power density of H-bridge inverters have been conducted on
asymmetric inverters with different switching leg topologies [19–22]. An inverter with a switching
leg in combination with a 3-level and 2-level topology has been proposed in [19,20,22]. An inverter
consisting of one switching leg with NPC inverter and the other leg with TNPC inverter has been
proposed in [21].

In this paper, a changed PWM strategy for power efficiency improvement of 5-level H-bridge
TNPC inverter is proposed. This is contrary to the previous studies mentioned, that have proposed
changes to the topology or switching devices of the inverter. By applying the proposed PWM strategy
that modifies the switching frequency of switching legs without changing the hardware topology, each
switching leg operates at a different frequency. One of those legs operates at the commercial frequency
(60 Hz) and its switching losses can be reduced. The operation and principles of each PWM strategy
are described in detail in the next section. In addition, the proposed PWM strategy causes a distortion
problem in regard to the output filter of the inductor current. Therefore, a compensation method for
the distortion is suggested. By using the compensation method, the inductor current distortion near
the zero crossing can be effectively compensated. Moreover, the loss calculation method, based on the
datasheet of the switching device described in [23], is applied to the simulation model to compare the
losses of the inverter for each PWM strategy. The simulation and experimental results show that the
efficiency of the 5-level H-bridge TNPC inverter is improved by applying the proposed PWM strategy.

2. PWM Strategy for 5-LEVEL H-Bridge TNPC Inverter

2.1. TNPC Inverter Configuration and the Conventional PWM Strategy

Figure 1 shows the topology of 5-level H-bridge TNPC inverter. The inverter consists of two
dc-link capacitors and two switching legs. One switching leg consists of four switching devices, which
are chosen to be Si insulated gate bipolar transistor (IGBT) devices. Table 1 summarizes all the variables
used in this paper. Each switching leg synthesizes the pole voltage van or vbn using three voltage levels,
−Vdc/2, 0 and Vdc/2, with respect to the voltage reference shown in Figure 2. With the pole voltage
level combination of the two phase switching legs, the output voltage vAB has five voltage levels −Vdc,
−Vdc/2, 0, Vdc/2 and Vdc.
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Figure 1. The topology of 5-level H-bridge T-type neutral point clamped (TNPC) inverter. 
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Table 1. Nomenclature of the system and controller parameters.

Parameters Description Parameters Description

Vdc Dc-link capacitor voltage vAB Output voltage of the inverter
van Voltage between pole A and neutral point vbn Voltage between pole B and neutral point
vre f Voltage reference Sx Switching device “x”
m Modulation index φ Phase of the voltage reference
α Phase for current distortion compensation
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Figure 2. The voltage reference of the TNPC inverter.

Table 2 shows voltage levels of the output voltage vAB according to the polarity of the voltage and
switching function S when the inverter operates on the voltage reference with the conventional PWM
strategy. There are eight states form A-1 to A-8, and the output voltage has zero voltage level with the
same switching function at A-1 and A-5. In A-2 and A-3, the inverter output the same voltage level
Vdc/2 although the switching functions are different. Both states occur when the inverter operates
with unipolar PWM. Even when the polarity of the output voltage is negative, the inverter output
the same voltage level −Vdc/2 in A-6 and A-7. Figure 3 represents the current flow path for the eight
states in Table 2. When the polarity of the voltage reference is positive, S1 and S3 of the switching
leg A operate complementarily, S6 and S8 of the switching leg B are also complementarily switched.
Conversely, when the polarity of the reference is negative, S2 and S4 of the switching leg A operate
complementarily. Similarly, S5 and S7 of the switching leg B operate in the same manner. Therefore,
the duty reference of the switch pairs based on the upper switch and the lower switch can be easily
obtained by using a limiter. The duty reference for each pair can be seen in Figure 4. The conventional
PWM strategy operates with sinusoidal pulse width modulation (SPWM).

Table 2. The relationship between the switching function and the output voltage of 5-level H-bridge
TNPC inverter at the conventional pulse width modulation (PWM) strategy.

Polarity of vAB Switching Function S Output Voltage vAB State

vAB > 0

(0, 0, 1, 1, 0, 0, 1, 1) 0 A-1
(1, 0, 0, 1, 0, 0, 1, 1) Vdc/2 A-2
(0, 0, 1, 1, 0, 1, 1, 0) Vdc/2 A-3
(1, 0, 0, 1, 0, 1, 1, 0) Vdc A-4

vAB < 0

(0, 0, 1, 1, 0, 0, 1, 1) 0 A-5
(0, 1, 1, 0, 0, 0, 1, 1) −Vdc/2 A-6
(0, 0, 1, 1, 1, 0, 0, 1) −Vdc/2 A-7
(0, 1, 1, 0, 1, 0, 0, 1) −Vdc A-8
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Figure 3. Current flow path according to operating states. (a) state A-1; (b) state A-2; (c) state A-3;
(d) state A-4; (e) state A-5; (f) state A-6; (g) state A-7; (h) state A-8.
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2.2. The Proposed PWM Strategy and Compensation Method

In the proposed PWM strategy, which is different from the conventional PWM strategy, one of the
two switching legs operates at 60 Hz, the same as the voltage reference frequency. The other switching
leg operates at a switching frequency generally more than 10 kHz. Therefore, the switching function
must be changed to synthesize the same voltage in the proposed PWM strategy.

Table 3 summarizes the output voltage according to the polarity and switching function in the
proposed PWM strategy. There are six states from B-1 to B-6 and the switching function of switching
leg B changes according to the polarity of the output voltage, therefore operating with the voltage
reference frequency. If the modulator is the same as the conventional strategy, i.e., the upper or lower
switch and the neutral switch are complementary, the duty reference must be modified differently
from the conventional one. Based on the summary in Table 3, the current flow path for each state is
shown in Figure 5.

Table 3. The relationship between the switching function and the output voltage of 5-level H-bridge
TNPC inverter at the proposed PWM strategy.

Polarity of vAB Switching Function S Output Voltage vAB State

vAB > 0
(0, 1, 1, 0, 0, 1, 1, 0) 0 B-1
(0, 0, 1, 1, 0, 1, 1, 0) Vdc/2 B-2
(1, 0, 0, 1, 0, 1, 1, 0) Vdc B-3

vAB < 0
(1, 0, 0, 1, 1, 0, 0, 1) 0 B-4
(0, 0, 1, 1, 1, 0, 0, 1) −Vdc/2 B-5
(0, 1, 1, 0, 1, 0, 0, 1) −Vdc B-6
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Figure 5. Current flow path according to operating states. (a) state B-1; (b) state B-2; (c) state B-3;
(d) state B-4; (e) state B-5; (f) state B-6.

The switching function of the states shown in Table 2 can be used to determine the switch operating
in six intervals divided by the modulation index (MI) of the voltage reference in Figure 2. If the polarity
of the output voltage is positive, switching devices S5, S8 of switching leg B are off and S6, S7 are on.
Conversely, when the polarity is negative, the devices S5 and S8 are on, and S6, S7 are off. First, state B-1
and B-2 appear alternately in the interval 1 and the interval 3 in which MI is in the range of 0 < m < 0.5,
the output voltage is in a range of 0 < vout < Vdc/2. The devices operating in switching leg A are
S2 and S4. Second, state B-2 and B-3 appear alternately in the interval 2 where MI is 0.5 < m < 1,
the output voltage synthesizes the voltage in the range of Vdc/2 < vout < Vdc. The switches S1 and
S3 operate in this interval. Third, since the state B-4 and state B-5 are alternated in the interval 4 and
interval 6 where MI is −0.5 < m < 0, and the output voltage has a range of −Vdc/2 < vout < 0.
The switches S1 and S3 operate in those intervals. Finally, in interval 5 where MI is −1 < m < −0.5,
state B-5 and B-6 are alternated and the output voltage range is −Vdc < vout < −Vdc/2. The devices
S2 and S4 turn on and off in this interval. In order to synthesize the output voltage according to the
above-mentioned voltage reference, the upper and the lower switch duty reference of each switching
leg should be modified as shown in Figure 6.
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In the proposed PWM strategy, the operating frequency of the switching leg B is significantly lower
than that of the conventional PWM strategy as can be seen from the switching signals according to
the duty reference in Figure 6. Therefore, the proposed PWM strategy has the advantage of reducing
the switching losses and improving the efficiency. However, the proposed strategy suffers from filter
inductor current distortion near the zero crossing. This distortion is caused by the output voltage
generated in the form of a pulse that deviates from the voltage reference by the PWM setting and PWM
update time of the digital controller. In the case of the conventional PWM strategy, the state A-1 and state
A-5, in which the output voltage is zero voltage, have the same switching function even if the polarity of
the output voltage is different. And the duty ratio of the upper or lower switch is decreased and the duty
ratio of the neutral switch is increased as the voltage reference becomes closer to the zero voltage where
the polarity changes. But the switching functions of state B-1 and B-4, in which the output voltage is the
zero voltage, are different from each other. Since the switching function for zero voltage is different, the
duty ration of the switching leg A’s neutral switch is increased as the voltage reference gets closer to the
zero voltage. But the switching leg B does not exhibit such a tendency. Therefore, the output voltage
becomes Vdc/2 or −Vdc/2 instead of zero voltage due to the state of the switching leg A before the duty
ratio of the switching leg B changes. A solution to this problem is to apply both the proposed PWM
strategy and the conventional PWM strategy as a mixed method. This compensation method adopts the
conventional PWM strategy when a phase φ of the voltage reference is in the range −α < φ < α for a
small phase α that can cover the PWM update time of the switching leg B. In other ranges, the proposed
PWM strategy is applied. It is possible to compensate for the current distortion near the zero crossing
by preventing the generation of erroneous output voltage with the conventional PWM strategy, and to
improve the efficiency by applying the proposed PWM strategy in the remaining phases.

3. Simulation Results

The 5-level H-bridge TNPC inverter shown in Figure 1 was implemented in PSIM 11.1.3 from
Powersim corporation to compare operations for each PWM strategy. Table 4 gives the parameters
used in the simulations. The reason why the switching frequency of Table 4 is different between
the conventional PWM strategy and the proposed PWM strategy is that the ripple condition of the
filter current is the same. If the switching frequency is 20 kHz in the conventional PWM strategy,
the effective switching frequency becomes 40 kHz by unipolar PWM switching. Therefore, in order to
achieve the same current performance in the proposed PWM strategy, the switching frequency should
be set to 40 kHz which is twice the conventional PWM strategy. Figure 7 shows the waveforms when
the inverter operated with the conventional PWM strategy in the simulation. Figure 7b shows the
upper and lower duty reference of switching leg A which was made up of the voltage reference vre f
in Figure 7a. Using the limiter in the voltage reference, it can be confirmed that each wave form was
made. Figure 7c,d show the output voltage vAB of the inverter operating with those duty references
and output filter inductor current iL f . It can be seen that the output voltage vAB had 5-level voltages as
analyzed in Table 2. The inductor current was output at the frequency of the voltage reference and was
in phase with the output voltage.

Table 4. Parameters for Power SIM simulation.

Parameters Description Values

Cdc Total dc-link capacitance 1800 µF
L f Inductance of output filter 1 mH
C f Capacitance of output filter 2 µF
Vdc Dc-link capacitor voltage 400 V

Vrms Rms value of output voltage 220 V
Prated Rated power of the inverter 2 kW

fsw_conventional Switching frequency of the conventional PWM strategy 20 kHz
fsw_proposed Switching frequency of the proposed PWM strategy 40 kHz
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Figure 8 shows the waveforms when the inverter operated with the proposed PWM strategy.
Figure 8a represents the voltage reference vre f same as Figure 7a. And Figure 8b shows the upper and
lower duty reference of the proposed PWM strategy which can be obtained by the voltage reference.
As described in the previous section, it can be seen that the upper and lower duty reference were
modified for each interval divided by the MI of the voltage reference. Figure 8c,d show the output
voltage and the inductor current when the inverter operated using the proposed PWM strategy.
It can be confirmed that the output voltage had 5-level voltages, the same as the conventional PWM
strategy, but the inductor current had the problem mentioned above. There was a distortion due
to the incorrect output voltage. When the inverter was operated with the proposed PWM strategy
using the compensation method, the inductor current waveform, as shown in Figure 9, was obtained.
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In Figure 9, it can be seen that the application of the compensation method had the effect of alleviating
the previous current waveform distortion.
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The calculation method described in [23] was simplified for the operation simulation model of
Power SIM, and the power losses according to each PWM strategy were compared by adding the
loss calculation block of the switching devices. Before adding the block, the VF − ICE curve, which
is needed for conduction loss calculation, and the Eon&Eo f f − ICE curves, which are needed for the
switching loss, calculations should be form the datasheet of Infineon’s IRGB4062DPbf IGBT and
applied to the actual hardware in the experiment. Following this, the approximation for each curve by
using MATLAB should then then proceed. Figure 10a,b show the VF − ICE curves of the IGBT and
the parallel diode taken from the datasheet. The conduction loss Pcond_IGBT of the IGBT, the diode
conduction loss Pcond_diode curve and the second order approximation curves derived by the curve
fitting, respectively, are shown in Figure 10c,d. The Eon − ICE curve taken from the datasheet was
approximated using the curve fitting to obtain the switching losses. The Eo f f − ICE curve was also
approximated by the same method, and those curves and the curves of the datasheet are shown in
Figure 11a,b respectively.
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Figure 10. The characteristic curves of IGBT and parallel diode for calculating the conduction loss.
(a) VF − ICE curve of the IGBT; (b) VF − ICE curve of parallel diode; (c) Conduction loss curve of
the IGBT and second order approximation curve; (d) Conduction loss curve of the diode and the
approximation curve.
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Figure 11. The characteristic curves of IGBT and parallel diode for calculating the conduction loss.
(a) Eon − ICE of IGBT and approximation curve; (b) Eo f f − ICE of IGBT and approximation curve.

In the simulation, it was possible to calculate the conduction loss and the switching loss occurring
during the operation of the inverter by substituting the information of the current flowing through
each switching device and switching signals into the approximation curves. Figure 12 shows the upper
and lower switch conduction losses and switching losses of switching leg B when the inverter operated
at a rated power of 2 kW. Figure 12a,b show the losses when applying the conventional PWM strategy
and the proposed PWM strategy. Comparing Figure 12a,b, the conduction loss of the switching leg B
was slightly increased but the switching loss was greatly reduced when the proposed PWM strategy
was applied.
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Figure 12. Losses of the switching leg B when the inverter operates at 2 kW load condition. (a) The
conventional PWM strategy; (b) The proposed PWM strategy.

Simulation efficiency curves were obtained by calculating the losses of all switches of inverter at
changing load. The efficiency curves drawn by changing the load condition from 250 W to 2 kW in 250
W increments is shown in Figure 13. When the proposed PWM strategy was applied, the efficiency of
the inverter was improved over the entire load conditions as compared with the conventional PWM
strategy. As a result of the simulation, the proposed PWM strategy may cause a slight distortion in the
inductor current. But it can be expected to improve the power density because of its higher efficiency.
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4. Experimental Results

The 5-level H-bridge TNPC inverter prototype for verifying the effect of the proposed PWM
strategy analyzed above is shown in Figure 14. The prototype consisted of a digital control board, a
power stage consisting of two half bridge TNPC inverter modules, a PWM interface board, and an
output LC filter. This prototype is set as shown in Figure 15, and the Chroma’s electronic load 63804
was connected in the power stage for AC load. The efficiency was measured with open loop voltage



Electronics 2019, 8, 76 13 of 21

control without any feedback control. The specification of the prototype for the experiment was the
same as that of the simulation summarized in Table 4.Electronics 2019, 8, x FOR PEER REVIEW  13 of 21 
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Figure 15. Experimental setup photograph.

Figure 16 shows the output voltage vAB and the output filter inductor current of 5-level H-bridge
TNPC inverter with each PWM strategy at a rated power of 2 kW. Comparing Figure 16a,b, output
voltage had 5-level voltages both PWM strategies but the spike type distortion in inductor current
occurred near the zero crossing when the inverter operated with the proposed PWM strategy. In
Figure 16c, the distortion of the inductor current was mitigated by applying the compensation method
described in the previous section.
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Figure 16. Output voltage and filter inductor current waveforms of 5-level H-bridge TNPC inverter in
the experiment. (a) The conventional PWM strategy; (b) The proposed PWM strategy; (c) The proposed
PWM strategy with compensation.

The THD of the output voltage and of the inductor current were measured to compare the output
quality of the inverter operating with each PWM strategy. The THD curves of the output voltage and the
inductor current are shown in Figure 17. The THD of the output voltage tended to increase gradually
as the load increased, and the THD of the inductor current decreased as the load increased. However,
the THD differences, when operating with each PWM strategy, were large at the light load conditions,
and the differences were small when operating at the rated power condition. In the rated power
condition, the differences of THD had a value within the error range, and it can be seen that the inverter
outputs almost the same voltage and current quality regardless of the PWM strategy. The frequency
spectra of the output voltage and the inductor current with the low frequency harmonics up to 5 kHz and
with the high frequency harmonics up to 80 kHz are shown in Figures 18 and 19. The frequency spectra
were analyzed under three power conditions: 250 W, 1000 W, and 2000 W. The frequency spectra of the
output voltage and the inductor current in Figures 17 and 18 show more harmonic components in the
low frequency harmonic components when the proposed hybrid PWM strategy was applied. However,
there was no significant difference from the conventional PWM strategy in the high frequency harmonic
components. As the power condition changed from the light load to the rated load, the harmonic
component characteristics tended to be similar regardless of the PWM strategy employed.
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Figure 17. The total harmonic distortion (THD) of the output voltage and of the inductor current at the
entire load conditions for each PWM strategy. (a) The THD of the output voltage; (b) The THD of the
inductor current.
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Figure 18. The frequency spectra of the output voltage for each PWM strategy. (a) The frequency spectra
with conventional PWM strategy at 250 W; (b) The frequency spectra with the hybrid PWM strategy at
250 W; (c) The frequency spectra with conventional PWM strategy at 1000 W; (d) The frequency spectra
with the hybrid PWM strategy at 1000 W; (e) The frequency spectra with conventional PWM strategy
at 2000 W; (f) The frequency spectra with the hybrid PWM strategy at 2000 W.
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The efficiency of 5-level H-bridge TNPC inverter when it operated with open loop control was
measured by using Yokogawa’s power analyzer WT1800. Figure 20 shows the efficiency curves of the
inverters according to each PWM strategy at the same load condition as in the simulation performed.
It can be recognized that the efficiency of the proposed PWM strategy was higher than that of the
conventional PWM strategy over the entire load conditions. The highest efficiency was 98.12% at
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750 W power condition. The difference between the efficiency of the proposed PWM strategy and the
efficiency of the conventional PWM strategy was large in the light load region. It became smaller as
the load condition was heavier. This tendency was due to the fact that the main effect of the proposed
PWM strategy was to improve the efficiency by reducing the switching loss, so that the effect becomes
more significant in the light load region where the switching loss is dominant. It can be seen that the
proposed PWM strategy improved the efficiency of the inverter from 0.39% to 2.17% compared to
the conventional PWM strategy. Compared with the application of the method for compensating the
inductor current distortion near the zero crossing to the proposed PWM strategy, the efficiency was
slightly improved in the light load condition. In the other load condition, similar efficiency results
were obtained regardless of whether or not the compensation method was applied. Through Figures 16
and 20, it can be verified that the simulation results performed in the earlier section are well matched
with the experimental results.
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5. Conclusions

This paper proposes a PWM strategy for improving the efficiency of a 5-level H-bridge TNPC
inverter. The output voltage states, the current flow path, duty reference, and operating principle for
the conventional PWM strategy and the proposed PWM strategy were compared. This explains how
the proposed PWM strategy can improve the efficiency of the system. In addition, when the proposed
PWM strategy was applied, distortion occurred in the output filter inductor current of the inverter.
However, a compensation method for mitigating this distortion was also proposed. The proposed
PWM strategy improved the efficiency by reducing a switching loss of the switching leg. The efficiency
improvement effect of the proposed PWM strategy was predicted by the loss calculation simulation.
Furthermore, a 2 kW 5-level H-bridge TNPC inverter prototype was implemented to confirm the
simulation results through experimentation. From the results of 250 W to 2 kW of inverter experiment,
it can be confirmed that the efficiency of the proposed PWM strategy was improved from 0.39% to
2.17% than that of the conventional PWM strategy. Moreover, it can be confirmed that the current
distortion in the application of the modulation strategy was mitigated by the compensation method.
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