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Abstract: The echo of maneuvering targets can be expressed as a multicomponent polynomial phase
signal (mc-PPS), which should be processed by time frequency analysis methods, while, as a modified
maximum likelihood (ML) method, the frequency domain extraction-based adaptive joint time
frequency (FDE–AJTF) decomposition method is an effective tool. However, the key procedure in the
FDE–AJTF method is searching for the optimal parameters in the solution space, which is essentially
a multidimensional optimization problem with different extremal solutions. To solve the problem,
a novel multicomponent particle swarm optimization (mc-PSO) algorithm is presented and applied
in the FDE–AJTF decomposition with the new characteristic that can extract several components
simultaneously based on the feature of the standard PSO, in which the population is divided into
three groups and the neighborhood of the best particle in the optimal group is set as the forbidden
area for the suboptimal group, and then two different independent components can be obtained and
extracted in one extraction. To analyze its performance, three simulation tests are carried out and
compared with a standard PSO, genetic algorithm, and differential evolution algorithm. According
to the tests, it is verified that the mc-PSO has the best performance in that the convergence, accuracy,
and stability are improved, while its searching times and computation are reduced.

Keywords: maneuvering target echo; mc-PPS; time frequency analysis; FDE–AJTF decomposition;
optimal algorithm; mc-PSO

1. Introduction

Synthetic aperture radar (SAR) and inverse SAR (ISAR), which have all-time and all-weather
active imaging abilities, play important roles in the civil and military fields, and their echo signals’
processing has always been a research focus and hotspot. The echo of maneuvering targets, such
as ships, aircraft, and space debris, can be expressed as a multicomponent polynomial phase signal
(mc-PPS) [1–3]. Especially with the improvement of radar resolution and increases of the synthetic
period, there arise new influences from two aspects: First, the number of signal components is increased
with more resolvable scattering elements, while the component extraction is more difficult and easily
interfered with by noises as the energy of each single component is reduced relatively. Second, more
complex changes in target gesture lead to a higher polynomial order in the echo phase and inconsistent
scattering characteristics. Furthermore, caused by the latter effect, the signal component would
appear and vanish in the synthetic aperture time rather than accompanying the sample’s beginning
and end [4].
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Under these circumstances, the classical time frequency (TF) analysis method cannot satisfy
the processing requirements of mc-PPS. To process mc-PPS effectively, two methods are popularly
adopted. The first is polynomial phase transformation (PPT) [5], whether discrete polynomial phase
transformation (DPT) [6], high-order ambiguity function (HAF) [7], cubic phase function (CPF) [8],
and so forth, all of which can reduce the phase order based on phase differentiation (PD) and reduce
the searching space to one dimension. These methods are influenced by the cross terms and their
resolutions are limited by the PD process. Although many modified methods have been proposed
to reduce the cross terms, such as the product forms of HAF (PAHF) [9] and CPF (PCPF) [10], these
methods are also influenced by the cross terms of the mc-PPS, especially when numerous components
are contained and the intensities of every component are similar. The PPT methods are reviewed in
detail in [11].

The second is the maximum likelihood (ML) method, which can obtain the optimal solution
via parameter estimation [12]. However, the application of the ML method is limited because of its
multidimensional searching space and very large computation requirements. A modified quasi-ML
(QML) method [13] has been proposed, which offers several improvements and is widely applied
in the PPS process. A detailed review of the QML method is presented in [14]. The adaptive joint
time frequency (AJTF) method, in the sense of being a modified ML method, is widely applied
in ISAR imaging [15], and when parameterized, can represent the signal by extracting the signal
components piece-by-piece and offer good resolution without the influence of cross terms when
processing high-order mc-PPS [16]. Its improved version, the frequency domain extraction-based AJTF
(FDE–AJTF) decomposition method, has been proposed [1,4], offering three improvements: estimation
and extraction of the component in the frequency domain, the use of a time window on the basis
function, and the adoption of CFAR detection in component extraction. These improvements increase
the stability, speed, and accuracy of the components’ estimation and extraction, and can satisfy the
above new features of the echo signal.

Similar to the other ML methods, the key procedure in the FDE–AJTF method is searching for
the optimal parameters in the solution space, which is essentially a multidimensional optimization
problem with different extremal solutions [17]. Moreover, for the TF decomposition of a mc-PPS signal,
some extremal solutions may be true value solutions corresponding to the signal components with
different intensities, which makes the problem more complex.

The particle swarm optimization (PSO) is a swarm intelligence algorithm and has been applied in
the classical AJTF method with good performance [18]. The important feature of PSO is that every
particle in the swarm has an overall moving tendency toward its local historical best position and
the global historical best position. The feature makes it efficient and fast; however, when applied
in the mc-PPS TF decomposition, it brings two influences: on one hand, the algorithm easily falls
into the local optimal solution and enters the premature stagnation state, which reduces its global
convergence ability; on the other hand, the different extremal solutions may be true components,
and it makes the simultaneous extraction of several components possible, which can increase the
decomposing efficiency.

In this paper, the PSO is applied in the FDE–AJTF decomposition, and a novel multicomponent
PSO (mc-PSO) is proposed with the new characteristic that can extract several components
simultaneously based on the feature of the standard PSO, in which the population is divided into
three groups and the neighborhood of the best particle in the optimal group is set as the forbidden
area for the suboptimal group, and then, two different independent components can be obtained and
extracted in one extraction. By its new characteristic, the mc-PSO improves its decomposing efficiency
and computing speed. Meanwhile, its convergence, accuracy, and global optimal ability are enhanced.
To verify new characteristics of the mc-PSO, three simulation tests are carried out and compared with
three classic optimal algorithms, i.e., standard PSO, genetic algorithm (GA) and differential evolution
(DE) algorithms. According to the test results, the mc-PSO has the best performance among the
four optimal algorithms.
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2. The Application of PSO in the FDE–AJTF Decomposition

2.1. FDE–AJTF Decomposition Method

The echo signal for a range cell of a maneuvering target can be expressed as a mc-PPS, and one
PPS component sp(t) in the whole signal is represented as follows [1]:

sp(t) = A·rect
[

t
T

]
exp

{
j2π∑Np

n=0 antn
}

(1)

where A is the component intensity; rect[·] is the rectangular time window of width T, and the center
point is zero; a0 is a time-independent constant phase; a1 is the linear term of time t, which is related to
the real position of the target scatter point; and a2 and the higher-order parameters are related to the
target motion, which leads to the phase error and should be compensated in the imaging process.

To estimate the parameters, a basis function is needed. The basis function for the FDE–AJTF
method is the compensation phase function sh(t, u) with a time window, as follows:

sh(t, u) = w
[

t− u
U

]
rect

[
t
T

]
exp

{
−j2π∑Np

n=2 antn
}

, U ≤ T (2)

where w[·] is the time window and u and U are the window’s center and width, respectively. The time
window w[·] is used to fit the real component time accurately. To simplify the analysis, the time
window can be neglected.

The compensated signal sc(t) is obtained by the following process:

sc(t) = sp(t)·sh(t) = Aej2πa0 exp[j2πa1t] (3)

where sh(t) is the basis function without a time window.
The image, that is, the frequency spectrum Sc( f ), is obtained by Fourier transformation, as follows:

Sc( f ) = FT
{

rect
[ t

T
]
·Aej2πa0 exp[j2πa1t]

}
= Aej2πa0 T·sin c[T( f − a1)]

(4)

where FT{·} is Fourier transformation. The maximum value of the spectrum is at f = a1, which is the
scattering point image as a sin c(·) envelope function.

To get the best image, the fitness function is the maximum spectrum value Scmax, as follows:
{ân} = argmax{max[Sc( f )]}

= argmax
{

max
[
FT
(
sp(t)·sh(t)

)]} , n = 2, 3, 4, · · ·

â1 = fp, Sc( fp) = max[Sc( f )]

(5)

where {ân} are the estimating parameters and fp is the peak position Scmax = Sc( fp).
The spectrum peak is a sin c(·) envelope function, and its main lobe is distributed in the

neighborhood of fp. The estimated component is extracted in the frequency domain by extracting the
main lobe; meanwhile, the residual signal is updated by wiping off the main lobe as follows:

S′c( f ) =

{
0, fp − fb ≤ f ≤ fp + fb

Sc( f ), others
(6)

where S′c( f ) is the residual signal in the frequency domain and fb is the neighborhood range.
The minimum neighborhood is fb = 1/T; the robustness can be increased by extending the
neighborhood range properly.
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Then, the extracted component ŝ(t) can be represented as follows:

ŝ(t) = Â·hp(ân, t) = Â· exp
{

j2π∑Np
n=1 ântn

}
(7)

where Â is the component intensity which is the main lobe energy of Sc( f ).
The residual signal y(t) in the time domain can be obtained by multiplying the inverse Fourier

transformation of S′c( f ) and the conjugate of the compensation phase function, as follows:

y(t) = IFT
{

S′c( f )
}
· s∗h(t)|{ân} (8)

where IFT{·} is the inverse Fourier transformation; the s∗h(t)
∣∣
{ân} is the conjugate of the compensation

phase function with parameters {ân}.
The other components can be extracted from the residual step-by-step, and finally, the signal can

be represented as follows:
s(t) =

{
∑M

m=1 ŝm(t)
}
+ ym(t) (9)

where M is the component number and ym(t) is the residual after m components are extracted.
In the FDE–AJTF decomposition method, the constant false alarm ratio (CFAR) can be applied in

the component extraction to filter clutter and noise and to increase imaging effectiveness [1,4], while
the optimization algorithms are used to accelerate the parameters’ searching speed.

2.2. Standard PSO Algorithm Applied in FDE–AJTF Decomposition

As a classical swarm intelligence algorithm, the PSO compares the optimization problem to the
bird’s foraging behavior, and abstracts every bird into a particle with two parameters, i.e., position
and velocity. The position of each particle is a feasible solution and the velocity is the particle’s
moving tendency. Every particle can acquire and store its local historical best position and the whole
population’s global historical best position, and gather to the best position finally by adjusting their
velocities [19]. To simplify the expression, the local historical best position of a particle can be shortened
to the L-best position, and the global historical best position of the whole population can be shortened
to G-best position. The schematic diagram is as follows.

As shown in Figure 1, the circles are the particles of PSO, of which the big one has the G-best
position, and the others are gathering toward it. The fundamental procedure of PSO is as shown in
Figure 2.
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It is worth noting that the position and velocity of each particle are updated in every iteration, so
the best solution may not be the real position of one certain particle at a given time, but a historical best
position. The concrete concept and specific application of the PSO in the FDE–AJTF decomposition
are as follows.

2.2.1. Position and Velocity of Particles

In the PSO algorithm, a population contains several individuals, i.e., particles, and each one of
them has two parameters, position and velocity. The position P of the gth population is as follows:

Pg = {Pm}, m = 1, · · · , Npop, 1 ≤ g ≤ Ngmax (10)

where g is the iteration number, Pm is the position of the mth particle in this population, Npop is the
total number of particles, and Ngmax is the maximum number of iterations.

The position of a particle is comprised of the feasible solution parameters, as follows:

Pm = {p1, p2, · · · , pD} = {an, τs, τd}, n = 2, 3, · · ·Np (11)

where p is the code elements corresponding to the parameters to solve; Np is the polynomial order of
the signal phase; τs and τd are the start and end of the time window, respectively, in Equation (7); and
D is the coding dimension, which is D = Np + 1 in this equation.

Similar to the above, the velocity V of the gth population is as follows:

Vg = {Vm}, m = 1, · · · , Npop, 1 ≤ g ≤ Ngmax (12)

Vm = {v1, v2, · · · , vD} = {∆an, ∆τs, ∆τd}, n = 2, 3, · · ·Np (13)

where Vm is the velocity of the mth particle and ∆ is the symbol of change rate of the parameter. In the
first population P1, the parameters Pm and Vm of the particles are generated randomly.

2.2.2. Fitness

The fitness is used to evaluate the optimization of each particle in the population, which is the
value of the objective function, as in Equation (5), and the fitness of the particle Pm is as follows:

Ffit(Pm) = max
{∣∣FT

[
sp(t)·sh(Pm, t)

]∣∣} (14)

where Ffit(·) is the fitness function; max{·} is used to obtain the maximum value; |·| is used to obtain
the absolute value; FT[·] is the Fourier transform; sp(t) is the signal to be processed; and sh(Pm, t) is
the basis function generated according to the position of particle Pm.

The velocity of each particle is updated according to its L-best position and the G-best position,
which can be expressed by PL and PG, respectively. Correspondingly, the local best fitness (L-best
fitness) and global best fitness (G-best) are expressed by FL and FG, respectively.
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In the gth iteration, the L-best fitness FL,g,m and position PL,g,m of the mth particle is as follows: FL,g,m = max
{

Ffit

({
Pg′ ,m

})}
PL,g,m = argmax

{
FL,g,m

} , g′ = 1, 2, · · · , g (15)

where Pg′ ,m is all the historical positions of the mth particle from the first iteration to the gth iteration.
The G-best fitness FG,g and position PG,g are as follows:{

FG,g = max
{

FL,g,m
}

PG,g = argmax
{

FG,g
} , m = 1, 2, · · · , Npop (16)

where FG,g is the maximum value of the all local best fitness values of the whole population.

2.2.3. Update of the Velocity and Position

In the (g + 1)th iteration, the velocity Vg,m of the mth particle is updated as follows:

Vg+1,m = ωVg,m + c1α1
(

PL,g,m − Pg,m
)
+ c2α2

(
PG,g − Pg,m

)
, (α1, α2) ∈ U(0, 1) (17)

where Vg+1,m is the (g + 1)th velocity after updating; PL,g,m and PG,g are the local and global best
positions, respectively, in the gth iteration; ω is the inertia constraint factor; c1 and c2 are the local
and global attracting factors, respectively; and α1 and α2 are two random numbers obeying the
U(0, 1) distribution.

The position Pg,m is updated as follows:

Pg+1,m = Pg,m + TVg+1,m (18)

where T is the factor of position updating, which is generally equal to 1.

2.2.4. Updating of the Best Fitness

The fitness of each particle should be recomputed after its position updating, by updating its local
and global best position, as follows:

PL,g+1,m =

{
Pg+1,m, Ffit

(
Pg+1,m

)
≥ Ffit

(
PL,g,m

)
PL,g,m, otherwise

(19)

where PL,g+1,m is the (g + 1)th L-best position of the mth particle. The G-best position PG,g+1 is easily
obtained as in Equation (16).

According to Equation (17), when the fitness achieves a stable value, the velocities of the particles
would become zero, as their positions will not change and will be equal to the G-best position.

3. mc-PSO

The PSO is a swarm intelligence algorithm and has been applied in the classical AJTF method with
good performance. The important feature of the PSO is that every particle in the swarm has an overall
tendency to move toward its L-best position and the G-best position. The feature makes it efficient and
fast; however, when applied in the mc-PPS TF decomposition, it brings two influences: on one hand,
the algorithm easily falls into the local optimal solution and enters the premature stagnation state,
which reduces its global convergence ability; on the other hand, the different extremal solutions may
be true components, and it makes extracting several components simultaneously possible, which can
increase the decomposing efficiency.
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Since the components of the mc-PPS signal are independent of each other, extracting one
component cannot affect the others. To combine the strong local convergence ability and the feature
of reserving the suboptimal solution, a novel multicomponent PSO (mc-PSO) algorithm is proposed,
in which the population is divided into an optimal group (Opt-group) and a suboptimal group
(Sub-group), and several components can be extracted in one extraction. Furthermore, benefiting from
the parallel computing ability of the PSO, the operation speed and efficiency of the modified algorithm
are increased.

Based on the standard PSO shown in Figure 1, the procedure of the mc-PSO is as shown in
Figure 3, in which two components are extracted simultaneously.
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As shown in Figure 3, when two components are extracted simultaneously, the population of
mc-PSO is divided into three constant groups. The first one is the Opt-group, shown as the blue circle,
which contains the particle with the G-best position, and its neighborhood is the forbidden area to the
Sub-group; the second one is the Sub-group, shown as the yellow circle, in which its G-best particle
can be chosen only outside the forbidden area; the third one is the random group, shown as the green
circle, which has no best particle and is updated following the optimal or suboptimal group.

3.1. The Features of Mc-PSO

The three groups of the mc-PSO have the following features:

• The independence of groups

The particles in the three groups are relatively fixed, and the particles in the Opt- and Sub-groups
update their positions and velocities according to their own L- and G-best parameters to ensure
their convergence in every iteration. The random group without a best particle is divided into two
subgroups to update their parameters following the Opt- and Sub-groups, and once the fitness value of
a particle is higher than the smallest one in the other two groups, the smallest one could be replaced by
the higher one in the random group. Of course, the number of replaced particles is restricted to enhance
the whole population’s randomness when exchanging the information among the three groups.

• The strength of the optimal group

Although the aim of mc-PSO is to extract several components simultaneously, the global and
stable convergence of the algorithm is more important. The G-best particle in the Opt-group is the best
one of the whole population, and its neighborhood is the area forbidden to the Sub-group’s G-best
particle, while the particles in the Sub-group could achieve a position in the forbidden area, but their
G-best particle must be chosen outside this area, by which means their parameters are subject to
updating and searching for the suboptimal solutions only.
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• The opportunity of the suboptimal group

If a particle in the Sub-group gets the G-best fitness of the whole population, the Sub- and the
Opt-group are exchanged with each other, and in the next iteration, the Opt-group becomes the
Sub-group, and vice versa.

• The limitation of the suboptimal group

When a particle of the Sub-group enters into the forbidden area, it may have a relatively high
fitness value. However, its best result is only a repetition of the G-best solution in the Opt-group,
unless its fitness is greater than the G-best particle and the two groups exchange with each other.
Because of the forbidden area, the G-best particle in the Sub-group does not have the highest fitness of
the whole population, while the other particles in the Sub-group are attracted to gather around the
suboptimal solution.

3.2. The Procedure of the Mc-PSO Algorithm

According to the TF decomposing process of mc-PPS, the searching parameters are the
polynomial phase parameters over 2 orders, while the fitness is the maximum spectrum value of
the phase-compensated signal, and the position of the maximum value, i.e., a1 of the PPS is actually
the azimuth position of the scattering center. Therefore, in the mc-PSO algorithm, the forbidden area
of the optimal particle can be set based on the position of the scattering center, by which the Opt-
and Sub-groups are distinguished. The procedure of the mc-PSO algorithm applied in FDE–AJTF
decomposition is as shown in Figure 4.

As shown in Figure 4, the procedure is as follows:

(a) Set the neighborhood range of the forbidden area, Dneighbor, and initialize the first population P1

and the iteration g = 1;
(b) Divide the population into three groups, P1 =

{
P1,sub1 , P1,sub2 , P1,sub3

}
, where P1,sub1 is the

Opt-group, P1,sub2 is the Sub-group, and P1,sub3 is the random group.
(c) In the gth iteration, search for the G-best fitness value FG,g

∣∣
sub1

of the Opt-group, update the

particle with the G-best position PG,g
∣∣
sub1

, search for the position XG,g
∣∣
sub1

of the responding

scattering center, and set the neighborhood of XG,g
∣∣
sub1

as the forbidden area of the Sub-group.

(d) Search for the G-best fitness value FG,g
∣∣
sub2

of the Sub-group, update the particle with the G-best

position PG,g
∣∣
sub2

, and search for the position XG,g
∣∣
sub2

of the responding scattering center, while

XG,g
∣∣
sub2

is chosen only out of the neighborhood of XG,g
∣∣
sub1

, as follows:

PG,g
∣∣
sub2

= argmax
({

FL,g,m′
}∣∣∣

sub2

)
(20)

where m′ is the particle number in the Sub-group whose position is outside the forbidden area,
and PL,g,m′

∣∣∣
sub2

conforms to the following equation:

PL,g,m′
∣∣∣
sub2

s.t.
∣∣∣∣XL,g,m′

∣∣∣
sub2
− XG,g

∣∣
sub1

∣∣∣∣ > Dneibor (21)

where Dneighbor is the neighborhood range.

(e) Set the L-best fitness of the particles of the Sub-group in the forbidden area FfitL,g,m′′
∣∣∣
sub2

to zero,

as follows:

FL,g,m′′
∣∣∣
sub2

= 0 i f
∣∣∣∣XL,g,m′′

∣∣∣
sub2
− XG,g

∣∣
sub1

∣∣∣∣ ≤ Dneibor (22)

where m′′ is the particle number of the Sub-group in the forbidden area. The parameters and
the fitness of the particles in the forbidden area would definitely be updated and step out the
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forbidden area. The manipulation ensures the suboptimal group does not include the best
solution of the Opt-group and thus avoids invalid searching.

(f) Divide the random group into two subgroups, Pg,sub3 =
{

Pg,sub31 , Pg,sub32

}
, and attach to the end

of the Opt- and Sub-groups, respectively, to compose two mixed groups
{

Pg,sub1 , Pg,sub31

}
and{

Pg,sub2 , Pg,sub32

}
, and then update their parameters using PG,g

∣∣
sub1

and PG,g
∣∣
sub2

, respectively.

(g) Update the two mixed groups,
{

P
′
g,sub1

, P
′
g,sub31

}
and

{
P
′
g,sub2

, P
′
g,sub32

}
, calculate their fitness

F′g,m and the scattering position X′g,m, and update their L-best value F′L,g,m and position P′L,g,m.

(h) In the first mixed group
{

P
′
g,sub1

, P
′
g,sub31

}
, if the maximum fitness value in the random subgroup

P
′
g,sub31

is larger than the minimum fitness value in the Opt-group P
′
g,sub1

, exchange the two
respective particles as follows:

P′g,m1

∣∣∣
sub1
⇔ P′g,m2

∣∣∣
sub31

i f F′L,g,m1

∣∣∣
sub1
≤ F′L,g,m2

∣∣∣
sub31

(23)

where the symbol ⇔ means exchanging the two particles’ groups; m1 is the particle number
with the minimum fitness value in the Opt-group P

′
g,sub1

; and m2 is the particle number with the

maximum fitness value in the random subgroup P
′
g,sub31

, as follows:
F′L,g,m1

∣∣∣
sub1

= min
({

F′L,g,m

}∣∣∣
sub1

)
F′L,g,m2

∣∣∣
sub31

= max
({

F′L,g,m

}∣∣∣
sub31

) (24)

Then, apply the same processing to the second mixed group,
{

P
′
g,sub2

, P
′
g,sub32

}
. Only one pair of

particles are exchanged in each mixed group, the purpose of which is to maintain the relative
independence of the Opt- and Sub-groups and to maintain the randomness of the random group.

(i) If the G-best fitness of the Sub-group is larger than that of the Opt-group, exchange the roles of
the two groups, as follows:

P
′
g,sub1

⇔ P
′
g,sub2

i f F′L,g,m1

∣∣∣
sub1

< F′L,g,m2

∣∣∣
sub2

(25)

where the symbol⇔ means exchanging the two groups; and m1 and m2 are the particle numbers
with maximum fitness in the Opt- and Sub-groups, respectively.

F′L,g,m1

∣∣∣
sub1

= max
({

F′L,g,m

}∣∣∣
sub1

)
F′L,g,m2

∣∣∣
sub2

= max
({

F′L,g,m

}∣∣∣
sub2

) (26)

(j) The three groups
{

P
′
g,sub1

, P
′
g,sub2

, P
′
g,sub3

}
become the (g + 1)th population, Pg+1 ={

Pg+1,sub1 , Pg+1,sub2 , Pg+1,sub3

}
, and determine whether the stop condition is met; if it is, perform

step (k), and if not, update the iteration g = g + 1 and perform step (c).
(k) Output the G-best parameters PG,g

∣∣
sub1

and PG,g
∣∣
sub2

of the Opt- and Sub-groups, respectively,
and the algorithm is completed.
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3.3. The Effectiveness of Suboptimal Component

Two components are outputted for each completion of the mc-PSO algorithm. However, if only
one efficient component is left in the signal, the second component is invalid, so the effectiveness of
the suboptimal component should be judged. According to the feature of the mc-PPS signal, the two
real components are independent to each other and one’s extraction cannot affect the other; otherwise,
extracting a component would severely affect the fitness of the other.

Therefore, if the fitness of the optimal and suboptimal solutions are F1 and F2, respectively, and
the fitness of the suboptimal solution after the optimal component is extracted is F′2, the ratio of the two
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fitness values F2 and F′2 before and after the optimal component is extracted can judge the effectiveness
of the suboptimal solution, as follows:{

Effective, Rfit ≥ Hfit

Ineffective, otherwise
, Rfit =

F′2
F2

(27)

where Rfit is the fitness ratio and Hfit is the threshold. If the suboptimal solution is not a real component,
the fitness F′2 would be obviously lower than F2. To ensure the effectiveness of every component,
the threshold can be set as Hfit = 0.99.

4. Simulation and Test

To analyze the convergence, accuracy, and computation of the mc-PSO, several simulations
are performed and the comparisons between mc-PSO and GA, DE, and standard PSO are made.
The simulated data is contained in four four-order PPS components with 500 points within the time
−0.5~0.5 s, as Table 1 shows.

Table 1. The parameters of PPS components.

A a1 a2 a3 a4 τs τd RE

Component 1 2.0 32.1 55.6 212.4 10.1 −0.5 0.5 46.30%
Component 2 1.6 398.2 156.6 −149.3 −20.2 −0.5 0.4 29.63%
Component 3 1.2 333.9 −98.2 −102.2 30.7 −0.4 0.5 16.67%
Component 4 0.8 262.8 −23.1 −91.5 −10.8 −0.5 0.5 7.41%

The parameters of the four optimal algorithms are set as in Table 2, in which the main variable is
the number of individuals or particles, and the other parameters are optimal empirical values obtained
after many simulation experiments.

Table 2. The parameters of the four optimal algorithms.

GA DE Standard PSO mc-PSO

Individual
number 100~500 Individual

number 100~500 Particle
number 100~500 Particle

number 100~500

Iteration 500 Iteration 500 Iteration 500 Iteration 500

Choose
probability 0.8 Mutation

factor 0.4 Constraint
factor 0.729

Components
once

extraction
2

Cross
probability 0.5 Cross

probability 0.7 Attraction
factor 1.496 Neighborhood

range 30

The time frequency distribution (TFD) of the simulated data obtained by short time Fourier
transform (STFT) is shown in Figure 5, and the time frequency representation (TFR) obtained by
FDE–AJTF decomposition with four different optimal algorithms is shown in Figure 6.
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As shown in Figure 5, the general trend of the signal is obtained with low resolution by STFT,
while in Figure 6, the four components were extracted by FDE–AJTF decomposition with higher
resolutions. Furthermore, the four TFRs obtained by FDE–AJTF decomposition with different optimal
algorithms are almost the same as each other, which indicates that the four TFRs correspond with the
simulated signal generated as shown in Table 1, and all the four optimal algorithms can satisfy the
requirement of FDE–AJTF decomposition for mc-PPS signal.

4.1. Convergence

To get the statistical characteristics of the four optimal algorithms, a Monte Carlo test was carried
out in each simulation for 500 times. The convergences of the four optimal algorithms can be expressed
by the change curves of the best fitness in the population. When the first component was extracted,
the four algorithms’ change curves of the best fitness with the iteration were as shown in Figures 7–10.
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Figure 10. The best fitness change curves of mc-PSO with different numbers of individuals:
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As shown in Figures 7–10, the best fitness values of the four algorithms converge to one or two
values with increasing iterations, and the converging speed becomes faster with the increasing number
of individuals. In Figure 7, it is evident that some solutions of the GA algorithm fall into a local
optimal solution and, in Figure 9, the PSO has the fastest convergence speed and a few solutions fall
into a local optimal solution, while in Figure 8, the DE algorithm has the best convergence, but the
slowest speed. As shown in Figure 10, two solutions are obtained in the mc-PSO algorithm with good
convergence, so even though its convergence speed is slower than the standard PSO, the searching
times are reduced by half compared to the standard PSO.
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Furthermore, in the worst case, the convergence of the mc-PSO is as the same as the standard
PSO because of former one’s procedure in Figure 4. Moreover, the lower convergence of the standard
PSO is mainly caused by its local optimal solution, while in mc-PSO, when a local optimal solution
is obtained by the Opt-group, the Sub-group has to search another solution out of the neighborhood
of the local optimal solution, so the suboptimal solution would be the global optimal solution of
the whole population. Then, in step (i) of the processing procedure, the roles of the two groups will
be exchanged, finally the global optimal solution is obtained. As a result of that, the probability of
correctly extracting the global optimal solution is increased by the two divided groups in the mc-PSO,
and its convergence is enhanced as shown in Figures 9 and 10.

4.2. Accuracy

The accuracies of the four algorithms can be expressed by the probability of correctly extracting
the first component, which can be expressed by the ratio of the individuals with the best fitness of the
whole population. The accuracies of the four algorithms are shown in Figures 11–14 and Table 3.
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Table 3. The probabilities of correctly extracting the first component of the four algorithms.

Individuals GA DE STD PSO
mc-PSO

1st CMPT 2nd CMPT

200 81.5% 100% 98.0% 99.0% 99.0%
300 91.0% 100% 99.0% 99.5% 99.0%
400 91.0% 100% 99.0% 100% 99.5%
500 91.0% 100% 99.0% 100% 100%

As shown in Table 3 and Figure 11, when 400 individuals are present, the GA’s probability of
correctly extracting the first component is 91%, and in Figure 13, the PSO’s is 99%, and when only
200 individuals are present, the DE’s accuracy is already 100%. It is evident that the DE algorithm
has the best accuracy and stability, those of the PSO are worse than the DE, and the GA has the worst.
As shown in Figure 14, when 500 individuals are present in the mc-PSO algorithm, the probabilities
of correctly extracting the first and the second components are both 100%, which indicates that its
accuracy is better than the standard PSO and its stability is improved.

4.3. Computation

Due to the extraction error in the mc-PSO algorithm, having two components in one extraction
may be not both effective, and more than two extractions may be needed to extract four components.
The average number of extractions it needs to search for and extract four components is shown in
Figure 15.
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As shown in Figure 15, the average number of extractions is about 2.2, which indicates that the
effectiveness judgment condition detailed in Section 3.3 is effective and the components’ effectiveness
is ensured.
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According to the detailed procedures of the four algorithms, the computations in every iteration
are mainly from the individuals’ fitness update, which requires the Fourier transform. Therefore,
the whole computation of the four algorithms can be expressed by their FFT operation times, which
are shown in Table 4. The simulation environment is shown in Table 5, and the normalized computing
time is shown in Figure 16.

Table 4. The computation of the four algorithms.

GA DE PSO mc-PSO

Number of individuals 400 300 400 400
Iteration 400 400 200 300

Number of extractions 4 4 4 2.2
Number of fitness updates 640,000 480,000 320,000 264,000

Table 5. The simulation environment.

Items Parameters

CPU Xeon E3 2.9 GHz
Cores 4 Cores and 8 Threads

Memory 64 GB
Disk 1 T SSD

Software Matlab R2016b
Monte Carlo times 500
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As shown in Table 4, the mc-PSO has the least fitness update times of the four algorithms, which
corresponds to the normalized theoretical value in Figure 16, and the simulation time conforms
to the theoretical value. It is evident that the mc-PSO has the lowest computational requirements
and the shortest operation time, which confers about 30% improvement compared to the standard
PSO algorithm.

5. Conclusions

The echo of maneuvering targets can be expressed as a multicomponent polynomial phase
signal (mc-PPS), which should be processed by time frequency analysis methods. The FDE–AJTF
decomposition is an effective method to correctly search for and extract the components of the mc-PPS
signal. However, a difficult problem of the FDE–AJTF decomposition is searching for the optimal
parameters in the solution space, which is essentially a multidimensional optimization problem with
different extremal solutions. Although the PSO is an efficient and widely-used optimal algorithm,
on one hand, it has disadvantages that easily fall into the local optimal solution; on the other hand,
its feature makes extracting several components simultaneously possible.

In this paper, based on the feature of the standard PSO, a novel mc-PSO algorithm is presented to
solve the multidimensional optimization problem, which has the new characteristic that can extract
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several components simultaneously. To achieve the purpose, the population of the mc-PSO is divided
into three groups, i.e., optimal, suboptimal, and random groups, while the neighborhood of the
best particle in the Opt-group is set as the forbidden area for the Sub-group, and then two different
independent components can be extracted in one extraction by the Opt- and Sub-group, respectively.

Three simulation tests are carried out and compared with the standard PSO, GA, and DE
algorithms, the performances in convergence, accuracy, and computation of the mc-PSO are analyzed.
According to the test results, the GA has the worst performance in all three aspects; the DE algorithm
has the best convergence and accuracy, but the slower speed; the standard PSO has the faster speed but
worse convergence and accuracy than DE; the presented mc-PSO algorithm has the fastest speed and
comparable convergence and accuracy with DE. As concluded, it is verified that the mc-PSO has the
best performance and that the convergence, accuracy, and stability are improved, while its searching
times and computation are reduced.

The real-time application is the eventual goal of an optimal algorithm; however, although the
computation is reduced and the convergence speed is improved, the mc-PSO is hardly used in real-time
applications yet, especially in high-resolution signal processing with large data. In the follow-up
research, the real-time processing application of the mc-PSO or other optimal algorithms will be the
direction and focus.
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