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Abstract: This paper presents a resonant converter with the benefits of wide output voltage, wide soft
switching characteristics for power devices and high circuit efficiency. Since the series resonant circuit
is adopted on the primary side, the power switches are turned on under zero voltage switching and
power diodes on the secondary side can be turned off under zero current switching. To overcome
the drawback of narrow voltage operation range in the conventional resonant converter, full-bridge
rectifier and voltage-doubler rectifier topologies are employed on the secondary side for low-voltage
output and high-voltage output applications. Therefore, the voltage rating of power devices on
the secondary side is clamped at output voltage, rather than two times output voltage, in the
center-tapped rectifier circuit. Synchronous power switches are used on the secondary side to further
reduce the conduction losses so that the circuit efficiency can be further improved. To verify the
theoretical analysis and circuit performance, a laboratory prototype with 1 kW rated power was built
and tested.

Keywords: soft switching; resonant converter; wide output voltage

1. Introduction

High power density and high circuit efficiency are demanded of modern powered electronics
in order to reduce the greenhouse effect. Power converters with soft switching characteristics, such
as asymmetric pulse-width modulation converters [1–4] and phase-shift pulse-width modulation
converters [5–8], have been developed and implemented to improve converter efficiency. The main
drawback of these circuit topologies is a narrow soft switching range due to the limited energy stored
on the leakage inductor under light or low load. LLC resonant converters [9–12] have the benefits of a
wide soft switching range for powered devices and high efficiency. However, the narrow input and
output voltage range is the main drawback of resonant converters. If a wide voltage range is needed
in a series resonant converter, then a low quality factor or low inductor ratio between the magnetizing
inductor and resonant inductor is usually adopted to obtain high voltage gain. Low inductor ratio
will result in high circulating current loss and high conduction loss on the primary side. The circuit
efficiency will be decreased. An LLC resonant converter with high inductor ratio can reduce conduction
loss. However, the voltage gain of resonant converter will decrease, and wide voltage range operation
cannot be realized. For electric vehicle (EV) or hybrid electric vehicle (HEV) applications, the battery
charging converter is built using a front-stage power factor corrector and a high-frequency link isolated
dc-dc converter. For battery charging applications, the output voltage range of the dc-dc converter can
be from 200 V to 420 V. Therefore, high-frequency link dc-dc converters with wide output voltage are
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needed for EV and HEV applications or outdoor LED lighting systems with variable series or parallel
combinations of LED strings. There are several solutions to overcome the challenges of wide input or
output voltage range operation. First, the conventional full-bridge converter, as shown in Figure 1a,
with wide duty cycle control can be adopted to achieve wide voltage operation. If the maximum
duty cycle is four times the minimum duty cycle (dmax = 4 dmin), then the output voltage of full-bridge
converter is controlled at the constant value for 4:1 input voltage range (vmax = 4 vmin). However, wide
duty cycle operation will result in low circuit efficiency in cases of high input voltage and low duty
cycle. The second solution to achieve wide voltage operation is using two-stage dc-dc converters, as
shown in Figure 1b, such as buck or boost circuit and full-bridge circuit. Since two-stage circuits are
used, the circuit efficiency is decreased and the circuit reliability is also reduced. The third solution is
using single stage hybrid resonant circuit topology [12–14] as shown in Figure 1c. The wide voltage
range resonant converter with full-bridge circuit (S1 ~ S4 are operation) or half-bridge (S1, S2 and
S3 are operation) circuit topology used on the primary side [13,14] has been proposed to extend the
input voltage range. The main advantage of the full-bridge and half-bridge resonant converter on the
primary side is the wide input voltage range (vin,max = 4 vin,min). However, there is a transient duration
between the half-bridge resonant converter and the full-bridge resonant converter operation, and one
power switch S3 is always in the on-state under half-bridge resonant circuit, which will result in one
more conduction loss on a powered device. The secondary side of the circuit topologies in Figure 1
is the center-tapped rectified circuit with two diodes to obtain low voltage output. If a wide output
voltage is required, then diodes on the center-tapped rectifier may have a high-voltage rating problem.
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Figure 1. Circuit topologies with wide voltage operation: (a) conventional full-bridge converter; (b) 
two-stage converter; (c) hybrid resonant converter. 

A new single-stage resonant converter is studied and presented in this paper to have the benefits 
of wide output voltage operation, wide soft switching characteristics, and high circuit efficiency. Due 
to the input inductive load characteristic of the resonant converter, all power switches on the primary 
side are operated under soft switching conditions. Synchronous switches are also used on the 
secondary side to lessen the conduction loss on power devices. To achieve wide output voltage 
operation, full-bridge rectifier topology or voltage-doubler rectifier topology is selected on the 
secondary side by using an ac power switch. For higher-voltage output, the ac power switch is turned 
on to realize voltage-doubler rectifier on the secondary side. On the other hand, ac power switch is 
turned off to realize full-bridge rectifier on the secondary side under lower voltage output. Thus, the 
proposed converter can achieve operation over a wide output voltage range. Compared to 
conventional wide input voltage operation, with full-bridge and half-bridge resonant converters on 

Figure 1. Circuit topologies with wide voltage operation: (a) conventional full-bridge converter;
(b) two-stage converter; (c) hybrid resonant converter.

A new single-stage resonant converter is studied and presented in this paper to have the benefits
of wide output voltage operation, wide soft switching characteristics, and high circuit efficiency. Due to
the input inductive load characteristic of the resonant converter, all power switches on the primary side
are operated under soft switching conditions. Synchronous switches are also used on the secondary
side to lessen the conduction loss on power devices. To achieve wide output voltage operation,
full-bridge rectifier topology or voltage-doubler rectifier topology is selected on the secondary side
by using an ac power switch. For higher-voltage output, the ac power switch is turned on to realize
voltage-doubler rectifier on the secondary side. On the other hand, ac power switch is turned off to
realize full-bridge rectifier on the secondary side under lower voltage output. Thus, the proposed
converter can achieve operation over a wide output voltage range. Compared to conventional wide
input voltage operation, with full-bridge and half-bridge resonant converters on the primary side, the
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control scheme of the proposed converter is simple and easy to implement. The working principle of
the circuit and the steady-state characteristics of the developed converter are provided and discussed.
Finally, experiments with a 1 kW laboratory prototype are demonstrated to show the performance of
the developed resonant converter.

2. Circuit Diagram

The circuit configuration of the conventional ac-dc converter for EV/HEV battery charging
systems or outdoor LED lighting systems is composed of a front-stage power factor corrector and
a rear-stage dc-dc converter to provide a stable wide output voltage and high power output. The
front-stage power factor corrector with boost topology can achieve line current harmonics reduction
and power factor correction. The second stage is the resonant converter or full-bridge converter to
realize a high-efficiency circuit. However, the main drawbacks of the series resonant converter are
wide frequency range and narrow input or output voltage range. The proposed LLC resonant converter
with wide output voltage is proposed and presented in Figure 2a. In the proposed converter, S1 ~ S4

are the main power switches, Cr and Lr are the series resonant capacitor and inductor, T is the isolation
transformer, Lm is the magnetizing inductance of transformer T, SR1 and SR2 are synchronous rectifiers
to reduce the conduction loss on the secondary side, D1 and D2 are rectifier diodes, and Sac is the ac
power switch. The full-bridge resonant converter is adopted on the primary side to provide 1 kW rated
power. To overcome the shortcoming of narrow input or output voltage operation in the conventional
LLC resonant converter, full-bridge or voltage-doubler rectifier topology is selected on the secondary
side to provide wide output voltage operation for battery charger or outdoor LED lighting applications.
An ac power switch Sac is adopted on the secondary side to achieve full-bridge rectifier topology (Sac is
off), as shown in Figure 2b for low output voltage operation, or voltage-doubler rectifier topology
(Sac is on), as shown in Figure 2c for high output voltage operation. The output voltage regulation is
based on the variable switching frequency to adjust the input impedance of the resonant converter
and regulate the ac voltage gain of the resonant circuit. By proper selection of the inductor ratio of the
magnetizing inductance, series resonant inductance and quality factor, wide output voltage operation
can be realized in the proposed converter.
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3. Operation Principle of the Proposed Converter

The frequency modulation is employed to control load voltage and the duty ratio of each power
switches on the primary side equals 0.5. To analysis the circuit operation, the circuit components on the
proposed converter are assumed as CS1 = . . . = CS4 = Coss, Co1 = Co2 = Co, turns ratio of T is n = Np/Ns,
and Vo1 = Vo2 = Vo/2. Figure 3a,b illustrate the key voltage and current waveforms of the proposed
converter under ac switch Sac is on and off, respectively. According to the switching states of S1 ~ S4,
SR1, SR2, D1, D2 and Sac, six operation steps are observed in each switching cycle if the switching
frequency is less than the series resonant frequency. Figures 4 and 5 provides the equivalent circuits in
each operation step for ac switch Sac is on and off, respectively.
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3.1. For Low Output Voltage with Sac Off (Full-Bridge Rectifier)

To provide low voltage output, the ac switch Sac is turned off, and the full-wave rectifier topology
is selected on the secondary side. The circuit operation of the developed converter under low output
voltage operation is discussed below.

Step 1 [t0 ~ t1]: Before t0, all power switches are off. The secondary side current is positive,
synchronous switch SR1 conducts, and rectifier diode D2 is forward biased. The output capacitors CS1

and CS4 are discharged due to the primary side current iLr being negative. At time t0, CS1 and CS4 are
discharged to zero voltage, and the body diodes DS1 and DS4 are forward biased and conduct. Then,
active devices S1 and S4 turn on at this moment to realize zero voltage switching and reduce switching
loss. The voltage Vin is applied to the resonant tank Lr, Cr and Lm. Since SR1 and D2 conduct, the
magnetizing voltage of T is clamped at vLm = nVo. Therefore, iLm increases with the slope of nVo/Lm.
In this step, vLr and iLr are calculated by (1) and (2).

vCr(t) = Vin − nVo − [Vin − nVo − vCr(t0)] cos ωr1(t− t0) + iLr(t0)Zr1 sin ωr1(t− t0) (1)
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iLr(t) =
Vin − nVo − vCr(t0)

Zr1
sin ωr1(t− t0) + iLr(t0) cos ωr1(t− t0) (2)

where ωr1 = 1/
√

LrCr and Zr1 =
√

Lr/Cr. Load power is supplied from Vin to Vo in this step. If half
of the switching period 1/(2fsw) is larger than half of the resonant period 1/(2fr), then the secondary
side current will decrease to zero before the end of half of the switching period. Therefore, the next
circuit operation will be step 2. Otherwise the next circuit operation will be step 3.

Step 2 [t1 ~ t2]: Since fsw < fr, iLm equals iLr at time t1. The rectifier diode D2 is reverse biased, and
synchronous switch SR1 is turned off. Therefore, the primary side and secondary side of transformer T
are disconnected in this operating step. The components Lr, Cr and Lm are resonant, and vLr and iLr in
this step are calculated by (3) and (4) with the resonant frequency fr2 = 1/2π

√
(Lm + Lr)Cr.

vCr(t) = Vin − [Vin − vCr(t1)] cos ωr2(t− t1) + iLr(t1)Zr2 sin ωr2(t− t1) (3)

iLr(t) =
Vin − vCr(t1)

Zr2
sin ωr2(t− t1) + iLr(t1) cos ωr2(t− t1) (4)

Step 3 [t2 ~ t3]: Active devices S1 and S4 turn off at time t2. Since iLr(t2) > 0, CS2 and CS3 are discharged
and CS1 and CS4 are charged in this operating step. The secondary side current becomes negative, such
that SR2 is forced to turn on in order to reduce the conduction loss, and diode D1 is forward biased.
The magnetizing voltage vLm = −nVo and iLm decreases. If the peak magnetizing current at t2 is large
enough, CS2 and CS3 can be discharged to zero voltage at time t3.

vCS2(t) = vCS3(t) = Vin −
iLr(t2)

2Coss
(t− t2) ≈ Vin −

∆iLm
4Coss

(t− t2) (5)

Step 4 [t3 ~ t4]: At time t3, vCS2(t3) = vCS3(t3) = 0. Since iLr(t3) > 0, the body diodes DS2 and DS3 are
forward biased. Therefore, active devices S2 and S3 turn on at this moment to achieve zero voltage
switching and reduce the switching loss. The secondary side components SR2 and D1 conduct so that
vLm = −nVo/2 and iLm decreases. Lr and Cr are resonant with the applied voltage nVo − Vin, and vLr
and iLr in this operating step are calculated as:

vCr(t) = nVo −Vin − [nVo −Vin − vCr(t3)] cos ωr1(t− t3) + iLr(t3)Zr1 sin ωr1(t− t3) (6)

iLr(t) =
nVo −Vin − vCr(t3)

Zr1
sin ωr1(t− t3) + iLr(t3) cos ωr1(t− t3) (7)

If 1/(2fsw) > 1/(2fr), then the secondary side current will decrease to zero before the end of half of
the switching period. Therefore, the next circuit operation will be step 5. Otherwise the next circuit
operation will be step 6.

Step 5 [t4 ~ t5]: Because fsw/2 < fr/2, iLm = iLr at time t4 and D1 becomes reverse biased, and
synchronous switch SR2 turns off. Lr, Cr and Lm are resonant with frequency fr2 = 1/2π

√
(Lm + Lr)Cr

in step 5. The voltage vLr and current iLr are obtained as:

vCr(t) = −Vin + [Vin + vCr(t4)] cos ωr2(t− t4) + iLr(t4)Zr2 sin ωr2(t− t4) (8)

iLr(t) = −
Vin + vCr(t4)

Zr2
sin ωr2(t− t4) + iLr(t4) cos ωr2(t− t4) (9)

Step 6 [t5 ~ Tsw + t0]: Powered devices S2 and S3 turn off at time t5. Due to the secondary side current
being positive, D2 becomes forward biased and SR1 is turned on to reduce the conduction loss on the
secondary side. Due to iLr(t5) < 0, CS1 and CS4 are discharged. If the peak magnetizing current at t5 is
large enough, CS1 and CS4 can be discharged to zero voltage.
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vCS1(t) = vCS4(t) = Vin +
iLr(t5)

2Coss
(t− t5) ≈ Vin −

∆iLm
4Coss

(t− t5) (10)

At Tsw + t0, CS1 and CS4 are discharged to zero voltage. Then, the body diodes DS1 and DS4 are
forward biased and the circuit operation for next switching period begins from time Tsw + t0.

3.2. For High Output Voltage with Sac on (Voltage Double Rectifier)

When the ac switch Sac is turned on, as shown in Figure 2c, the secondary side circuit topology
of the proposed converter is a voltage-doubler rectifier to provide high output voltage. The circuit
operation with the voltage-doubler rectifier topology on the secondary side is discussed below.

Step 1 [t0 ~ t1]: Before time t0, S1 ~ S4 are off. Due to the secondary side current being positive,
synchronous switch SR1 and switch Sac are conducting. Since iLr < 0 before time t0, CS1 and CS4 are
discharged. CS1 and CS4 are discharged to zero voltage at time t0. Then, the body diodes DS1 and
DS4 conduct. Therefore, S1 and S4 can be turned on at t0 to accomplish zero voltage switching. Input
voltage Vin is connected to the resonant tank Lr, Cr and Lm. Due to vLm = nVo1 = nVo/2, iLm increases
with the slope of nVo1/Lm. In step 1, the voltage vLr and current iLr on the primary side are obtained as:

vCr(t) = Vin − nVo/2− [Vin − nVo/2− vCr(t0)] cos ωr1(t− t0) + iLr(t0)Zr1 sin ωr1(t− t0) (11)

iLr(t) =
Vin − nVo/2− vCr(t0)

Zr1
sin ωr1(t− t0) + iLr(t0) cos ωr1(t− t0) (12)

If 1/(2fsw) > 1/(2fr), then the next circuit operation goes to step 2. Otherwise the next circuit
operation will go to step 3.

Step 2 [t1 ~ t2]: Since fsw < fr, iLm will equal iLr at t1 and the secondary side current equals
zero. Then, the synchronous switch SR1 turns off. In the operating step 2, the primary side and
secondary side of transformer T is disconnected. Therefore, Lr, Cr and Lm are resonant with frequency
fr2 = 1/2π

√
(Lm + Lr)Cr. The primary side voltage vLr and current iLr are derived the same as in (3)

and (4). If the fsw is close to fr, the current variation ∆iLm on the magnetizing inductor Lm in steps 1 and
2 (about half of the switching period Tsw/2) is approximately expressed by (13).

∆iLm(t) ≈
nVo

4Lm fsw
(13)

Step 3 [t2 ~ t3]: At time t2, S1 and S4 turn off. Due to iLr(t2) being positive, CS2 and CS3 are discharged in
this operating step. The secondary side current is negative, and SR2 turns on to reduce the conduction
loss. The magnetizing voltage vLm = −nVo2 = −nVo/2 and iLm decreases. If the peak magnetizing
current ∆iLm/2 at time t2 is large enough, then CS2 and CS3 can be discharged to zero voltage at time
t3. The voltages on CS2 and CS3 can be approximately expressed as:

vCS2(t) = vCS3(t) ≈ Vin −
nVo

16LmCoss fsw
(t− t2) (14)

Step 4 [t3 ~ t4]: The capacitors CS2 and CS3 are discharged to zero voltage at time t3 due to iLr(t3)
being positive. Then DS2 and DS3 become forward biased, and S2 and S3 can be turned on after t3

to accomplish soft switching operation. On the secondary side, SR2 and Sac are conducting, so that
vLm = −nVo2 = −nVo/2 and iLm declines. In step 4, Lr and Cr are resonant with the applied voltage
nVo/2 −Vin. The primary voltage vLr and current iLr are obtained as:

vCr(t) = nVo/2−Vin − [nVo/2−Vin − vCr(t3)] cos ωr1(t− t3) + iLr(t3)Zr1 sin ωr1(t− t3) (15)
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iLr(t) =
nVo/2−Vin − vCr(t3)

Zr1
sin ωr1(t− t3) + iLr(t3) cos ωr1(t− t3) (16)

If fsw < fr, then the secondary side current will decline to zero at t4 and the next operation step
goes to step 5. Otherwise the next operating step goes to step 6.

Step 5 [t4 ~ t5]: Since fsw < fr, the magnetizing current iLm will decline and be equal to iLr at time t4.
Then, the synchronous switch SR2 will be forced to turn off. On the primary side, the components Lr,
Cr and Lm are resonant with frequency fr2 = 1/2π

√
(Lm + Lr)Cr. If the fsw is close to fr, the current

variation ∆iLm on Lm in Steps 4 and 5 is the same as in (13).

Step 6 [t5 ~ Tsw + t0]: S2 and S3 are turned off at t5. Since the secondary side current becomes positive,
SR1 turns on to charge capacitor Co1. The current iLr(t5) < 0 will discharge CS1 and CS4. At time Tsw

+ t0, CS1 and CS4 are discharged to zero voltage. Then, the body diodes DS1 and DS4 of S1 and S4

become forward biased, and the circuit operations in a switching cycle are finished.

4. Circuit Characteristics and Design Considerations

For general LLC resonant converters, a variable frequency control is normally adopted to regulate
output voltage against input voltage variation and load current change. The duty cycle of each
switch is close to 0.5, with a small dead time between the complementary switches in the same leg
to allow zero-voltage switching. Fundamental frequency analysis is normally adopted to obtain the
approximate voltage gain of the LLC resonant converter. Due to the low output voltage (Sac is off
as shown in Figure 2b) or high output voltage (Sac is on as shown in Figure 2c), the fundamental
frequency equivalent circuit of the proposed converter is provided in Figure 6a. The fundamental root
mean square voltages at input and output terminals of the equivalent circuit are obtained in (17).

Vin,ac = 2
√

2Vin/π, VLm,ac = 2
√

2nVo/π (if Sac off), or
√

2nVo/π (if Sac on) (17)

The load resistance Ro reflected to the primary side of transformer is calculated as

Rac =
8n2

π2 Ro (if Sac off), or
2n2

π2 Ro (if Sac on) (18)

Therefore, the ac voltage gain of the resonant tank shown in Figure 6a is calculated as

|GSac,on| =
nVo

Vin
=

2√
[1 + 1

Ln
(1− 1

F2 )]
2
+ Q2(F− 1

F )
2

(19)

|GSac,o f f | =
nVo

Vin
=

1√
[1 + 1

Ln
(1− 1

F2 )]
2
+ Q2(F− 1

F )
2

(20)

where the quality factor Q =
√

Lr/Cr/Rac, inductor ratio Ln = Lm/Lr, series resonant frequency
fr1 = 1/2π

√
LrCr and frequency ratio F = fsw/fr1. Figure 6b gives the gain curve of the LLC resonant

converter based on the different quality factor Q and frequency ratio F under the inductor ratio
Ln = 5. If the circuit is operated on the negative slope of the constant quality factor Q characteristics,
power switches are operated at inductive load and zero-voltage switching is realized. It can be
observed from Figure 6b that the core loss of magnetic components increases if the switching frequency
increases. On the other hand, the circulating current loss increases if the switching frequency decreases.
A lower quality factor Q obtains a higher voltage gain G. A lower output voltage or higher input
voltage will result in a lower dc voltage gain and the switching frequency increases. Similarly, a
higher output voltage or lower input voltage will obtain a higher dc voltage gain and the switching
frequency decreases.
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Figure 6. Resonant converter: (a) ac equivalent circuit of the resonant tank; (b) ac voltage gain curve
versus normalized switching frequency.

The proposed converter was built and tested as a laboratory prototype with the following electrical
specifications: Vin = 400 V, Vo = 360 V ~ 120 V (3:1), Po,rated = 1000 W, and fr1 = 100 kHz. To realize wide
output voltage operation (3:1), a low inductor ratio Ln and low quality factor Q at full load are needed
to achieve wider voltage gain. However, the low Ln and Q will result in the serious circulating current
losses on powered devices and magnetic windings, decreasing the circuit efficiency. Therefore, ac power
switch Sac is adopted on the secondary side to select full-bridge rectifier topology or voltage double
rectifier topology for low output voltage application or high output voltage application. Thus, the
reasonable inductor ratio Ln and quality factor Q can be adopted in the proposed converter to keep the
high circuit efficiency benefit of the resonant converter. Since the output voltage with voltage-doubler
rectifier topology is two times that of the output voltage with full-bridge rectifier topology, the
prototype LLC resonant converter is designed for 4:1 wide output voltage range from 480 V to 120 V
output. Although the actual output voltage range is from 360 V to 120 V in the laboratory prototype,
the wide output voltage range in this circuit design will give more operation range considered for
some proper voltage tolerance. Figure 6 shows typical voltage gain curves of proposed converter with
4:1 output voltage range from 120 V to 480 V at Vin = 400 V condition. The transient voltage, Vo,tran,
between full-bridge rectifier topology and voltage-doubler rectifier topology selection is designed to
be 240 V, with ±5 V voltage tolerance using a Schmitt trigger comparator. Therefore, the LLC resonant
converter with full-bridge rectifier is adopted if the output voltage range is from 120 V to 240 V. On the
other hand, the LLC resonant converter with voltage-doubler rectifier is employed if the output voltage
range is from 240 V to 480 V. In this way, the design considerations for both full-bridge rectifier and
voltage-doubler rectifier are identical due to Vo,voltage-doubler rectifier = 2Vo, full-bridge rectifier under the same
operation condition. For full-bridge rectifier topology on the secondary side of the proposed converter



Electronics 2019, 8, 3 10 of 16

with Sac off, the minimum voltage gain GSac,off,min is designed at unity under Vo,min = 120 V condition.
The theoretical turn ratio n of transformer T is calculated in (21).

n =
GSac,o f f ,minVin

Vo,min
=

1× 400
120

= 3.333 (21)

Magnetic core EER-42 core is used to implement transformer T with flux density ∆B = 0.5T and
Ae = 2.4 cm2. It is assumed that the minimum switching frequency is 60 kHz at Vo,tran. Then, the
minimum winding turns is calculated as:

Np,min ≥
nVo,tran

2 fs,min∆BAe
=

3.333× 240
2× 60, 000× 0.5× 2.4× 10−4 ≈ 56 (22)

The actual primary turns and secondary turns are Np = 57 turns and Ns = 17 turns. The ac
equivalent resistance Rac at the rated power and minimum output voltage 120 V is obtained as:

Rac =
8n2

π2 Ro,rated =
8× (57/17)2

π2 × 1202

1000
≈ 131.2 Ω (23)

The inductor ratio Ln is set as 5. The voltage gain curves of the proposed converter with different
quality factor Q and frequency ratio F under full-bridge rectifier (Sac off) and voltage-doubler rectifier
(Sac off) are illustrated in Figure 7.
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Based on the gain curves in Figure 7, it is observed that the output voltage can be controlled well
if the Q = 0.22 at full load is selected. Because Q = 0.22, Ln = 5 and fr1 = 100 kHz, Lr, Lm and Cr are
calculated as:

Lr =
QRac

2π fr1
=

0.22× 131.2
2π × 100, 000

≈ 46 µH (24)

Lm = Lr1Ln = 46× 5 = 230 µH (25)

Cr =
1

4π2Lr f 2
r1

=
1

4π2 × 46× 10−6 × (100, 000)2 ≈ 55 nF (26)
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The theoretical root mean square current of Cr and Lr is calculated as:

iCr,rms = iLr,rms =

√
(π Io,max

2
√

2n
)

2
+ ( nVo

4
√

3Lm fs,min
)

2
=

√
(π×(1000/120)

2×
√

2×57/17
)

2
+ ( (57/17)×120

4
√

3×230×10−6×60,000
)

2
≈ 5 A (27)

The voltage rating of Cr is calculated as:

vCr,rating =
√

2iCr,rms/(2π fs,minCr) ≈ 341 V (28)

The theoretical voltage rating of the power switches and diodes is obtained as:

vS1,rating = . . . = vS4,rating = Vin = 400 V (29)

vSac,rating = Vo,tran/2 = 120 V (30)

vSR1,rating = vSR2,rating = Vo,max = 360 V (31)

vD1,rating = vD2,rating = Vo,tran = 240 V (32)

The diodes STTH12R06 with 600 V/12 A rating are used for the secondary side diodes D1 and
D2. The MOSFETs FMW60N099S2H with 600 V/24 A rating are used for all power switches in the
proposed circuit. Frequency control integrated analog circuit UCC25600 is used to control power
switches S1 ~ S4. The synchronous switches SR1 and SR2 are controlled with the integrated analog
circuit MP6922. The output capacitances of C1 and C2 are 470 µF/400 V.

5. Experimental Results

A 1 kW laboratory prototype with the circuit parameters derived in the previous section was built
and tested to demonstrate the performance and verify the effectiveness of the developed converter
for wide output voltage applications such as outdoor LED lighting. The pictures of the laboratory
prototype circuit and control board are provided in Figure 8. Figure 9 shows the simulated waveforms
of the proposed converter operated at the rated power under minimum and maximum output voltages.
For low voltage output Vo = 120 V, the ac switch Sac is off and the secondary side circuit is a full-bridge
rectifier. For high voltage output Vo = 360 V, the ac switch Sac conducts and the secondary side circuit
is a voltage-doubler rectifier. Therefore, the diode currents iD1 = iD2 = 0. Figure 10 illustrates the
experimental waveforms of the proposed converter under 120 V voltage output and the rated power
1 kW. Since the full waveform rectifier is adopted on the secondary side for Vo = 120 V output, the
ac switch Sac is open. The secondary side current flows through SR1, SR2, D1 and D2. Figure 10a
shows the measured results of the primary side waveforms iLr, vCr and vab under the rated power.
The switching frequency is closed to the series resonant frequency 100 kHz and the primary side
current is approximately sinusoidal waveforms. The measured secondary side currents iSR1, iSR2, iD1

and iD2 under the rated power are demonstrated in Figure 10b. Figure 10c gives the output voltage
Vo = 120 V and load current under 1 kW load. Similarly, the measured primary side and secondary
side waveforms under 235 V output and 1 kW load power are provided in Figure 8. Since Vo = 235 V,
the higher gain of the proposed converter under Sac off is needed to regulate load voltage. Therefore,
the switching frequency must be decreased and far away from the series resonant frequency. From the
test waveforms in Figure 11a, it can be observed that the switching frequency of vab is about 60 kHz.
From the test results in Figures 10 and 11, the secondary side diodes are all turned off at zero current
switching and the reverse recovery current losses are removed. When load voltage is higher than 240 V,
the ac switch Sac is on and the voltage-doubler rectifier topology is adopted on the secondary side.
Figure 12 demonstrates the experimental waveforms of the proposed converter under 245 V output
and the rated power. The switching frequency under 245 V output voltage case is about 96kHz and
the primary side current is close to a sinusoidal waveform. The secondary side diodes D1 and D2

are all reverse biased and iD1 = iD2 = 0. Figure 13 gives the experimental waveforms of the proposed
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converter under Vo = 360 V and Po = 1 kW. The switching frequency under Vo = 360 V and Po = 1 kW
cases is about 75kHz and D1 and D2 are reverse biased. The higher voltage output in the proposed
converter will result in the lower switching frequency to regulate load voltage. Since the input voltage
is from the ac-dc converter and controlled at 400 V, the load current variation is investigated. Figure 14
illustrates the measured load voltage and current when Vo = 245 V and Io between 2A and 4A variation.
It is clear to see there is no output voltage variation when load current is changed between 50% and
100% rated power. The measured efficiencies of the presented circuit at the rated power are 92.53%,
86.8%, 92.9% and 90.5% for output voltage Vo = 120 V, 235 V, 245 V and 360 V, respectively. Due to the
switching frequency at Vo = 235 V is lower than the switching frequency at Vo = 120 V, there is higher
circulating current losses at Vo = 235 V case. Therefore, the circuit efficiency at 235 V output voltage is
lower than the efficiency at 120 V output voltage under full-bridge rectifier operation. Similarly, the
circuit efficiency at Vo = 360 V case is lower than the efficiency at Vo = 245 V case under voltage-doubler
rectifier operation.Electronics 2019, 8, x FOR PEER REVIEW 12 of 16 
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Figure 9. Simulation waveforms of the proposed converter at the rated power (a) low voltage output
Vo = 120 V (b) high voltage output Vo = 360 V.
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6. Conclusions

A novel resonant converter with full-bridge rectifier or voltage-doubler rectifier on the secondary
side is presented and discussed in this paper for wide output voltage applications such as LED
outdoor lighting power units. For wide output voltage demands, the full-bridge rectifier topology
or voltage-doubler rectifier topology is selected on the secondary side for lower output voltage
range or higher output voltage demand. An ac power switch is adopted in the proposed converter
to achieve full-bridge rectifier operation or voltage-doubler rectifier operation. The LLC resonant
converter is employed in the proposed circuit and the inductive load of the LLC resonant tank can
help the power switches on the primary side to realize soft switching operation and also reduce the
electromagnetic interference. Compared to the center-tapped rectifier on conventional wide voltage
operation circuit topologies, the voltage rating of the rectifier diodes on the proposed circuit is only
one-half of the voltage rating of the center-tapped rectifier. Compared to the conventional hybrid
resonant converter [14], the control scheme of the proposed converter is simple by using the analog
frequency control integrated circuit with one more hysteresis voltage comparator. The circuit analysis,
design considerations and test results are provided to verify the theoretical analysis and demonstrate
the performance of the developed circuit for wide output voltage applications.
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