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Abstract: Radiation effects can induce, amongst other phenomena, logic errors in digital circuits
and systems. These logic errors corrupt the states of the internal memory elements of the circuits
and can propagate to the primary outputs, affecting other onboard systems. In order to avoid this,
Triple Modular Redundancy is typically used when full robustness against these phenomena is
needed. When full triplication of the complete design is not required, selective hardening can be
applied to the elements in which a radiation-induced upset is more likely to propagate to the main
outputs of the circuit. The present paper describes a new approach for selectively hardening digital
electronic circuits by design, which can be applied to digital designs described in the VHDL Hardware
Description Language. When the designer changes the datatype of a signal or port to a hardened
type, the necessary redundancy is automatically inserted. The automatically hardening features have
been compiled into a VHDL package, and have been validated both in simulation and by means of
fault injection.

Keywords: radiation hardening; hardening by design; TMR; selective hardening; VHDL

1. Introduction

1.1. Background

Ionizing radiation affects the normal operation of electronic circuits. Different kind of effects
may produce both physical degradation of the components, like TID (Total Ionizing Dose) or DD
(Displacement Damage), or corruption of the logic values stored in the circuit, such as SEU (Single
Event Upset), SET (Single Event Transient) or MBU (Multi-Bit Upset) [1]. The former category of
effects, known as hard errors, are destructive in nature and must be protected against by using specific
technology approaches. Soft errors, on the other hand, induce modifications in the internal states of the
circuits, which may or may not then propagate both inside the circuit architectures and to their primary
outputs. Errors propagating to the primary outputs of a circuit may escalate to external systems and
produce device errors, subsystem failures or even catastrophic mission failures. These soft errors can
be mitigated by inserting logic protections in the designs [2,3].

1.2. Problem of Interest

These logic protections can be inserted at different steps during the design flow. Typically, these
protections are inserted either during the synthesis process or just after the synthesis process has
completed, but before the placement and routing steps. These approaches require design teams to
implement changes to their design flows, either by including specific proprietary synthesis tools or
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extra post-synthesis netlist manipulation software, both of which have to be adapted and configured
for the mission requirements, which demands extra effort from the designers.

When developing hardware modules cores that are expected to need some selective protections,
but not full redundancy, it would be desirable to include the information on which elements should be
hardened in the module code itself, in a non-synthesizer-specific way, since different developers and
projects may choose or require different synthesis tools. An ideal situation would allow the designer
to easily specify in the VHDL (Very High Speed Integrated Circuit Hardware Description Language)
source code which elements should be hardened, with minimal code modifications.

1.3. Literature Survey

There are multiple types of protections that can be inserted in a digital circuit [4], from which
the most common one is the full triplication of single memory elements, which is known as Triple
Modular Redundancy or TMR. TMR is typically preferred to DMR (Dual Modular Redundancy) since
the former can detect and correct single errors, but the latter has only detection, but no correction
capabilities. The tradeoff for this is that TMR uses more area and power (around a 3.2× factor, instead
of a ~2.1× factor for DMR, compared with the unhardened design [5]). TMR can be applied at both
flip-flop level or module level, but DMR is more typically applied at module level.

Selective hardening is a more recent technique that involves identifying the most sensitive
modules of a design (for example, by means of fault injection), and then applying TMR only to those
modules. This way, a better tradeoff between area/power increase and error mitigation is achieved,
since modules that do not contribute much to the Architectural Vulnerability Factor (AVF) of the
design [6] are left unmodified and their power/area will not be affected by the aforementioned ~3.2×
factor [7,8].

Hardening techniques can be applied during the synthesis process. An example of this are the
protections inserted by some proprietary synthesizers that allow hardening of full modules, or even
applying local TMR attributes to the specific signals that need to be hardened. The Synopsys Synplify
pro [9] and Mentor Precision Hi-rel [10] synthesizers are examples of this.

Another way of inserting mitigation schemas into the designs is to perform post-synthesis netlist
manipulation, for example using software such as the Xilinx XTMRtool [11] and the BYU (Brigham
Young University) EDIF (Electronic Design Interchange Format) tools [12]. The former allows full
module hardening in a Xilinx-specific design flow, and the latter is a software suite that can insert
both TMR and DWC (Duplicate With Compare) for the user-selected elements. Mitigation elements
may also be manually inserted in the post-synthesis netlist, but this process is error-prone and thus
not recommended.

Approaches that insert protections during the synthesis process, or just after it, work at the RTL
(Register-Transfer Level) netlist abstraction level and thus do not consider physical implementation
aspects that may affect the robustness of the implemented design. Depending on whether the target
technology on which the digital design will be implemented is an FPGA (Field Programmable Gate
Array) or an ASIC (Application-Specific Integrated Circuit), other complementary approaches can be
used at the place and route level to improve the robustness of the implemented design, for example
physically separating the redundant copies of a hardened element, which improves tolerance to
Domain Crossing Errors (DCE) [13]. For the ASIC design of the hardened microprocessor HERMES [14],
both DMR and TMR techniques were implemented, depending on which processor block was to be
hardened, and the replicated redundancy domains were physically separated during the circuit layout
design phase. Another approach in fine-grain techniques is the one proposed on [15], in which
design flip-flops are replaced by self-correcting rad-hard by design (RHBD) flip-flops after synthesis,
and triplication is performed on spatially separated regions during the placement phase. For FPGA
designs, actions can be taken during the placement and routing implementation stages, such as
inserting redundant routing connections [16] or using reliability-oriented place and route algorithms
to physically separate the redundant copies and avoid single points of failure [17]. Unused FPGA
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resources may also be employed for error detection: [18] proposes the use of carry propagation chains,
which is a common FPGA resource, as a way to create fine-grained comparators to detect bit upsets,
which is complemented by the use of coarse-grain checkers that can determine whether the detected
upsets did actually propagate to the main module outputs.

1.4. Scope and Contribution of This Paper

Of the previous approaches that work at the RTL netlist level, there is no single approach that
allows for both easy insertion of mitigations by performing minimal modifications in the HDL code,
and independence from the synthesis tool. In-code fine-grain selection of which elements should be
hardened, that propagates to both arithmetic/logic operations performed, and flip-flops used to store
them, would be desirable.

This paper proposes a new technique for performing selective, fine-grain circuit hardening, that
allows designers to include the information on which combinatorial and sequential elements should
be hardened in the VHDL code. In order to be selective, the technique allows designers to individually
choose which elements of the VHDL code to harden. To be useful for designers, the technique only
implies minimal code substitution and does not change the functionality of the design in absence of
soft errors. The technique is also portable between different VHDL synthesizers and does not require
the use of post-synthesis tools to generate the hardened netlist.

The difference between the proposed technique and proprietary approaches such as [9–11] is
that the proposed technique can be used across different synthesizers. Also, while [11] must harden
complete modules, our technique allows selection of which elements are to be hardened.

Since VHDL allows for both Behavioral and RTL descriptions, the technique can work at both
abstraction levels and thus its scope does not include physical layout techniques, but it can be
complemented with them.

1.5. Organization of the Paper

The paper is structured as follows: Section 2 describes the proposed approach, with the developed
datatypes and operators. Section 3 describes how the approach was verified, both in simulation,
to check functional correctness of the hardened designs, and by means of fault injection, to check the
correctness of the protection implementations. Finally, the discussion and conclusions are presented in
Section 4.

2. The Triple_logic Package

In this article, we propose a new approach to implement fine-grain circuit hardening for digital
designs by just changing the datatype of the object to be hardened. By changing the object types,
the implementation changes accordingly to introduce the desired redundancy. The designer can then
select which nodes of the circuit should be hardened, thus creating redundancy domains for the critical
parts of the design. Figure 1 shows a redundant branch of a design, and represents graphically how
to pass from a non-hardened domain to a hardened domain, where redundant operations and data
storage are performed, and back to the non-hardened domain. It must be noted that, in this context,
domain crossing refers to user data passing from the non-hardened to the hardened domain or vice
versa, and not to the propagation of errors between redundant copies of the design elements.

We have compiled all the new datatypes and hardening functionality in a VHDL package for
ease of use and minimal VHDL code modification. An important feature of the package is avoiding
the scenario present in Figure 2, where the robustness of the hardened domain is jeopardized by a
Single Point of Failure introduced by premature voting inside the hardened domain. To avoid this
situation, transitions between hardened and non-hardened domains are determined by the datatypes
of the intervening operands. For example, if an operation receives two hardened operands and must
return a non-hardened result, a voter will be inserted, but if the result data type is of a hardened type,
no voter will be implemented.
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Figure 1. Domain crossing between non-hardened and hardened domains. Each element in the graph
may represent either a combinatorial operation or a memory element. (A) Non-hardened domain.
(B) Crossing to hardened domain. (C) Hardened domain. (D) Crossing to non-hardened domain.
(E) Non-hardened domain.

Figure 2. Single Point of Failure introduced inside a redundant domain by premature voting.

2.1. Data Types

Before implementing the automatic hardening functionality mentioned before, the new hardened
data types that will compose the hardened domains must be defined. Since the most used standard data
types are based on the std_logic data type, defined in the std_logic_1164 package of library IEEE,
a triple_logic datatype has been defined that comprises three std_logic values. By defining a vector
of triple_logic values, the triple_logic_vector is created. triple_unsigned and triple_signed
are hardened vectors with numeric interpretation, just as their non-hardened counterparts. Finally,
a triple_integer contains three integers, whose range can be parametrized if using the IEEE
Std.1076-2008 revision of the language, more widely known as VHDL-2008 [19]. Table 1 shows
the equivalence between hardened and non-hardened data types.

The package defines logic and arithmetic operators for the new datatypes, and for mixed
operations between these and the already existing ones. The operator and function overload capability
of VHDL will allow an operation (for example, a sum) to receive any combination of datatypes in its
input and return operands, and the relevant implementation will be automatically selected depending
on the actual data types.
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Table 1. Equivalence between non-hardened and hardened data types.

Non-Hardened Hardened

std_logic triple_logic
std_logic_vector triple_logic_vector

unsigned triple_unsigned
signed triple_signed
integer triple_integer

2.2. Hardened to Non-Hardened Domain Crossing

Once all data types and operations have been defined, special consideration must be taken into
how to pass data between the non-hardened and hardened domains. The function/operator overload
capability of VHDL allows for this domain crossing to be performed automatically for all operator
results, but when making a single assignment without any operations this cannot be automatically
done, as VHDL is strongly typed and thus the assignment operator cannot be overloaded. We have
developed two functions for these cases: a vote() function to pass from the hardened domain to
the non-hardened domain (Figure 3), and a triple() function to perform the opposite operation
(Figure 4).

Figure 3. Graphic illustration of vote() function.

Figure 4. Graphic illustration of triple() function.

Both functions, vote() and triple(), are overloaded so that the user can pass every equivalent
data type from the non-hardened domain to the hardened domain, and vice versa, with the same
two functions.
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2.3. Developed Functionality

After the development of the datatypes and the vote() and triple() functions, logic, arithmetic
and comparison operators were developed for these datatypes.

2.3.1. Operator List

The operators developed for the hardened datatypes are logic (AND, NAND, OR, NOR, XOR,
XNOR), comparison (= [is equal], /= [is not equal], > [greater than], >= [greater or equal], < [lower
than], <= [lower or equal] and arithmetic operators (+ [addition], - [substraction], * [multiplication],
/ [division]). Since not every operator is available for every non-hardened datatype (for example,
std_logic_vector does not have numerical interpretation, and integers do not support bitwise
operations), not all operators have been implemented for all datatypes. The list of implemented
operators is shown in Table 2.

The assignment operator (<= for signals, := for variables) may not be overloaded since VHDL is
strongly typed.

Table 2. List of implemented operators.

Datatype Logic Equality/Inequality Rest of Comparison Operators Arithmetic

triple_logic yes yes yes no
triple_logic_vector yes yes no no

triple_unsigned yes yes yes yes
triple_signed yes yes yes yes
triple_integer no yes yes yes

2.3.2. Operator Variants

Due to operator overload, for each of the operators, we have developed a number of variants.
This way, domain crossing is performed by automatically choosing the appropriate operator variant,
which is done by the synthesis tools and simulators. For example, the statement A <= B + C will assign
a hardened or non-hardened value to A depending on its data type. For unary operators, there are four
combinations according to whether the operand and result are hardened or not. For binary operators,
there are eight possibilities. All these possibilities are shown in Table 3. Of course, the possibilities that
correspond to all values in the non-hardened domain are already defined in the std_logic_1164 or
numeric_std packages so they do not need to be defined again.

Table 3. Operator Variants.

Unary Operators

Operand Result

unhardened unhardened
unhardened hardened

hardened unhardened
hardened hardened

Binary Operators

Left Operand Right Operand Result

unhardened unhardened unhardened
unhardened unhardened hardened
unhardened hardened unhardened
unhardened hardened hardened

hardened unhardened unhardened
hardened unhardened hardened
hardened hardened unhardened
hardened hardened hardened
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The current implementation of the hardening functionality includes all operator variants in the
same VHDL file, but those operator variants could also be separated into different files, in case the
designer wants to automate domain crossing in one direction but not on the other. In that case,
the functions that automatically cross from the unhardened to the hardened domain, the functions that
automatically cross from the hardened domain to the unhardened one, and the functions that operate
only on the hardened domain would be defined in different files. This way, the user could choose one
of these four possibilities, depending on which files are included:

1. Automatically cross domains from the unhardened to the hardened one, but manually use the
vote() function to go back to the unhardened domain.

2. Automatically cross domains from the hardened to the unhardened one, but manually use the
triple() function to go back to the hardened domain.

3. Automatically perform all domain crossing operations. In this case, qualified expressions of
VHDL may be needed to solve ambiguity in some cases. For example, the statement B <= not
(not A); becomes ambiguous, because even if A and B are known types, the innermost not
operator does not know whether it should return a hardened or unhardened result. This is
resolved by specifying the desired return type for the intermediate operations, for example: B <=
not std_logic’(not A);.

4. Manually perform all domain crossing operations.

2.3.3. Hardening Finite State Machines

Hardening Finite State Machines (FSMs) is not trivial when FSMs use an enumerated data type,
which is a common practice. A custom solution can be implemented for each FSM, by defining a
decode() and triple() function for the hardened version of their state datatype. Both functions
are used for domain crossing: when decoding the state of the FSM, the first function returns the
correct state, after correcting errors, and when assigning a new state, the second function converts
the enumerated constant to a hardened value. This is a needed tradeoff in order to have fine-grain
hardening with minimal code modifications, since on every possible state many signals may be
assigned, and the designer may not want to harden all of them.

These functions can be made generic for every enumerated datatype if using VHDL-2008, and can
be used with the rest of the package when using a VHDL-2008 capable synthesizer. When full TMR is
not needed in the state registers, the technique allows the user to implement his own EDAC (Error
Detection and Correction) functions to encode and decode the FSM state instead of triplicating it, for
example by defining the functions encode() and decode() to add Hamming codes to the state registers.

2.4. Usage Examples

A couple of usage examples follow. Figures 5 and 6 show a hardened multiplexer and a hardened
generic-width counter, with minimal code modifications, which are underscored. For the designer, it is
clear from the signal and port datatypes which objects belong to the hardened domain.

To prevent the synthesizer from removing the redundancy, attributes can be applied to the tripled
registers. The name of the specific attribute depends on the chosen synthesis tool, for example,
when using Synopsys Synplify the attribute syn_preserve can be used, whereas in Xilinx XST (Xilinx
Synthesis Technology) the relevant attributes are called keep and equivalent_register_removal.
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2.4. Usage Examples

A couple of usage examples follow. Figures 5 and 6 show a hardened multiplexer and a hardened
generic-width counter, with minimal code modifications, which are underscored. For the designer, it is
clear from the signal and port datatypes which objects belong to the hardened domain.

entity mux2to1 is
port ( input_l : in triple_logic;

input_r : in triple_logic;
sel : in triple_logic;
output : out triple_logic);

end mux2to1;

architecture arch of mux2to1 is
begin

comb: process (input_l, input_r, sel)
begin

if (sel = ’0’) then
output <= input_l;

else
output <= input_r;

end if;
end process;

end arch;

Figure 5. Hardened 2-to-1 multiplexer. Note that the equality comparison operator is overloaded, so
sel can be compared to ’0’.

Figure 5. Hardened 2-to-1 multiplexer. Note that the equality comparison operator is overloaded, so
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architecture arch of contparam is
signal reg_i, p_reg_i: triple_unsigned (N-1 downto 0);

begin

comb: process (reg_i, enable, updown)
begin

if (enable = ’1’) then
if (updown = ’1’) then

p_reg_i <= reg_i + 1;
else

p_reg_i <= reg_i - 1;
end if;

else
p_reg_i <=reg_i;

end if;
end process;

sinc: process (clk,rst)
begin

if (rst = ’1’) then
reg_i <= (others => (others => ’0’));

elsif (rising_edge(clk)) then
reg_i <= p_reg_i;

end if;
end process;

data_out <= std_logic_vector(vote(reg_i));

end arch;

Figure 6. Hardening an N-bit counter architecture. Note that the only modifications are the change in
the datatype of the internal count, its reset value, and the voting for the primary output, which belongs
to the non-hardened domain.

To prevent the synthesizer from removing the redundancy, attributes can be applied to the tripled
registers. The name of the specific attribute depends on the chosen synthesis tool, for example,
when using Synopsys Synplify the attribute syn_preserve can be used, whereas in Xilinx XST (Xilinx
Synthesis Technology) the relevant attributes are called keep and equivalent_register_removal.

3. Package Verification

To check the correct behaviour of the package, a number of test cases have been generated.
Both basic functionality and designs of increasing levels of complexity have been tested. Synthesis,
simulation and fault injection results have been obtained to verify that not only the inserted protections
mitigate effectively against SEU, but also that the added functionality does not change the expected
circuit functionality in the absence of SEU.

Synthesis has been performed with Xilinx ISE (Integrated Synthesis Environment) 14.7 and
Synopsys Synplify v4.2. The simulations have been performed with Xilinx ISim (ISE Simulator) version
14.7. The fault injection campaigns have been performed with the FT-Unshades2 (Fault Tolerance
- Universidad de Sevilla Hardware Debugging System) fault injection platform [20], version 3.10,
working in ASIC mode, which means injections are performed in the user flip-flops.

The Yosys Open SYnthesis Suite [21] has been used to formally verify design equivalence between
the hardened and non-hardened versions of the smaller designs, described below, such as counter and
shiftreg. The formal equivalence checker tries to solve a boolean satisfiability problem (abbreviated

Figure 6. Hardening an N-bit counter architecture. Note that the only modifications are the change in
the datatype of the internal count, its reset value, and the voting for the primary output, which belongs
to the non-hardened domain.

3. Package Verification

To check the correct behaviour of the package, a number of test cases have been generated.
Both basic functionality and designs of increasing levels of complexity have been tested. Synthesis,
simulation and fault injection results have been obtained to verify that not only the inserted protections
mitigate effectively against SEU, but also that the added functionality does not change the expected
circuit functionality in the absence of SEU.

Synthesis has been performed with Xilinx ISE (Integrated Synthesis Environment) 14.7 and
Synopsys Synplify v4.2. The simulations have been performed with Xilinx ISim (ISE Simulator)
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version 14.7. The fault injection campaigns have been performed with the FT-Unshades2 (Fault
Tolerance—Universidad de Sevilla Hardware Debugging System) fault injection platform [20],
version 3.10, working in ASIC mode, which means injections are performed in the user flip-flops.

The Yosys Open SYnthesis Suite [21] has been used to formally verify design equivalence between
the hardened and non-hardened versions of the smaller designs, described below, such as counter and
shiftreg. The formal equivalence checker tries to solve a boolean satisfiability problem (abbreviated
SAT). In this case, the solver must check if there is any input combination that would make the outputs
of the hardened and unhardened design differ, and prove by induction that the design outputs will not
differ at any time in the future, for any possible set of input vectors. For some of the other designs, even
if full formal equivalence cannot be demonstrated because of their complexity, hundreds of induction
steps have been performed without any equivalence error being encountered. The simulations also
show that the output of the hardened and unhardened versions of all designs are the same, when no
SEU are being injected.

3.1. Primitive Verification

To validate the smallest package functionality, a number of test cases have been generated, which
have been checked both in simulation, checking correct behaviour against transient errors, and by
reviewing the generated netlist topologies. To check the primitives, synthesis has been performed with
the XST synthesizer, but results are expected to be reproducible with any other VHDL synthesizer. No
optimization of the inserted protections has been detected when synthesizing with XST, but in the
case of these optimizations happening with other synthesizers, VHDL attributes can be added to the
hardened signals to avoid removal of the hardening elements. Figures 7 and 8 show the synthesized
netlist and a short simulation of one of the developed primitives.

Figure 7. Internal logic structure of AND gate with right port hardened.

Figure 8. Simulation results of AND gate with right port hardened, with a transient error in its
right input.
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3.2. Designs Under Test

A number of VHDL designs with increasing levels of complexity have been chosen to validate
the hardening capabilities of the package. For each of these designs, an SEU fault injection campaign
has been performed with FT-Unshades2, in order to identify the most critical registers, which will be
hardened by using the methodology proposed in this work. The hardened versions of the designs have
also been subjected to fault injection campaigns, to check the effectiveness of the inserted protections.
In order to validate that the technique can be used with different synthesizers, synthesis of both
hardened and unhardened designs has been performed with Xilinx ISE and Synopsys Synplify. Finally,
synthesis results have also been obtained with the NanoXplore NanoXmap synthesizer version 2.9.1,
but the results of this synthesis cannot be tested in the current version of FT-Unshades2, since this
synthesizer targets the NanoXplore NG-MEDIUM FPGA and the current version of FT-Unshades2
uses a Virtex-5 FPGA.

• counter

An 8-bit up counter with an enable signal.

• shiftreg

An 8-bit shift register. In this example, flip-flops turn into shift registers when synthesis is made
with XST so they are optimized even if “keep” attribute is set. To avoid this, “Shift Registers
Extraction” and “Equivalent Register Removal” synthesis options have been unselected for
this design.

• simple_fsm

A 4-state simple state machine design, described specifically for this work. In the unhardened
version, when using the default synthesis options, XST uses binary codification for synthesis.
However, keeping the default synthesis options, in the hardened version, one-hot codification is
used for synthesis, so the number of FF (flip-flops) increases from 2 to 12 (4 bits, triplicated). This
is the worst case in terms of area overhead, but it can be controlled by the user, by specifying the
desired FSM encoding during synthesis. For example, the user can change the FSM encoding from
binary to one-hot when hardening the design, in order to reduce the area overhead of hardening
the FSM state register, if the timing constraints allow for a slower state decoding. Table 4 shows
flip-flop usage for this design in all its possible variants.

Table 4. Simple_fsm state flip-flops.

FSM Encoding Unhardened Hardened

one-hot 4 12
binary 2 6

For the fault injection experiments both versions (hardened and unhardened) of the simple_fsm
design have been synthesized using one-hot encoding, when synthesizing with XST, and binary
encoding, when synthesizing with Synplify, to show that the FSM hardening can be performed
independently of the encoding.

• adder_acum

A simple adder-accumulator design that accumulates the sum of 8-bit input values into a
20-bit register.
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• fifo

A generic 256-bit depth and 32-bit width FIFO (First in, First Out) memory buffer with Empty and
Full flags [22].

• fft

Fast Fourier Transform module for usage on FPGA devices [23].

• fir_ri

A low pass FIR (Finite Impulse Response) filter [24].

• pcm3168

An I2S interface designed for the PCM3168 audio interface from Texas Instruments [25].

• 8051

A VHDL model of The Intel 8-bit 8051 micro-controller [26]. This design, which has more
complexity than the others, has been tested with a simple program written in C.

3.3. Experimental Results

Injection campaigns have been performed for all the test designs, and their results have been
analyzed by comparing the number of flip-flops, AVF and lines of code changed between hardened
and unhardened designs. AVF has been estimated by making N injections in a set of FF and dividing
the number of injections that produce output errors by the number of total injections (N). For each
injection, the complete test vectors are executed by the design.

Designs with a low percentage of total FFs and less number of clock cycles like counter, shiftreg,
simple_fsm, fir_ri or adder_acum have been tested with exhaustive campaigns. However, designs
with a higher occupancy and more clock cycles, like pcm3168, fft, fifo or 8051 have been tested with
random campaigns checking that the number of injections performed on these campaigns is enough to
assure less than 5% of error, with a confidence level of 99%, according to [27].

For each design, Table 5 shows the name of registers with damages due to the injections performed
in every campaign. The results of these campaigns have been analyzed to determine the AVF of each
register with damage, as it can be seen in the fourth column of the table.

To determine which registers will be hardened, the percentage of FFs in the register by FFs in the
design has been calculated and those that have more percentage of FF with a higher AVF have been
selected to be hardened.

Tables 6 and 7 show results for hardened designs synthesized with XST and Synplify respectively.
A comparison between hardened and unhardened designs versions has been done to check the
effectiveness of the package. The first column contains the name of the hardened version of the design
(in bold) followed by the name of the hardened registers. In the second one, the number of different
code lines between the hardened and unhardened versions and the resulting percentage against the
total lines in the design are shown. Third and fourth columns present the AVF both for the complete
design and each register and the number of FFs obtained in each version.

Table 8 compares synthesis results with three synthesis tools (XST, Synplify and NanoXmap),
showing that the proposed technique can be used with different synthesizers, avoiding
vendor lockdown.

An estimation of the power consumption for each design is also shown in Tables 9 and 10
for XST and Synplify synthesis respectively. As power consumption depends on which target
technology is going to be used, we have made this estimation using the XPower analyzer tool
from Xilinx [28], assuming that designs will be implemented for an FPGA, specifically the Virtex-5
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XC5VFX70T. According to this, results presented show logic (flip-flops and lookup tables) and signal
(interconnections) power consumption estimation both for the unhardened and the hardened versions,
and the increase incurred by using our approach, in absolute value and percentage.

Table 5. Designs under test, synthesized with Synplify, with register signals classified by percentage of
total number of flip-flops and Architectural Vulnerability Factor.

Design: counter
Total Flip-flops: 8

Signals Flip-flops % FFs AVF

reg 8 100 98.60

Design: shiftreg
Total Flip-flops: 8

Signals Flip-flops % FFs AVF

reg 8 100 97.54

Design: simple_fsm
Total Flip-flops: 2

Signals Flip-flops % FFs AVF

state_FSM 2 100 68.75

Design: adder_acum
Total Flip-flops: 8

Signals Flip-flops % FFs AVF

acc_value 20 100 97.50

Design: pcm3168
Total Flip-flops: 95

Signals Flip-flops % FFs AVF

s_bit_clk1 1 1.05 91.84
s_counter_bit 2 2.11 95.83
s_counter_lr 5 5.26 74.31

s_lr_clk 2 2.11 91.38
v_lr_clk_enable 1 1.05 58.18

DATA_L 24 25.26 40.04
DATA_R 24 25.26 60.63

s_current_lr 1 1.05 52.38
shift_reg 24 25.26 16.54

s_parallel_load 1 1.05 51.22
counter 5 5.26 3.77
DOUT 2 2.11 83.67

Design: fifo
Total Flip-flops: 34

Signals Flip-flops % FFs AVF

looped 1 0.03 100.00
Tail 8 23.52 45.00

Head 8 23.52 60.00

Design: fft
Total Flip-flops: 929

Signals Flip-flops % FFs AVF

o_im 9 0.97 100.00
o_re 9 0.97 100.00
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Table 5. Cont.

Design: fir_ri
Total Flip-flops: 86

Signals Flip-flops % FFs AVF

N_bit_reg/Q 9 0.97 95.97
shift_reg 9 0.97 93.40

Design: 8051
Total Flip-flops: 1396

Signals Flip-flops % FFs AVF

/alu_op_code/ 4 0.29 75.00
/alu_src/ 8 0.59 15.79

/p0_out_c/ 8 0.59 100.00
/p1_out_c/ 8 0.59 100.00
/p2_out_c/ 8 0.59 100.00
/p3_out_c/ 8 0.59 100.00

/ram_wr 1 0.07 100.00
/U_CTR/exe_state/ 3 0.22 100.00
/U_CTR/reg_pc_7/ 8 0.59 75.00

/U_RAM/iram/ 1024 75.13 5.34
/U_RAM/sfr_acc/ 8 0.59 50.00
/U_RAM/sfr_psw/ 8 0.59 50.00

/U_RAM/sfr_sp 8 0.59 20.00
/U_RAM/sfr_tmod/ 8 0.59 20.00

Table 6. Hardened versions of the designs under test, synthesized with XST.

Design
Code Modif. AVF FF

(Lines) (%) Unhardened Hardened Decrease (%) Unhardened Hardened Increase (%)

counter_v2 4 10.53 99.09 0.00 100.00 8 24 200.00
reg 99.09 0.00 100.00

shiftreg_v2 5 11.90 86.89 0.00 100.00 8 24 200.00
reg 86.89 0.00 100.00

simple_fsm_v2 49 73.13 53.13 0.00 100.00 4 12 200.00
state_FSM 53.13 0.00 100.00

adder_acum_v2 8 21.05 97.50 0.00 100.00 20 60 200.00
i_acc_value 97.50 0.00 100.00

pcm3168_v2 44 8.40 41.16 4.14 89.94 90 234 160.00
DATA_L 40.57 0.00 100.00
DATA_R 56.00 0.00 100.00
shiftreg 17.43 0.00 100.00

fifo_v2 13 13.00 18.38 18.27 0.61 8243 8275 0.39
Tail 100.00 0.00 100.00

Head 100.00 0.00 100.00

fft_v2 42 8.73 1.53 1.02 33.33 387 723 86.82
o_im 100.00 0.00 100.00
o_re 100.00 0.00 100.00

fir_ri_v2 18 16.82 72.66 0.00 100.00 80 240 200.00
N_bit_reg/Q 72.70 0.00 100.00

8051_v2 31 0.47 99.71 1.30 98.72 1327 1365 2.86
/U_CTR/reg_pc_7/ 100 0.00 100.00
/U_RAM/sfr_acc/ 100 0.00 100.00
/U_RAM/sfr_psw 100 0.00 100.00
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Table 7. Hardened versions of the designs under test, synthesized with Synplify.

Design
Code Modif. AVF FF

(Lines) (%) Unhardened Hardened Decrease (%) Unhardened Hardened Increase (%)

counter_v2 6 15.79 98.60 0.00 100.00 8 24 200.00
reg 98.60 0.00 100.00

shiftreg_v2 5 11.90 85.57 0.00 100.00 8 24 200.00
reg 97.54 0.00 100.00

simple_fsm_v2 53 79.10 68.75 0.00 100.00 2 6 200.00
state_FSM 68.75 0.00 100.00

adder_acum_v2 11 28.95 97.50 0.00 100.00 20 60 200.00
i_acc_value 97.50 0.00 100.00

pcm3168_v2 42 8.02 38.51 3.93 89.79 95 244 156.84
DATA_L 40.04 0.00 100.00
DATA_R 60.63 0.00 100.00
shift_ref 17.19 0.00 100.00

fifo_v2 13 13.00 17.55 17.48 0.40 34 87 155.88
Tail 45.00 0.00 100.00

Head 60.00 0.00 100.00

fft_v2 26 5.41 2.42 2.15 11.16 929 1061 14.21
rot2bf_im 100.00 0.00 100.00
rot2bf_re 100.00 0.00 100.00

fir_ri_v2 18 16.82 93.61 0.00 100.00 86 240 179.07
N_bit_reg/Q 95.97 0.00 100.00

8051_v2 34 0.51 8.37 1.35 83.87 1396 1445 3.51
/U_CTR/reg_pc_7/ 75 0.00 100.00
/U_RAM/sfr_acc/ 50 0.00 100.00
/U_RAM/sfr_psw 50 0.00 100.00

Table 8. Comparison of synthesis results. Data marked with an asterisk (*) corresponds to the
synthesizer implementing an internal memory with Flip-flops instead of inferring a Block RAM.

Design FF XST FF Synplify FF NanoXmap

counter 8 8 8
counter_v2 24 24 24

shiftreg 8 8 8
shiftreg_v2 24 24 24
simple_fsm 4 2 4

simple_fsm_v2 12 6 12
adder_acum 20 20 20

adder_acum_v2 60 60 60
pcm3168 90 95 91

pcm3168_v2 234 244 187
fifo 8243 * 34 23

fifo_v2 8275 * 87 55
fft 387 929 447

fft_v2 723 1061 783
fir_ri 80 86 80

fir_ri_v2 240 240 224
8051 1327 1396 1339

8051_v2 1365 1445 1359
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Table 9. Power consumption estimation of hardened and unhardened versions of the designs under
test, synthesized with XST.

Design Unhardened Power (mW) Hardened Power (mW) Increase

(Logic) (Signal) (Logic) (Signal) Total Percentage (%)

counter 0.10 0.30 0.33 0.97 0.90 225.00

shiftreg 0.00 0.00 0.00 0.00 0.00 N/A

simple_fsm 0.00 0.02 0.02 0.04 0.04 200.00

adder_acum 0.00 0.01 0.00 0.01 0.00 0.00

pcm3168 0.19 0.33 0.22 0.42 0.12 23.08

fifo 0.18 11.83 0.27 12.79 1.05 8.74

fft 1.55 4.13 2.56 5.68 2.56 45.07

fir_ri 0.00 0.19 0.03 0.27 0.11 57.89

8051 1.35 9.70 1.32 10.90 1.17 10.59

Table 10. Power consumption estimation of hardened and unhardened versions of the designs under
test, synthesized with Synplify.

Design Unhardened Power (mW) Hardened Power (mW) Increase

(Logic) (Signal) (Logic) (Signal) Total Percentage (%)

counter 0.11 0.20 0.34 0.50 0.53 170.97

shiftreg 0.00 0.00 0.00 0.01 0.01 N/A

simple_fsm 0.00 0.03 0.01 0.04 0.02 66.67

adder_acum 0.00 0.01 0.00 0.02 0.01 100.00

pcm3168 0.13 0.48 0.18 0.61 0.18 29.51

fifo 0.11 0.52 0.20 1.33 0.90 142.86

fft 3.30 9.22 3.52 9.63 0.63 5.03

fir_ri 0.00 0.24 0.03 0.28 0.07 29.17

8051 1.75 16.80 1.97 16.60 0.02 0.11

The experimental results show that the selected registers can be hardened with the proposed
approach, and that this protection is effective against SEU. When synthesizing the hardened designs
with Synplify, it can be observed that the synthesizer not only triples the hardened flip-flops, but also
may insert extra memory elements as a means of compensating the increased fan-out needs by the
design, in a process known as timing-driven replication. It is very interesting to note that SEUs
introduced in these new flip-flops do not produce errors in the output, which means that the relevant
voting logic has also been propagated to these new memory elements, so the timing-driven replication
does not negatively impact the effectiveness of the inserted protections. The AVF of the FIFO does not
show much improvement, because only the flip-flops have been hardened, while SEU may affect the
complete memory, which has many more sensitive elements.

Since the inserted redundancy is hardware redundancy and there are no time redundancy
operations, the hardened designs take exactly the same number of clock cycles to perform their
workload than their unhardened counterparts. Simulation execution time does not grow significantly:
in small designs it varies less than a second, and in large designs it is less than 5%. This is coherent
with what would be expected since, in the bigger designs, the entire design is not tripled, but only part
of it, so the simulation time should not be tripled. Increments in simulation time for other designs will
depend on what percentage of the design was hardened.
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Finally, the power consumption increase of the hardened designs is in line with what is expected,
according to the area increase of each design and an expected multiplication by a ~3.2 factor for each
triplicated element.

4. Conclusions

A new approach to implement fine-grain circuit hardening, using datatype substitution, has been
developed and validated. As a result, a VHDL package for selective circuit hardening by design
has been developed as a new tool for mitigating soft errors on digital circuits, with minimal code
modifications. The designer only has to select which signals or ports should be hardened and change
their datatype accordingly. Some use of the triple() and vote() functions can be needed because of
the strongly typedness of VHDL.

An interesting feature of this way of performing hardening by design is that the designer, after
identifying the critical elements of his/her design using fault injection or other approaches, can embed
in the source code of the module the information of which elements should be protected, thus
eliminating the need to configure a second tool (such as a post-synthesis netlist processor) with
the results of the vulnerability analysis.

Collaboration with synthesis tool vendors would improve the performance of the package to
avoid some unwanted optimizations that may happen when performing multiple passes during the
synthesis process, for example, when TMR flip-flops that would not be optimized, because correct
signal attributes have been used, get converted to SRL16 primitives (Lookup tables used as Shift
Registers) which in turn get optimized away. Another case of this is when hardened ports of internal
modules get optimized by the synthesizer, because the attributes to avoid redundancy removal have
been applied in the wrong object, since some synthesizers require these attributes to be placed in
the ports to preserve, and others require them to be placed in the affected architecture. The ideal
situation would be that the attributes that avoid redundancy removal could be applied to the hardened
datatypes and inherited by all ports, signals and variables of that datatype.

Future work may also include implementing different hardening schemas by using the datatype
substitution technique, such as hamming encoding for FSMs or approximate TMR.

5. Licensing

The triple_logic package is licensed under the GNU Lesser General Public License (LGPL) v3.0.
The code can be downloaded from the website http://ftu.us.es/triplelogic .
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Abbreviations

The following abbreviations are used in this manuscript:

ASIC Application-Specific Integrated Circuit
AVF Architectural Vulnerability Factor
DCE Domain Crossing Errors
DD Displacement Damage
DMR Dual Modular Redundancy
DWC Duplicate With Compare
EDAC Error Detection And Correction
EDIF Electronic Design Interchange Format
FF Flip-flop
FIFO First In, First Out
FPGA Field Programmable Gate Array
FSM Finite State Machine
FT-Unshades Fault Tolerance-Universidad de Sevilla Hardware Debugging System
HDL Hardware Description Language
ISE Integrated Synthesis Environment
ISim ISE Simulator
LUT Lookup Table
MBU Multiple Bit Upset
RHBD Rad-Hard By Design
RTL Register-Transfer Level
SET Single Event Transient
SEU Single Event Upset
TID Total Ionizing Dose
TMR Triple Modular Redundancy
VHDL Very High Speed Integrated Circuit Hardware Description Language
XST Xilinx Synthesis Technology
Yosys Yosys Open SYntesis Suite
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