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Abstract: The automated and accurate classification of the images portraying the Human Epithelial
cells of type 2 (HEp-2) represents one of the most important steps in the diagnosis procedure of
many autoimmune diseases. The extreme intra-class variations of the HEp-2 cell images datasets
drastically complicates the classification task. We propose in this work a classification framework that,
unlike most of the state-of-the-art methods, uses a deep learning-based feature extraction method in
a strictly unsupervised way. We propose a deep learning-based hybrid feature learning with two
levels of deep convolutional autoencoders. The first level takes the original cell images as the inputs
and learns to reconstruct them, in order to capture the features related to the global shape of the cells,
and the second network takes the gradients of the images, in order to encode the localized changes in
intensity (gray variations) that characterize each cell type. A final feature vector is constructed by
combining the latent representations extracted from the two networks, giving a highly discriminative
feature representation. The created features will be fed to a nonlinear classifier whose output will
represent the type of the cell image. We have tested the discriminability of the proposed features on
two of the most popular HEp-2 cell classification datasets, the SNPHEp-2 and ICPR 2016 datasets.
The results show that the proposed features manage to capture the distinctive characteristics of the
different cell types while performing at least as well as the actual deep learning-based state-of-the-art
methods in terms of discrimination.

Keywords: HEp-2 cell classification; HEp-2; deep learning; convolutional neural networks;
auto-encoders; artificial neural network; pattern recognition

1. Introduction

Computer-aided diagnostic (CAD) systems have gained tremendous interests since the unfolding
of various machine learning techniques in the past decades. They comprise all the systems that aim to
consolidate the automation of the disease diagnostic procedures. One of the most challenging tasks
regarding those CAD systems is the complete analysis and understanding of the images representing
the biological organisms. In case of the autoimmune diseases, indirect immunofluorescence (IIF) on
Human Epithelial type 2 (HEp-2) cell patterns is the most recommended diagnosis methodology [1].
However, manual analysis of the IIF images represents an arduous task that can cost a substantial
time. Moreover, the complexity of the images leaves an important part to the subjectivity of the
pathologists, which can lead to some inconsistency in the diagnosis results [2]. That is the reason
why CAD systems have gained critical attention for assisting pathologists in diagnosis, mainly for the
automatic classification of the different types of the HEp-2 cells.

Different methods have been discussed in the literature, and especially the methods presented
during the different editions of the HEp-2 cell classification contest held by the International Conference
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on Pattern Recognition (ICPR) [3]. As a classical pattern recognition task, HEp-2 cell classification
methods comprise a feature extraction or selection process that is followed by a classification step.
Feature extraction remains the most important part of the procedure, because it consists of extracting
the relevant information that can help for an accurate discrimination of the different cell types. We will
separate the literature into two parts: the conventional machine-learning methods and the deep
learning-based ones.

Conventional machine learning techniques have proposed many sorts of hand-crafted features
that are chosen for their capability of carrying relevant elements that are necessary for the cell
discrimination. Early efforts in that direction have been done by works such as Cataldo et al. [4],
who have proposed the gray level co-occurrence matrix and the discrete cosine transform (DCT)
features, and Wiliem et al. [5], who have adopted the codebooks generated from the DCT features and
the scale-invariant feature transform (SIFT) descriptors. Nosaka et al. [6] have used the local binary
patterns (LBP) as the features, and given them as inputs to a linear support vector machine (SVM) for
the classification step. Huang et al. [7] have utilized the textural and statistical features in a hybrid
fashion and fed them to a Self-Organizing Map for the classification process.

A different kind of statistical feature, known as the gray-level size zone matrix, has been employed
as the principal feature representation in the work by Thibault et al. [8] and the nearest-neighbor
classifier was adopted for the discrimination part. The same statistical features have been fed to
an SVM in the work by Wiliem et al. [9], while a linear local distance coding method was used for
extracting the features that were also utilized as the inputs of a linear SVM by Xu et al. [10].

Hybrid feature learning methods have also been utilized by the researchers in this field.
In fact, Cataldo et al. [11] have proposed the use of a combination of different features such as the
morphological features, global texture descriptors like the Rotation-Invariant Gabor features [12], and
also different kinds of LBP descriptors like the Rotation-Invariant Uniform LBPs [13], the Co-occurrence
adjacent LBPs [14], the completed LBP [15], and also the Rotation-Invariant Co-occurrence of adjacent
LBPs, also adopted in [6]. Another interesting hybrid feature extraction method can be found in the
work by Theodorakopoulos et al. [16] where the authors have proposed the combination of the LBP
and SIFT descriptors for the HEp-2 cells classification. Different other hand-crafted features can be
seen in [17,18], and many others are listed in the quasi-exhaustive review made by Foggia et al. [3].

It is important to note that the performance of all these aforementioned methods exclusively
depends on the discrimination potentiality afforded by the extracted features, leaving, again, an
important part for the subjectivity of the user. Even though the classification accuracy of these
conventional machine learning-based methods have been improved over the past years, they still
suffer from the lack of consistency in their discrimination results, especially when the intra-class
variations are significant.

Automatic feature-learning methods have been widely adopted since the unfolding of deep
learning [19]. They have shown outstanding results in the object recognition problems [20,21] and
many researchers have adopted them as a principal tool for the HEp-2 cell classification. Unlike
conventional methods whose accuracy exclusively depends on the subjective choice of the features,
deep learning methods, such as deep convolutional neural networks (CNNs), have the advantage of
offering an automatic feature-learning process. In fact, many works have demonstrated the superiority
of the deep learning based features over the hand-crafted ones for the HEp-2 cell classification task.

The first work to apply CNN to the HEp-2 cell classification problem was presented by
Foggia et al. [2] during the 2012 edition of the ICPR HEp-2 cell classification contest. Although the
results were outstanding, the datasets available at that time were not heterogeneous enough, and
needed a lot of improvements. Since then, many available datasets have been significantly diversified
and the different proposed CNN models continue to push the limits in terms of classification accuracy.
Gao et al. [22] have presented a simple CNN architecture that was tested over different datasets. They
were the first to test data augmentation techniques, such as rotation in different angles, for the HEp-2
cell images. Li et al. [23] have adopted the deep residual inception model, the DRI, which combines two



Electronics 2019, 8, 20 3 of 18

of the most popular CNN models, the ResNet [24] architecture and the “Inception” modules from the
GoogleNet [25]. Phan et al. [26] have performed transfer learning, which consists of using an already
trained network in a new dataset, by using a model that was trained on the ImageNet dataset. Note
that all of these methods prefer to address the HEp-2 cell classification problem in a strictly supervised
way, where the feature extraction and classification processes are forced to belong to the same module.

A complex transfer learning method has been proposed by Lei et al. [27] where they have used
different architectures of the pre-trained ResNet model and mixed it to produce what they have named
a cross-modal transfer learning approach. The results obtained via this method represent one of
the state-of-the-art performance for the HEp-2 cell classification nowadays. Another state-of-the-art
performance was obtained in the work by Shen et al. [28] where the authors have used the ResNet
approach but with a deeper residual module, called the deep-cross residual (DCR) module, with a
huge data augmentation. Yet, both methods still address the problem in a strictly supervised learning
way. Other CNN based methods can be seen in [29,30].

Although the performance obtained with the supervised learning methodology continues to reach
impressive levels, the exigency of always having labeled datasets in hand, knowing that deep-learning
methods necessitate huge amount of images, can represent a relative drawback for these methods.
In fact, in the future, we will have to construct more heterogeneous and diversified datasets, which
will contain more and more images, in order to improve the discrimination performance of our
methods. Additionally, labeling these images by hand can end up representing a quite challenging and
burdensome task. Also, although the unsupervised learning methods do not represent a guarantee
of a better performance compared to the supervised learning ones, they present the advantage of
finding the distinctive features of the data without the need of the labels. In our humble knowledge,
this is one of the rare works to present a deep feature learning method, which means a method that
is principally based on the deep learning structures, for the HEp-2 cell images classification using a
strictly unsupervised approach.

HEp-2 cell images datasets usually contain six cell types: homogeneous, centromere, nucleolar,
fine speckled, coarse speckled, and cytoplasmic. The images shown in Figure 1 were taken from
the SNPHEp-2 dataset, which does not contain the cytoplasmic type. They typically contain two
levels of fluorescence intensity, positive and intermediate, which sometimes can lead to a preliminary
intensity-based separation that precedes the cell type classification itself, as proposed by Nigam et al. [31].
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Figure 1. HEp-2 cell images from one of the used datasets. In the first row, we have the positive
intensity images while the second row depicts the intermediate intensity images. For both rows we
have, from left to right, homogeneous, coarse speckled, fine speckled, nucleolar, and centromere cells.



Electronics 2019, 8, 20 4 of 18

As we can remark in the images depicted in Figure 1, the inhomogeneous illumination of the
HEp-2 cell images increases the intra-class variations, thus, complicating the discrimination process.
The first row in Figure 1 shows the positive-intensity images, while the second row shows the
intermediate intensity images. We can see how significant are the differences between the images
that belong to the same class but have different level of fluorescence intensity. These differences
demonstrate the strong intra-class variations of the dataset.

We propose an unsupervised deep feature learning process that uses different types of the
input representation and mixes the features extracted in the different levels in order to form a
highly discriminative representation. Two deep convolutional auto-encoders (DCAEs), which learn to
reproduce the original cellular images via a deep encoding-decoding scheme, are used for extracting
the features. One DCAE takes the original cell image as an input, and the other one takes a
two-dimensional energy map representing the intensity variation in a pixel-level computed using
the gradients. Both networks will learn, in parallel, to reproduce the original cellular images. The latent
representations trapped between the encoder, and the decoder of both networks will be extracted
and mixed together in a single vector, which will represent the final high-level features of the system.
The first DCAE will help to encode the geometrical details of the cells contained in the original pictures
while the second DCAE will help to capture and understand the local changes in intensity provided by
the gradients map, giving a global comprehension of the cells.

The discrimination potentiality carried by the extracted features allows us to feed them as
the inputs of a shallow nonlinear classifier, which will certainly find a way to discriminate them.
The proposed method was tested on two of the most popular publicly available datasets, the ICPR
2016 dataset [32] and the SNPHep-2 Cell dataset [5], and the results show that the proposed features
outperform by far the conventional and popular hand-crafted features, and perform at least as well as
the state-of-the-art supervised deep learning-based methods. We even demonstrate that, when utilized
as the inputs of a more complex shallow artificial neural network, our proposed features outperform
the state-of-the-art methods in terms of discrimination performance. The schematic representation of
the proposed method is shown in Figures 2 and 3.

Electronics 2018, 7, x FOR PEER REVIEW  4 of 19 

 

Figure 1. HEp-2 cell images from one of the used datasets. In the first row, we have the positive 129 
intensity images while the second row depicts the intermediate intensity images. For both rows we 130 
have, from left to right, homogeneous, coarse speckled, fine speckled, nucleolar, and centromere cells. 131 

As we can remark in the images depicted in Figure 1, the inhomogeneous illumination of the 132 
HEp-2 cell images increases the intra-class variations, thus, complicating the discrimination process. 133 
The first row in Figure 1 shows the positive-intensity images, while the second row shows the 134 
intermediate intensity images. We can see how significant are the differences between the images 135 
that belong to the same class but have different level of fluorescence intensity. These differences 136 
demonstrate the strong intra-class variations of the dataset. 137 

We propose an unsupervised deep feature learning process that uses different types of the input 138 
representation and mixes the features extracted in the different levels in order to form a highly 139 
discriminative representation. Two deep convolutional auto-encoders (DCAEs), which learn to 140 
reproduce the original cellular images via a deep encoding-decoding scheme, are used for extracting 141 
the features. One DCAE takes the original cell image as an input, and the other one takes a two-142 
dimensional energy map representing the intensity variation in a pixel-level computed using the 143 
gradients. Both networks will learn, in parallel, to reproduce the original cellular images. The latent 144 
representations trapped between the encoder, and the decoder of both networks will be extracted 145 
and mixed together in a single vector, which will represent the final high-level features of the system. 146 
The first DCAE will help to encode the geometrical details of the cells contained in the original 147 
pictures while the second DCAE will help to capture and understand the local changes in intensity 148 
provided by the gradients map, giving a global comprehension of the cells.  149 

The discrimination potentiality carried by the extracted features allows us to feed them as the 150 
inputs of a shallow nonlinear classifier, which will certainly find a way to discriminate them. The 151 
proposed method was tested on two of the most popular publicly available datasets, the ICPR 2016 152 
dataset [32] and the SNPHep-2 Cell dataset [5], and the results show that the proposed features 153 
outperform by far the conventional and popular hand-crafted features, and perform at least as well 154 
as the state-of-the-art supervised deep learning-based methods. We even demonstrate that, when 155 
utilized as the inputs of a more complex shallow artificial neural network, our proposed features 156 
outperform the state-of-the-art methods in terms of discrimination performance. The schematic 157 
representation of the proposed method is shown in Figures 2 and 3.  158 

 

(a) 

Figure 2. Cont.



Electronics 2019, 8, 20 5 of 18Electronics 2018, 7, x FOR PEER REVIEW  5 of 19 

 

 

(b) 

Figure 2. The schematic representation of the proposed method. In (a), we have a two-level deep-159 
learning feature extraction by using two deep convolutional auto-encoders (DCAEs): the first DCAE 160 
takes the original image as an input and learns to reproduce it while the second one takes the image 161 
gradients and learns to reproduce the original cellular image. In (b), the latent representations from 162 
the two DCAEs are extracted and concatenated in one single vector to form the final feature 163 
representation. 164 

 

Figure 3. The high-level features are used as the inputs of a nonlinear classifier for the cell 165 
classification step. 166 

The remaining content of the paper is organized as follows. The next section presents in detail 167 
each step of the proposed framework. Section 3 discusses about the obtained results, and addresses 168 
a quasi-exhaustive comparative study with both hand-crafted features and deep learning based state-169 
of-the-art methods. 170 

2. Proposed Cell Classification Method 171 

2.1. Feature Learning and Extraction using Two Levels of a Convolutional Auto-Encoder 172 

Auto-encoders [33,34] are unsupervised learning methods that are used for the purpose of 173 
feature extraction and dimensionality reduction of the data. Neural network-based auto-encoders 174 
consist of an encoder and a decoder. The encoder takes an input signal x of dimension d, and maps it 175 
to a hidden representation y, of dimension r, using a deterministic mapping function � such that: 176 

� = f(�� + �),   (1)

where the parameters � and � are the weights and bias matrices that are associated with the layer 177 
that takes the input x. These parameters must be learned by the encoder. The decoder then takes the 178 
output y of the encoder, computed using Equation (1), and uses the same deterministic mapping 179 
function � in order to provide a reconstruction z that must be of the same shape or in the same form 180 
than x, which means that the reconstructed signal z must be almost equal to the original signal x. 181 
Using Equation (1), the output z of the decoder is also given by: 182 

� = f(��� +  ��),   (2)

where the parameters W’ and b’ are the weights and bias matrices that are associated with the 183 
decoder layer. In final, the network must learn the parameters W, W’, b, and b’, so that the 184 
reconstruction z must be close or, if possible, equal to the original input signal x. The network leans 185 
to minimize the differences between the input x and the output z. 186 

This encoding-decoding process can be done with the use of convolutional neural networks, 187 
with what we call the DCAE. Unlike with conventional neural networks where you can fix the size 188 

Figure 2. The schematic representation of the proposed method. In (a), we have a two-level
deep-learning feature extraction by using two deep convolutional auto-encoders (DCAEs): the
first DCAE takes the original image as an input and learns to reproduce it while the second one
takes the image gradients and learns to reproduce the original cellular image. In (b), the latent
representations from the two DCAEs are extracted and concatenated in one single vector to form the
final feature representation.
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The remaining content of the paper is organized as follows. The next section presents in detail
each step of the proposed framework. Section 3 discusses about the obtained results, and addresses
a quasi-exhaustive comparative study with both hand-crafted features and deep learning based
state-of-the-art methods.

2. Proposed Cell Classification Method

2.1. Feature Learning and Extraction using Two Levels of a Convolutional Auto-Encoder

Auto-encoders [33,34] are unsupervised learning methods that are used for the purpose of feature
extraction and dimensionality reduction of the data. Neural network-based auto-encoders consist of
an encoder and a decoder. The encoder takes an input signal x of dimension d, and maps it to a hidden
representation y, of dimension r, using a deterministic mapping function f such that:

y = f(Wx + b), (1)

where the parameters W and b are the weights and bias matrices that are associated with the layer that
takes the input x. These parameters must be learned by the encoder. The decoder then takes the output
y of the encoder, computed using Equation (1), and uses the same deterministic mapping function f in
order to provide a reconstruction z that must be of the same shape or in the same form than x, which
means that the reconstructed signal z must be almost equal to the original signal x. Using Equation (1),
the output z of the decoder is also given by:

z = f(W′y + b′), (2)

where the parameters W′ and b′ are the weights and bias matrices that are associated with the decoder
layer. In final, the network must learn the parameters W, W′, b, and b′, so that the reconstruction z
must be close or, if possible, equal to the original input signal x. The network leans to minimize the
differences between the input x and the output z.

This encoding-decoding process can be done with the use of convolutional neural networks, with
what we call the DCAE. Unlike with conventional neural networks where you can fix the size of the
output that you want to get, the convolutional neural networks usually incorporate in their structure
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the so-called pooling layers whose principal work is to retain only the maximal activations in a given
region, thus, reducing the input’s spatial extent.

While using the DCAE, right after the down-sampling process is accomplished by the encoder,
the decoder takes the latent representations and tries to up-sample them until we reconstruct the
original size. This up-sampling process can be done by the backwards convolution, often called
“deconvolution” operations, and the backwards pooling, often denoted as “unpooling” operations.
The final solution of the network can be written in the form of:(

W, W′, b, b′
)
= argmin

W,W′ ,b,b′
L(xz), (3)

where z denotes the decoder’s output and x is the original image. Which means that the final solution of
the system comprises the learned parameters W, W′, b, and b′ that minimize the most the differences
between the original image and the reconstruction. The adopted cost function is a cross-entropy
cost [33] described as:

L(xz) =
N

∑
i=1

[xi log zi + (1− xi) log(1− zi)] (4)

where N represents the total number of data (total number of images used during the training process),
x is the original input image, and z is the output of the decoder described in Equation (2). The network
learns the parameters in Equation (3) so that the cost function described in Equation (4) is minimized.
This means that the network, after down-sampling the original image, tries to reconstruct it.

In this work, we propose to use two levels of feature extraction with the DCAE. The first network
will take as an input the original cellular image, and will learn to reconstruct it by using the decoding
function depicted in Equation (2). The original image contains the intensity and geometric information
concerning the cells. Our assumption is that the high-level features learned by this network will
encapsulate the intensity and geometric information about the cellular patterns.

The second network will take the gradient magnitude of the image as the input. In every single

pixel of the image, the gradients
→
∇I, evaluated using the following equation:

→
∇I =

∂I
∂x

ex +
∂I
∂y

ey, (5)

compute the rate and the direction of the changes in the intensity variation. In Equation (5), I represents
the original image, and the unit vectors ex and ey represent the two axis of the image, the horizontal
and vertical directions, along which we compute the changes in pixel level. The gradient magnitude is

the magnitude of the vector
→
∇I, whose estimation, following Equation (5), can be written as:

Gmag(I) =

√(
∂I
∂x

)2
+

(
∂I
∂y

)2
, (6)

where Gmag matrix represents the gradient magnitude of the image I.
While the encoder of the first network uses the expression denoted in Equation (1) in order

to compute its output, in the second network, we replace the input x by its gradient magnitude.
The output vector y of the encoder from the second DCAE can be re-written as:

y = f(W·Gmag(x) + b), (7)

where W and b are again the weights and bias matrices associated with the encoder. Note that the
reconstruction process of the second DCAE is done in the same manner as the one of the first network.
Equation (2) is used for computing the output of the decoder, and Equations (3) and (4) are used in
the same manner, in order to find the best parameters that minimize the most the differences between
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the decoder’s output and the original cellular image. Which means that the second network takes as
inputs the gradients, and, using them, try to reconstruct the original cell image.

The second assumption made here is that the gradient maps will allow the network to seize
and understand the local changes in intensity level of the cellular images. The high-level features
trapped in the middle of both network will be, after the networks reach convergence, extracted and
concatenated in order to form our final feature vector representation.

The encoding–decoding scheme of the DCAEs requires a symmetric architecture in the two parts
of the network. This means that both the encoder and decoder will have the same size and volume,
and every single down-sampling layer in the encoder must have its corresponding up-sampling layer
in the decoder. Because the image and its gradient map have the same size, we have used the same
architecture for both DCAEs.

Their architecture is depicted in detail in Table 1. In the table, we can clearly distinguish the
down-sampling process (encoding) with the stacking of many convolutional and pooling layers. Each
convolutional layer is denoted by “Conv n” in the table, with n being the nth layer that performs
convolution operations on the image. The input image has a size of 112 × 112, as does the gradient
map. We have avoided the use of big filters, in order to attenuate the impact of the loss of spatial
information during the down-sampling process. In fact, going deeper inside the network causes a
progressive loss of spatial detail, while it significantly increases the complexity of the nonlinearities
provided by the cascade of the convolution operations. This finally, provides more subtle and complex
features, but with a lack of accuracy in terms of reconstruction. This is the reason for why we have
preferred, in order to encourage a quite fair reconstruction, the use of multiple filters of small sizes.

The idea of utilizing a cascade of small convolution filters before the pooling operations, instead
of a single filter with a large spatial extent, was firstly proposed by Simonyan et al. [35], with the
well-known VGG network. Most of the encoding–decoding networks in the literature, such as the ones
used in the segmentation problems, for example the U-Net [36] or the SegNet [37], have adopted the
VGG-like structure especially for its capability for minimizing the loss of the spatial details, which are
critically necessary in case of problems that involve reconstruction. The main difference of our network
with these VGG-like networks is that we have avoided the stacking of supplementary convolutional
layers before the down-sampling process performed by the pooling layers. In fact, besides the fact
of increasing the computational complexity of the network, we have found out that these additional
layers do not improve the discrimination potentiality of the latent representations.

Table 1. Architecture of the DCAEs.

Layer Filter size #Feature Maps Stride Padding Output

Input - - - - 112 × 112
Conv 1 3 × 3 32 1 1 112 × 112
Pool 1 2 × 2 32 2 0 56 × 56
Conv 2 3 × 3 64 1 1 56 × 56
Pool 2 2 × 2 64 2 0 28 × 28
Conv 3 3 × 3 128 1 1 28 × 28
Pool 3 2 × 2 128 2 0 14 × 14
Conv 4 3 × 3 256 1 1 14 × 14
Pool 4 2 × 2 256 2 0 7 × 7
Conv 5 7 × 7 512 1 1 1 × 1

Deconv 5 7 × 7 256 1 0 7 × 7
Unpool 4 2 × 2 256 2 0 14 × 14
Deconv 4 3 × 3 128 1 1 14 × 14
Unpool 3 2 × 2 128 2 0 28 × 28
Deconv 3 3 × 3 64 1 1 28 × 28
Unpool 2 2 × 2 64 2 0 56 × 56
Deconv 2 3 × 3 32 1 1 56 × 56
Unpool 1 2 × 2 32 2 0 112 × 112
Deconv 1 3 × 3 1 1 1 112 × 112
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As we can denote in the table, every single convolutional layer uses a filter that has a fixed
size of 3 × 3, except the final filter in the encoder, denoted by “Conv 5”, whose filer has a size of
7 × 7. We have used a single dimension for both the stride and the zero-padding for every single
convolutional layer, in order to allow the convolution operation to keep the spatial dimension of the
input volume unchanged. As we can clearly notice in the fifth column of the table denoting the output
size of each operation, every convolutional layer, except Conv 5, produces an output that has the same
exact size as its input. For example, Conv 1 produces an output of 112 × 112 × 32, which preserves the
spatial extent of the original image.

The down-sampling mechanism is only assigned to the pooling layers. In fact, every pooling layer
in the encoder has a stride of 2, and does not use any padding in such a way that the input volume
is down-sampled by half after every pooling operation. The first layer of the encoder, the Conv 1
layer, has 32 different filters, and the last layer of the encoder, the Conv 5 layer, has 512 different filters.
As we can remark, the output of the fourth pooling layer, Pool 4, has a size of 7 × 7 with 256 different
feature maps, which gives a volume size of 7 × 7 × 256. After this step, we have used a convolution of
size 7 × 7, so that the output will have one dimension. This layer has 512 different filters, which gives
a 1 × 1 × 512 output. We can think of it as a vector containing 512 elements. This layer will contain the
features that will be utilized subsequently as the final representation.

Just after we reach the 1 × 1 × 512 feature volume, we start the up-sampling process (decoding)
with the stacking of many deconvolutional and unpooling layers. They represent the backwards
operations for convolution and pooling, respectively. In the table, the deconvolutional layers are
denoted as “Deconv n”, and the unpooling layers are denoted as “Unpool n”. After reaching the
location of the latent representations, the decoding process starts until we reach the original size.

In the decoder, every deconvolution operation does not increase the size of the input, except
for the first deconvolutional layer (Deconv 5), just like its corresponding convolutional layer in the
encoder, Conv 5, which is the only convolutional layer that decreases the input size. And just like in
the encoder where the down-sampling process is strictly assigned to the pooling layers, in the decoder,
the up-sampling process is assigned to the unpooling layers, which also reduce the number of channels
(feature maps) as we go deeper in the network until we reach the reconstruction layer that is comprised
of a single channel. We can remark on the symmetry of the network in terms of size and volume.

The latent representations located in the middle of the network, in the 1 × 1 × 512 layer, precisely,
will be extracted. As we use two DCAEs, we will have two vectors containing, for each one of
them, 512 elements. As discussed before, the features from the two networks will be extracted
and concatenated in a single vector whose size will be 1024. This means that the final feature
representations, which contain the nonlinear squashing computations from the two DCAEs, will
be a 1024-dimensional vector.

2.2. Classification Using a Nonlinear Classifier

The second part of the proposed method consists of using a shallow network for the classification
of the different cell types by using the feature vectors presented in the previous section as the inputs.
While this step uses a supervised learning approach, the proposed feature learning and extraction
method, also presented in the previous section, utilizes a strictly unsupervised approach. As we will
see in the next section, where we present the obtained results, the highly discriminatory characteristics
offered by the proposed features can allow for a quite effective retrieval system with a limited number
of labeled data. In fact, if we suppose that we can assign a cell type to a given unlabeled cellular
image by comparing its features with the ones of the limited labeled data that we have in possession
a thoroughly discriminatory feature representation is more than necessary in order to make the
comparison system to be effective. This just means that the proposed features in this work can still be
used in a fully unsupervised scheme in the case where labeled data are limited. The supervised step
discussed in this section just serves the purpose of evaluating the discrimination potentiality of the
proposed features over the publicly available labeled datasets.
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Once we have our feature vectors, we can construct our artificial neural network-based classifier.
The network has an input layer containing 1024 neurons, according the length of our feature vectors.
We have tested different architectures and chosen the best one by cross-validating all the different
models. The details on the selected architecture are discussed in the next section, and the network
learns by back-propagating the error [38] from the classification layer to the input layer.

3. Results

In order to evaluate the proposed method, we have used two of the most popular publicly
available datasets for the HEp-2 cell classification, the SNPHEp-2 and the ICPR 2016 datasets. Because
these datasets have different levels of heterogeneity, every method gives different results when they
are applied to them, which obliges us to present the results separately. All of the experiments were
conducted with MATLAB (9.4 (R2018a), Natick, MA, USA), and performed on a computer with a Core
i7 3.40 GHz processor and 8 GB of RAM. A GPU implementation was used with a NVIDIA GeForce
GTX 1080 Ti with 11,264 MB of memory, which accelerates the training time.

3.1. SNPHEp-2 Dataset

The SNPHEp-2 dataset was obtained between January and February 2012 at the Sullivan
Nicolaides Pathology laboratory at Australia. The dataset has five patterns: the centromere, the
coarse speckled, the fine speckled, the homogeneous, and the nucleolar types. The images depicted
in Figure 1 were obtained from this dataset. It is composed of 40 different specimens, and every
single specimen image was captured using a monochrome camera, which was fitted on a microscope
with a plan-Apochromat 20×/0.8 objective lenses and an LED illumination source. In order to
automatically extract the image masks, which specifically delimits the cells body, the DAPI image
channel was utilized.

There are 1884 cellular images in the dataset, all of them extracted from the 40 different specimen
images. Different specimen were used for constructing the training and testing image sets, and both
sets were created in such a way that they cannot contain images from the same specimen. From the
40 specimens, 20 were used for the training sets and the remaining 20 were used for the testing sets.
In total, there are 905 and 979 cell images for the training and testing sets, respectively. Each set
(training and testing) contains five-fold validation splits of randomly selected images. In each set, the
different splits are used for cross validating the different models, each split containing 450 images
approximatively. The SNPHEp-2 dataset was presented by Wiliem et al. [5], and it can be downloaded
freely at http://staff.itee.uq.edu.au/lovell/snphep2/.

The original images have different sizes, with average resolution of 90 × 90 pixels. The images
were all resized to 112 × 112, in order to fit them into our proposed architecture. We begin our scheme
by feeding the images to the two DCAEs, in order to extract the features. As explained in the previous
section, two levels of feature extraction are used in our work: the first DCAE takes the original image
and learns the parameters so that the image is reconstructed, and the second DCAE takes the gradient
magnitude as the input and learns to reproduce the original cellular image.

In Figure 4, we can see the different images showing the projections of the final vectors constructed
by merging the latent representations learned by the two DCAEs. The projections were obtained
using the principal component analysis [39]. PC1 and PC2 denote the first and second principal
component axis, respectively. For all the figures, “Homo”, “Coarse”, “Fine”, “Nucl”, and “Centro”
denote the homogeneous, the coarse speckled, the fine speckled, the nucleolar, and the centromere
types, respectively. In Figure 4a, we have the features constructed by using the first convolutional
layers of the two networks. We called them the low-level features, because they are located right at
the beginning of the networks where no meaningful features were yet learned. We can notice how
the different types of the cells are mixed together. The fine speckled cells (shown in magenta color)
exhibited very different patterns, as we can also remark in Figure 1, explaining why some of them were
clustered away from the other types. In Figure 4b, we show the features that were learned by the third

http://staff.itee.uq.edu.au/lovell/snphep2/
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convolutional layers of the two DCAEs. We can see how both networks have already learned some
distinguishable features from the data, as the different clusters started to become clearer, compared to
the projections shown in Figure 4a.
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Figure 4. Visualization of the features learned by the DCAEs. In (a), we have the low-level features
extracted from the first convolutional layer, as denoted by Conv 1 in Table 1. In (b), we have the
middle-level features from the Conv 3 layer, and in (c), we can see the high-level features from the Conv
5 layer.

In Figure 4c, we show the high-level features that were constructed by using the latent
representations from the middle of the networks, the fifth convolutional layers. We can see how
discriminative these features are. A part of the coarse speckled and the nucleolar cells are still clustered
together, but, in a general view, we can clearly recognize five distinctive clusters from the images.
The next step will consist of feeding those features, the ones shown in Figure 4c, to a nonlinear classifier
that can automatically learn to discriminate them. As discussed previously, the feature vectors have a
dimension of 1024. We have trained a neural network for the final classification step. The network
has an input layer containing 1024 neurons, one single hidden layer containing 100 neurons, and the
final layer has five neurons according to the five cell types of the dataset. The hidden layer uses the
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hyperbolic tangent as activation function and the last layer uses the softmax function [33] in order to
output the class probabilities.

The classification results are partially shown in Figure 5, where we present the receiver operating
characteristic (ROC) curves for the classification of each one of the cell types. For each cell type, the ROC
curves were evaluated by considering the concerned cell type as a positive class, and all the remaining
types were considered as the negative class. For example, the ROC curve of the homogeneous cells
was computed by considering the homogeneous images as being from the positive class, and all the
remaining cells, the four other types, as being from the negative class. The curves show how the
network manages to recognize every single cell type.
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Figure 5. ROC curves for the classification of every single cell type.

We can see in Figure 5, that the centromere cells are really well recognized by the classifier, and
their ROC curve, drawn using the black color, showing the best classification accuracy in the figure.
This is not surprising at all if we take a look at the features shown in Figure 4c. In fact, we can
see in the figure that the features from the centromere cells, shown in black dots, are clustered in a
quite distinctive subspace, demonstrating that the centromere cell images exhibit particularly singular
patterns. The homogeneous and fine speckled cells also occupy distinctive subspaces in Figure 4c.
We can see that their ROC curves, shown in red (Homo) and magenta (Fine), are similar, which means
that network manages to recognize them in a quite similar way. This may come from the fact that their
patterns exhibit similar circular shapes, as we can notice in the images depicted in Figure 1. In fact,
in Figure 1, the homogeneous and the fine specked images are the ones that exhibit strong circular
shades in their intensity variation.

The nucleolar and the coarse speckled cells, shown in blue (Coarse) and green (Nucl) in Figure 4c,
also exhibit quite similar patterns and they are relatively clustered in the same subspace. As a
consequence, the classifier did have some difficulties in discriminating them properly. They present
the least accurate ROC curves among all the five cell types.

In Figure 6, we show the confusion matrix of the results obtained for the classification. We recall
that the testing set comprises 979 cell images. As for the ROC curves, we can notice that all the
centromere cells in the testing set are well-classified by the network, giving an accuracy of 100% for this
cell type. The classifier achieves 98.17% of accuracy for the discrimination of the homogeneous cells,
and we can remark that a few of them, only 1.83%, are misclassified as being fine speckled. The same
thing occurs for the fine speckled cell images, as 97.86% of them were well-classified, and only 2.14%
of the images were wrongly classified as being homogeneous.
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Figure 6. Confusion matrix of the results using the proposed method over the testing set. The total
accuracy of the classifier is 97.18%.

The least accurate performance comes with the discrimination of the coarse speckled and the
nucleolar cell images. As the position of the projection subspaces occupied by their features can
suggest in Figure 4c, and also as their ROC curves suggest, we can notice that the classifier achieves
95.10% of accuracy for the coarse speckled, and 94.77% for the nucleolar. This gives a total accuracy of
97.18% for the overall classification of the cells. As we will see later, most of the hand-crafted features
do not surpass the 85% and the state-of-the-art deep learning-based methods stagnate around 95% of
accuracy for this particular dataset.

An interesting comparison is made in Figure 7, where we show the results obtained using the
features learned by the two DCAEs, but separately. In Figure 7a, we have the results using the features
from the DCAE that takes as inputs only the original cellular images. The architecture of the classifier
was set to be 512-50-10-5, which means that we have used two hidden layers, the first one having
50 neurons and the second one, 10 neurons. Here, the input layer has 512 neurons because one single
DCAE outputs a feature vector of 512 dimensions. As we can see in Figure 7a, by computing the mean
accuracy of all the classes, the network achieves a total accuracy of 71.77%.
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Figure 7. Confusion matrix of the classification results over the test set. In (a), the features were
learned with only the original cell images and in (b), the features were obtained by using only the
image gradients.

Two important remarks about these results should be mentioned. The first one is that the features
learned by the DCAE from only the original images increase the confusion between the homogeneous
and the fine speckled cell images. As we can see in Figure 7a, 17.32% of the homogeneous cells were
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misclassified as fine speckled, and even 19.63% of the fine speckled were misclassified as homogeneous.
The second remark is that the nucleolar cells are almost equivalently mixed with the coarse speckled
and the centromere. This comes from the similar appearance of these three types of cells in their shapes
and intensities. However, if we take a look at the results depicted in Figure 7b, where the features
were learned using the gradients of the images, we can see that the confusion between these three cells
radically decreases. In fact, the local changes in intensity captured by the gradients allow the features
to well distinguish these cells. The hybrid feature extraction method proposed in this work allows to
capture, at the same time, the features that help to recognize the cells in their global shape and also
the features that help the recognition using the local changes in intensity. Which helps to efficiently
discriminate the images that are globally similar but locally distinguishable (different). The classifier
achieves a total accuracy of 86% into the results shown in Figure 7b. We can remark that the gradients
of the cells bring more discriminant features. The confusion between the centromere and the coarse
speckled is also radically attenuated.

In Table 2, we show the results of the different methods in the literature. We separate the
hand-crafted features based methods with the ones that utilize deep learning. The texture features [31],
the hybrid feature representation from the DCT and the SIFT descriptors [5], and also the LPB
descriptors [6] achieve, respectively, 80.90%, 82.50%, and 85.71%.

Table 2. Comparative study for the SNPHEp-2 dataset.

Method Authors Description Accuracy

Hand-crafted
features

Nigam et al. [31] Texture features + SVM 80.90%
Wiliem et al. [5] DCT features + SIFT + SVM 82.50%
Nosaka et el. [6] LPB + SVM 85.71%

Deep Learning

Gao et al. [22] 5 layers CNN 86.20%
Bayramoglu et al. [29] 4 layers CNN 88.37%

Li et al. [23] Deep Residual Inception Model 95.61%
Lei et al. [27] Cross-modal transfer learning 95.99%

Shen et al. [28] Use of a Deep-Cross Residual Module 96.26%
Proposed method Double DCAEs feature extraction + ANN 1 97.18%

1 ANN stands for artificial neural network.

The first deep learning based method [22] was proposed for the ICPR 2012 dataset, which
contains less images compared to the SNPHEp-2 dataset, but also is far less heterogeneous. That is
why the method performs poorly on this dataset, which contains more diversified data from many
more specimens, accomplishing an accuracy of 86.20%. Bayramoglu et al. [29] have utilized a quite
similar architecture with the network, as proposed in [22], but their method uses a consequent data
augmentation, achieving 88.37%. The state-of-the-art deep learning based methods in [23,27], and [28]
stagnate at 95.61%, 95.99%, and 96.26%, respectively, for this dataset.

3.2. ICPR 2016 Dataset

The first ICPR HEp-2 classification contest had proposed the ICPR 2012 dataset, which was not
really heterogeneous. Since 2013, they have provided more heterogeneous datasets, like the one
used during the 2016 edition, the ICPR 2016 dataset [32]. The images were taken with an acquisition
unit consisting of the fluorescence microscope, coupled with a 50 W mercury vapor lamp and a
digital camera. The images are made from 83 different specimens, which significantly reinforces the
intra-class heterogeneity.

The dataset contains six different cellular types: the homogeneous (2494 images from 16 different
specimens), the speckled (2831 images, 16 specimens), the nucleolar (2598 images, 16 specimens), the
centromere (2741 images, 16 specimens), the nuclear membrane (2208 images, 15 specimens), and
the Golgi (724 images, only four specimens). The dataset contains in total, 13,596 images, and it can
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be downloaded at http://mivia.unisa.it/datasets/biomedical-image-datasets/hep2-image-dataset/.
We show some sample images from this dataset in Figure 8.
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Figure 8. Examples of HEp-2 cell images from the ICPR 2016 dataset. In (a–f), we have, respectively,
the homogeneous, the speckled, the nucleolar, the centromere, the nuclear membrane, and the Golgi.

The size of the images from this dataset roughly varies around 95 × 95 pixels and, just like with
the previous dataset, we have resized them to 112 × 112 before giving them to the DCAEs. We started
by extracting the features using the two-level DCAE, and then the extracted features were given to a
neural network for the classification step. Among the 13,596 images, 80% were utilized for training
both the DCAEs and the artificial neural networks (ANNs), and the remaining 20% were used for
testing the models.

We show two results for this dataset. The first ones are shown in the confusion matrix depicted in
Figure 9. In the figure, “Homo”, “Speck”, “Nucl”, “Centro”, “NucM”, and “Golgi” denote, respectively,
the homogeneous, speckled, nucleolar, centromere, nuclear membrane, and Golgi cells. These results
were obtained by using a network with the same exact architecture compared to the one used for the
previous dataset. This means that the input layer contains 1024 neurons with one single hidden layer
containing 100 neurons. The final layer has six neurons in this case, because we have six different
classes. In Figure 9, we can see that all of the Golgi cells were recognized by the classifier. The speckled
cells were slightly confused with the homogeneous cells, but the accuracy for each one of the classes
remained at a high level. The total accuracy was about 97.38%.

http://mivia.unisa.it/datasets/biomedical-image-datasets/hep2-image-dataset/
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Figure 9. Confusion matrix of the classification for the ICPR 2016 dataset using a 1024-100-6 network
architecture. The total accuracy is 97.38%.

When we tried to use a much deeper architecture for the ANN classifier, the accuracy increased.
While the best results for the previous dataset were found with this architecture, we found that the best
results for this dataset were with a 1024-250-20-6 architecture. The input layer took the 1024 elements
of the feature vectors, two hidden layers were used, the first one had 250 neurons and the second one
had 20 neurons, and the final layer comprised the six neurons corresponding to the six different cell
types for classification. The results are shown in detail in Figure 10.
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Figure 10. Confusion matrix of the classification for the ICPR 2016 dataset using a 1024-250-20-6
network architecture. The total accuracy is 98.66%.

We can remark in the results shown in Figure 10 that the network slightly decreased the confusion
between the homogeneous and the speckled cells, and also between the centromere and the nucleolar.
All of the Golgi cells were still well-recognized by the network and, moreover, any confusion between
the nuclear membrane and the speckled cells disappeared, and the total accuracy of the network was
98.66%.

The comparison study for this dataset is shown in Table 3. For all the methods in the table, we
used the same training–testing split, in order to minimize the splitting-related biases, and to make
the comparative study more reliable. The heterogeneity of this dataset poses certain problems for
the hand-crafted feature-based methods. Their accuracy really decreases greatly when we compare
the results in Table 3 with the ones depicted in Table 2 for the previous dataset. The reason for is
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that many, if not all, of these methods were proposed when the datasets for the HEp-2 cells were not
diversified enough.

Table 3. Comparative study for the ICPR 2016 dataset.

Method Authors Description Accuracy

Hand-crafted
features

Nigam et al. [31] Texture features + SVM 71.63%
Wiliem et al. [5] DCT features + SIFT + SVM 74.91%
Nosaka et el. [6] LPB + SVM 79.44%

Deep Learning

Gao et al. [22] 5 layers CNN 96.76%

This work Double DCAE feature extraction +
ANN-1024-100-6 97.38%

Xi et al. [29] VGG-like network 98.26%
Li et al. [23] Deep Residual Inception Model 98.37%
Lei et al. [27] Cross-modal transfer learning 98.42%

Shen et al. [28] Use of a Deep-Cross Residual Module 98.62%

This work Double DCAE feature extraction +
ANN-1024-200-20-6 98.66%

In contrast, all of the deep learning based methods were specifically proposed for this dataset,
which is why all of them reached outstanding results here. We can clearly see in Table 3 that our
proposed method performed as well as the state-of-the-art deep learning methods. Moreover, when the
classification step was performed with a much deeper network, our method relatively surpassed the
other methods. We recall that our method is mainly based on a strictly unsupervised feature learning
method, which can help in the case where labeling the images can be an arduous work.

4. Conclusions

HEp-2 cell classification is one of the most important steps for automated diagnosis of autoimmune
diseases. We have proposed a classification method that, unlike most of the state-of-the-art methods,
uses a deep learning-based feature extraction framework in an unsupervised way. We have proposed
the use of two deep convolutional autoencoders. The first network takes the original cellular images as
the inputs, and learns to reconstruct them in order to capture the features that are related to the global
shape of the cells, and the second network takes the gradients of the images as inputs, and learns
to reconstruct the original images in order to encode the local changes in the intensity of the images
provided by their gradient maps.

Then, a final feature vector is constructed by combining the latent representations extracted from
the two networks, giving a highly discriminative feature representation. The high discriminability of
the proposed features was tested on two of the most popular HEp-2 cell classification datasets, the
SNPHEp-2 and ICPR 2016 datasets. The results show that the proposed features manage to capture
the distinctive characteristics of the different cell types while performing at least as well as the actual
deep learning-based state-of-the-art methods.
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