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Abstract: This paper investigates the generation of simulation data for motion estimation using
inertial sensors. The smoothing algorithm with waypoint-based map matching is proposed using
foot-mounted inertial sensors to estimate position and attitude. The simulation data are generated
using spline functions, where the estimated position and attitude are used as control points.
The attitude is represented using B-spline quaternion and the position is represented by eighth-order
algebraic splines. The simulation data can be generated using inertial sensors (accelerometer and
gyroscope) without using any additional sensors. Through indoor experiments, two scenarios
were examined include 2D walking path (rectangular) and 3D walking path (corridor and stairs)
for simulation data generation. The proposed simulation data is used to evaluate the estimation
performance with different parameters such as different noise levels and sampling periods.
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1. Introduction

Motion estimation using inertial sensors is one of the most important research topics
that is increasingly applied in many application areas such as medical applications, sports,
and entertainment [1]. Inertial measurement unit (IMU) sensors are commonly used to estimate
human motion [2–5]. Inertial sensors can be used alone or combined with other sensors such as
cameras [6,7] or magnetic sensors [8]. In personal navigation and healthcare applications [9–11],
foot-mounted inertial sensors without using any additional sensors is a key enabling technology since
it does not require any additional infrastructure. If additional sensors (other than inertial sensors) are
also used, sensor fusion algorithms [12,13] can be used to obtain more accurate motion estimation.

To evaluate the accuracy of any motion estimation algorithm, it is necessary to compare the
estimated value with the true value. The estimated value is usually verified through experiments with
both IMU and optical motion tracker [14,15]. In [2], the Vicon optical motion capture system is used
to evaluate the effectiveness of human pose estimation method and its associated sensor calibration
procedure. An optical motion tracking is used as a reference to compare with motion estimation using
inertial sensors in [15].

Although the experimental validation gives the ultimate proof, it is not only more convenient but
also more important to work with simulation data, which is statistically much more relevant for testing
and the development of algorithms. For example, the effect of gyroscope bias on the performance of
an algorithm cannot be easily identified in experiments. In this case, simulation using synthesized
data is more convenient since gyroscope bias can be changed arbitrarily.

In [16–18], IMU simulation data are generated using optical motion capture data for human
motion estimation. In [19], IMU simulation data is generated for walking motion by approximating
walking trajectory as simple sinusoidal functions. In [20–22], IMU simulation data are also generated
for flight motion estimation using an artificially generated trajectory. There are many different methods
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to represent attitude and position simulation data. Among them, the spline function is the most popular
approach [23]. The B-spline quaternion algorithm provides a general curve construction scheme that
extends the spline curves [24]. Reference [25] presents an approach for attitude estimation using
cumulative B-splines unit quaternion curves. Position can be represented by any spline function [23].
Usually, position data are represented using cubic spline functions. The cubic spline function gives a
continuous position, velocity, and acceleration. However, the acceleration is not sufficiently smooth.
This is a problem for the inertial sensor simulation data generation since the smooth accelerometer
data cannot be generated. Thus, we use the eighth-order spline function for position data since it
gives position data with smooth acceleration, whose jerk (third derivative) can be controlled in the
optimization problem.

In this paper, we use cumulative B-spline for attitude representation and eighth-order algebraic
spline for position representation. The eighth-order algebraic spline is a slightly modified version of
the spline function from a previous study [26].

The aim of this paper is to obtain simulation data combining inertial sensors (accelerometer and
gyroscope) and waypoint data without using any additional sensors. A computationally efficient
waypoint-based map matching smoothing algorithm is proposed for position and attitude estimation
from foot-mounted inertial sensors. The simulation data are generated using spline functions, where
the estimated position and attitude are used as control points. This paper is an extended version of
a work published in the conference paper [27], where a basic algorithm with a simple experimental
result is given.

The remainder of the paper is organized as follows. Section 2 describes the smoothing algorithm
with waypoint-based map matching to estimate motion for foot-mounted inertial sensors. Section 3
describes the computation of the spline function to generate simulation data. Section 4 provides the
experiment results to verify the proposed method. Conclusions are given in Section 5.

2. Smoothing Algorithm with Waypoint-Based Map Matching

In this section, a smoothing algorithm is proposed to estimate the attitude, position, velocity and
acceleration, which will be used to generate simulation data in Section 3.

Two coordinate frames are used in this paper: the body coordinate frame and the navigation
coordinate frame. The three axes of the body coordinate frame coincide with the three axes of the
IMU. The z axis of the navigation coordinate frame coincides with the local gravitational direction.
The choice of the x and y axes of the navigation coordinate frame can be arbitrarily chosen. The notation
[p]n ([p]b) is used to denote that a vector p is represented in the navigation (body) coordinate frame.

The position is defined by [r]n ∈ R3, which is the origin of the body coordinate frame expressed in
the navigation coordinate frame. Similarly, the velocity and the acceleration are denoted by [v]n ∈ R3

and [a]n ∈ R3, respectively. The attitude is represented using a quaternion q ∈ R4, which represents
the rotation relationship between the navigation coordinate frame and the body coordinate frame.
The directional cosine matrix corresponding to quaternion q is denoted by C(q) ∈ SO(3).

The accelerometer output ya ∈ R3 and the gyroscope output yg ∈ R3 are given by

ya = C(q)g̃ + ab + na,

yg = ω + ng,
(1)

where ω ∈ R3 is the angular velocity, ab ∈ R3 is the external acceleration (acceleration related to
the movement, excluding the gravitational acceleration) expressed in the body coordinate frame,
and na ∈ R3 and ng ∈ R3 are sensor noises. The vector g̃ is the local gravitational acceleration vector.
It is assumed that g̃ is known, which can be computed using the formula in [28]. The sensor biases are
assumed to be estimated separately using calibration algorithms [29,30].
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Let T denote the sampling period of a sensor. For a continuous time signal y(t), the discrete value
is denoted by yk = y(kT). The discrete sensor noise na,k and ng,k are assumed to be white Gaussian
sensor noises, whose covariances are given by

Ra = E
{

na,knT
a,k

}
= ra I3 ∈ R3×3,

Rg = E
{

ng,knT
g,k

}
= rg I3 ∈ R3×3.

(2)

where ra > 0 and rg > 0 are scalar constants.
We assume that a walking trajectory consists of straight line paths, where the angle between two

adjacent paths can only take one of the following angle {90◦,−90◦, 180◦}. An example of a walking
trajectory is given in Figure 1, where there is 90◦ turn at P2 and−90◦ turn at P3. Waypoints are denoted
by Pm ∈ R3 (1 ≤ m ≤ M), which include positions with turn events (P2 and P3 in Figure 1), the initial
position (P1) and the final position (P4).

Figure 1. Example of waypoints (P1 ∼ P4).

2.1. Standard Inertial Navigation Using an Indirect Kalman Filter

In this subsection, q, r, and v are estimated using a standard inertial navigation algorithm with
an indirect Kalman filter [31].

The basic equations for inertial navigation are given as follows:

q̇ = 1
2 Ω(ω)q,

v̇n = an = CT(q)ab,

ṙn = vn,

(3)

where symbol Ω is defined by

Ω(ω) =

 0 ωT

ω −[ω×]

 ,

and [ω×] ∈ R3×3 denotes the skew symmetric matrix of ω:

[ω×] =


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 .

Let q̂k, r̂k and v̂k be the estimated values of q, r and v using (3), where ω and ab are replaced by yg

and ya − C(q̂)g̃:

˙̂q = 1
2 Ω(yg)q̂,

˙̂v = CT(q̂)ya − g̃,
˙̂r = v̂.

(4)

Coriolis and Earth curvature effects are ignored since we use a consumer grade IMU for limited
walking distances where these effects are below the IMU noise level [32].

When the initial attitude (q̂0) is computed, the pitch and roll angles can be computed from ya,0.
However, the yaw angle is not determined since there is no heading reference sensor such as a magnetic
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sensor. In the proposed algorithm, the initial yaw angle can be arbitrarily chosen since the yaw angle
is automatically adjusted later (see Section 2.3).

q̄e, re and ve denote the estimation errors in q̂, r̂, and v̂, which are defined by

q̄e , q⊗ q̂∗k ,

re , rn − r̂k,

ve , vn − v̂k,

(5)

where ⊗ is the quaternion multiplication and q∗ denotes the quaternion conjugate of a quaternion q.
Assuming that q̄e is small, we can approximate q̄e as follows:

q̄e ≈

 1

qe

 . (6)

The state of an indirect Kalman filter is defined by

x ,


qe

re

ve

 ∈ R9×1. (7)

The state equation for the Kalman filter is given by [31]:

ẋ =


[−yg×] 0 0

0 0 I3

−2C(q̂)T [ya×] 0 0

 x + w (8)

where the covariance of the process noise w is given by

E
{

wwT
}
=


0.25Rg 0 0

0 0 0

0 0 C(q̂)T RaC(q̂)

 .

The discretized version of (8) is used in the Kalman filter as in [31].
Two measurement equations are used in the Kalman filter: the zero velocity updating (ZUPT)

equation and the map matching equation.
The zero velocity updating uses the fact that there is almost periodic zero velocity intervals

(when a foot is on the ground) during walking. If the following conditions are satisfied, the discrete
time index k is assumed to belong to zero velocity intervals [31]:

‖yg,i‖ ≤ Bg, k− Ng
2 ≤ i ≤ k + Ng

2

‖ya,i − ya,i−1‖ ≤ Ba, k− Na
2 ≤ i ≤ k + Na

2

(9)

where Bg, Ba, Ng and Na are parameters for zero velocity interval detection. This zero velocity
updating algorithm is not valid when a person is on a moving transportation such as an elevator. Thus,
the proposed algorithm cannot be used when a person is on a moving transportation.

During the zero velocity intervals, the following measurement equation is used:

03×1 − v̂k =
[

03×3 03×3 I3

]
xk + nv, (10)

where nv is a fictitious measurement noise representing a Gaussian white noise with the noise
covariance Rv.
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The second measurement equation is from the map matching, which is used during the zero
velocity intervals. From the assumption, a straight line path is parallel to either x axis or y axis. If a path
is parallel to x(y) axis, y(x) position is constant and this can be used in the measurement equation.

Let ei ∈ R3×1(1 ≤ i ≤ 3) be the unit vector whose i-th element is 1 and the remaining elements
are 0. Suppose a person is on the path [Pm, Pm+1] and

eT
j (Pm+1 − Pm) = 0, j = 1 or 2. (11)

For example, (11) is satisfied with j = 1 if the path is parallel to the y axis.
When (11) is satisfied with j (j = 1 or 2), then the map matching measurement equation is given by

eT
j (Pm − r̂k) =

[
01×3 eT

j 01×3

]
xk + nr,12, (12)

where nr,12 is the horizontal position measurement noise whose noise covariance is Rr,12.
If the path is level (that is, eT

3 (Pm+1 − Pm) = 0), the z axis value of rk is almost the same in the
zero velocity intervals when the foot is on the ground. In this case, the following z axis measurement
equation is also used:

eT
3 (Pm − r̂k) =

[
01×3 eT

3 01×3

]
xk + nr,3, (13)

where nr,3 is the vertical position measurement noise whose noise covariance is Rr,3.
The proposed filtering algorithm is illustrated in Figure 2. To further reduce the estimation errors

of the Kalman filter, the smoothing algorithm in [31] is applied to the Kalman filter estimated values.

Figure 2. Proposed measurement update flowchart.
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2.2. Path Identification

To apply map matching measurement Equation (12), a current path must be identified. Using the
zero velocity intervals, each walking step can be easily determined. Let Sl be the discrete time index of
the end of l-th zero velocity interval (see Figure 3).

Figure 3. Walking step segmentation.

Let ψSl be the yaw angle at the discrete time Sl and4ψl be defined by

4 ψl , ψSl+1 − ψSl . (14)

Please note that4ψl denotes the yaw angle change during l-th walking step.
The turning (that is, the change of a path) is detected using 4ψl . Suppose a current path is

[Pm, Pm+1]. Then the next turning angle is determined by two vectors Pm+1 − Pm and Pm+2 − Pm+1.
For example in Figure 1, if a current path is [P1, P2], the next turning angle is 90◦. Let δ be the next
turning angle. Turning is determined to occur at l-th walking step if the following condition is satisfied:

|
l+Ml

∑
j=l−Ml

4ψj − δ |< ψth, (15)

where ψth is a threshold parameter and Ml is a positive integer parameter. Equation (15) detects the
turning if the summation of the yaw angle changes during 2Ml + 1 walking steps is similar to the
next expected turning angle δ. The use of parameter Ml is due to the fact that turning does not occur
during a single step. Once turning is detected in (15), a current path is modified to [Pm+1, Pm+2] from
[Pm, Pm+1].

2.3. Initial Yaw Angle Adjustment

The initial yaw angle is arbitrarily chosen and adjusted as follows. Suppose the first Nfirst walking
steps belong to the first path [P1, P2]. Let xl and yl (1 ≤ l ≤ Nl) be defined by xl

yl

 =

 eT
1

eT
2

 r̂Sl , 1 ≤ l ≤ Nl . (16)

The line equation representing (xl , yl) is computed using the following least squares optimization:

min
a,b,c

Nl

∑
l=1

∥∥axl + byl + c
∥∥2

2 . (17)

The angle between the line (defined by the line equation a, b, c) and [ e1 e2 ]
T(P2− P1) is computed.

Using this angle, the initial yaw angle is adjusted so that the walking direction coincides with the
direction dictated by the waypoints.

3. Spline Function Computation

In this section, spline function q̄(t) (quaternion spline) and r̄(t) (position spline) are computed
using q̂k, r̂k and v̂k as control points.
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3.1. Cumulative B-Splines Quaternion Curve

Since the quaternion spline q̄(t) is computed for each interval [kT, (k + 1)T), it is convenient to
introduce q̄k(u) notation, which is defined by

q̄(t) = q̄k(u) , q̄(kT + u), t ∈ [kT, (k + 1)T), 0 ≤ u < T. (18)

To define q̄k(u), ω̂k is defined as follows:

ω̂k ,
1
T

log(C(q̂k+1)CT(q̂k)), (19)

where the logarithm of an orthogonal matrix is defined in [33]. Please note that ŵk is a constant angular
velocity vector, which transform from q̂k to q̂k+1.

Cumulative B-spline basis function is used to represent the quaternion spline, which is first
proposed in [24] and also used in [34].

q̄k(u) = (
3

∏
i=1

Si(u))q̂k−1 (20)

where

Si(u) , exp(
1
2

B̃i(u)Ω(ω̂k−2+i)).

The cumulative basis function B̃i(u) ∈ R3 (1 ≤ i ≤ 3) is defined by


B̃1(u)

B̃2(u)

B̃3(u)

 = D


1
u
T
u2

T2

u3

T3

 (21)

where D is computed using the matrix representation of the De Boor–Cox formula [34]:

D =
1
6


5 3 −3 1

1 3 3 −2

0 0 0 1

 .

To generate the gyroscope simulation data, the angular velocity spline ω̄(t) is required. From the
relationship between q̄(t) and ω̄(t) [35], ω̄(t) is given by

ω̄(t) = 2Ξ(q̄(t)) ˙̄q(t) (22)

where

Ξ(q) ,


−q1 −q2 −q3

q0 −q3 q2

q3 q0 −q1

−q2 q1 q0

 .

The derivative of q̄(t) (kT ≤ t < (k + 1)T) is given by

˙̄q(t) =
dq̄k(u)

du
= (Ṡ3S2S1 + S3Ṡ2S1 + S3S2Ṡ1)q̂k−1 (23)

where
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Ṡi =
dSi(u)

du
=

1
2

˙̃Bi(u)Ω(ω̂k−2+i)Si

˙̃B(u) =


˙̃B1(u)
˙̃B2(u)
˙̃B3(u)

 = D


0
1
T
2u
T2

3u2

T3

 .

3.2. Eighth-Order Algebraic Splines

The position r̄(t) is represented by eighth-order algebraic spline [26], where k-th spline segment
is given by

r̄(t) = r̄k,m(u) =
7

∑
j=0

pkj,muj, t ∈ [kT, (k + 1)T). (24)

where pkj,m(0 ≤ k ≤ N, 0 ≤ j ≤ 7, 1 ≤ m ≤ 3) are the coefficients of the k-th spline segment of the m-th
element of r̄k (for example, r̄k,1 is the x position spline). Continuity constraints up to third derivative
of r̄k,m(u) are imposed on the coefficients.

Let âk be the estimated value of the external acceleration in the navigation coordinate frame,
which can be computed as follows (see (3))

âk = CT(q̂k)ya,k − g̃. (25)

The coefficients pkj,m are chosen so that r̄(kT), ˙̄r(kT) and ¨̄r(kT) are close to r̂k, v̂k and âk.
An additional constraint is also imposed to reduce the jerk term (the third derivative of r̄(t)),
which makes r̄(t) smooth rather than jerky. Thus, the performance index for m-th element (1 ≤ m ≤ 3)
of r̄(t) is defined as follows:

Jm = α1
N
∑

k=0
(r̄k,m(T)− r̂k,m)

2 + α2
N
∑

k=0
( ˙̄rk,m(T)− v̂k,m)

2

+α3
N
∑

k=0
( ¨̄rk,m(T)− âk,m)

2 + β
N
∑

k=0

∫ T
0 (

...
r̄ k,m(t))2dt.

(26)

This minimization of Jm can be formulated as a quadratic minimization problem of the coefficients
pkj,m as follows:

min
X

Jm = XT M1X + 2M2X + M3 (27)

where M1 ∈ R8(N−1)×8(N−1), M2 ∈ R1×8(N−1) and M3 ∈ R can be computed from (26).
Although the matrix size of M1 could be large, it is a banded matrix with a bandwidth of 7.

An efficient Cholesky decomposition algorithm is available for matrices with a small bandwidth [36]
and (27) can be solved efficiently.

Let p̄kj,m be the minimization solution of (26). Then r̄ can be computed by inserting p̄kj,m into (24)
and v̄, ā can be computed by taking the derivatives.

The weighting factors αi(1 ≤ i ≤ 3) and β determine the smoothness of r̄, v̄ and ā. If β is large,
we obtain smoother r̄, v̄ and ā curves at the sacrifice of nearness to the control points r̂, v̂ and â.

Let ȳa and ȳg be accelerometer and gyroscope output generated using the spline functions.
These values can be generated using (1), where q, ab, ω are replaced by q̄, C(q̄)ā, ω̄ with appropriate
sensor noises. An overview of the simulation data generation system is shown in Figure 4.
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Figure 4. System overview for simulation data generation.

4. Experiment and Results

In this section, the proposed algorithm is implemented through indoor experiments. An inertial
measurement unit MTi-1 of XSens was attached on the foot with the sampling frequency of 100 Hz.
The parameters used in the proposed algorithm are given in Table 1.

Table 1. Parameters used in the proposed algorithm

Parameters Values Related Equations

ra 0.0015
(2)

rg 0.00001

Bg 0.8
(9)Ba 1.5

Ng, Na 30

nv 0.01 (10)
nr,12 0.0004 (12)
nr,3 0.0004 (13)
ψth 30◦ (15)

α1, α2, α3 1
(26)

β 0.00001

Two experiment sets of scenarios are conducted: (1) walking along a rectangular path for 2D
walking data generation; and (2) walking on corridors and stairs for 3D walking data generation.

4.1. Walking along a Rectangular Path

In this experimental scenario, the subjects walked five laps at normal speed along a rectangular
path with dimensions of 13.05 m by 6.15 m. The total distance for five laps on the path was 192 m.

The standard Kalman filter results without map matching are given in Figure 5. The errors in
Figure 5 were primarily driven by the errors in the orientation estimation as well as run bias instability
of the inertial sensors leading to the position error of 1 m. As can be seen that the maximum error was
almost 2 m at the end of the walking.
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Figure 5. Rectangle walking estimation for five laps using a standard Kalman filter.

The navigation results in Figure 6 were obtained from the proposed smoothing algorithm with
map matching. It can be seen that the results are improved due to the map matching.

Figure 6. Rectangle walking estimation for five laps using the proposed smoothing algorithm.

The z axis spline data (for the three walking steps out of the rectangle walking steps) is given in
Figure 7.
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Figure 7. z axis spline functions of the rectangle walking.

4.2. Walking along a 3D Indoor Environment

In the second experimental scenario, a person walked along a 3D indoor environment corridors
and stairs.

Figure 8 shows the walking along a 3D trajectory results with a waypoint P1 is the starting point
whose coordinate is (0, 0, 0). The coordinates of waypoints P1 to P14 are known, and the starting
waypoint P1 coincides with the end waypoint P14 on the projection plane. The routes are as follow:
starting from the third floor waypoint P1, walking along the floor to collect data with normal speed
then turning 180◦ in P2 and turning on the right in P3, then going up the stairs through the floor by the
same way as the other floors, finally reaching the fifth floor waypoint P14, after that turning 180◦ and
walking along the floor to coming back the starting waypoint P1. The total length of the path line is
approximately 562.98 m.

Figure 8. 3D path indoor estimation with the proposed smoothing algorithm.

4.3. Evaluation of Simulation Data Usefulness

The simulation data used to test specific performance of a certain algorithm. In this subsection,
the standard Kalman filter without map matching is evaluated using the simulation data generated
in Section 4.1. The algorithm is tested 1000 times with different noise values (walking motion data is
the same).

Let r̄xy,final,i be the estimation error of the final position value (x and y components) of i-th
simulation, where 1 ≤ i ≤ 1000. Since the mean value of r̄xy,final,i is not exactly zeros, its mean value is
subtracted.
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The accuracy of an algorithm can be evaluated from the distribution of r̄xy,final,i. Consider an
ellipse whose center point is the mean of r̄xy,final,i and which include 50% of r̄xy,final,i (see Figure 9).
Let a be the length of the major axis and b be the length of the minor axis. Smaller values of a and b
indicate that the error of a certain algorithm is smaller.

4.3.1. Affects of Sampling Rate on the Estimation Performance

The simulation results for the final position estimated errors with different sampling rates are
given in Table 2. As an example, Figure 9 shows the estimation error of the final position value with a
sampling rate of 100 Hz, where an ellipse represents the boundary of 50% of probability. As can be
seen, the final position errors of the different sampling rates are almost the same except for the result
with a sampling rate of 50 Hz. This simulation result suggests that the sampling rate is smaller than
100 Hz is not desirable. Also, there is no apparent benefit using the sampling rate higher than 100 Hz.

Table 2. Final position errors with different sampling rates.

Sampling Rate
Mean of r̄xy,final (m) Radius (m)

x̄final ȳfinal a b

50 Hz −1.5217 −0.5428 0.7605 0.0215
100 Hz 0.6639 0.4745 0.0554 0.0034
150 Hz 0.6955 0.4558 0.0594 0.0032
200 Hz 0.7156 0.4520 0.0582 0.0042

Figure 9. Estimation error of the final position value with a sampling rate 100 Hz [ellipse with 50% of
probability radius].

4.3.2. Gyroscope Bias Effect

The simulation results for the final position estimated errors with different gyroscope bias are
given in Table 3. As can be seen, the final position errors change significantly when the gyroscope bias
becomes to change larger.
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Table 3. Final position errors with different gyroscope bias.

rg
Mean of r̄xy,final (m) Radius (m)

x̄final ȳfinal a b

0 0.7023 0.6122 0.133 0.0226
0.00001 0.6568 0.4696 0.0595 0.0035
0.0001 −0.2038 −0.0280 0.5952 0.0309
0.001 −6.3768 0.5568 3.5123 1.0306

5. Conclusions

In this paper, simulation data is generated for walking motion estimation using inertial sensors.
The first step to generate simulation data is to perform a specific motion, which you want to estimate.
The attitude and position are computed from inertial sensors data using a smoothing algorithm.
The spline functions are generated using the smoother estimated values as control points. B-spline
function is used for the attitude quaternion, and eighth-order algebraic spline function is used for
the position.

The spline simulation data generated from the proposed algorithm can be used to test a new
motion estimation algorithm by easily changing the parameters such as noise covariance, sampling rate
and bias terms.

The shape of generated spline function depends on the weighting factors, which control the
constraint on the jerk term. It is one of future research topic to investigate how to choose the optimal
weighting factors, which give the most realistic simulation data.
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