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Abstract: The aim of this paper is to investigate the role of multiple views and multiple frequencies
in linear inverse scattering problems. The study was performed assuming the Fresnel-zone
approximation on the scattering operator. Due to the crucial role played by singular values into
analysing the linear inverse scattering problems, the impact of view and frequency diversities on
singular values behaviour was established. In fact, the singular values were related to the most
common metrics used to quantify the achievable performances in inverse scattering problems, such
as the number of degrees of freedom (NDF), the information content and the resolution.

Keywords: inverse scattering problems; singular value decomposition; multi-view configuration;
multi-frequency configuration

1. Introduction

In this paper, linear [1] inverse scattering problems are addressed. Their aim is to reconstruct
an unknown target from measures of its scattered field when the scattering scene is illuminated by a
known incident field. As is well known, such problem is ill-posed in sense of the Hadamard [2]. This
means that, even when the uniqueness of solution is guaranteed, the noise affecting the data can be
amplified on the unknown space resulting in meaningless solutions. Accordingly, to mitigate the effect
of noise, regularisation techniques are mandatory [3], which allow obtaining approximate solutions
resulting from a trade-off between accuracy and stability. Hence, although these methods control
noise propagation to obtain stable solutions, they preclude the possibility of retrieving arbitrary details
about the unknown.

It is known that probing the scattering scene at different incidence directions (multi-view
configuration) and/or at different frequencies (multi-frequency configuration) improves the achievable
performance [4]. However, some degree of redundancy is expected due to the reciprocity and when
the problem is overdetermined. That is, data collected by employing one or two diversities (view
and/or frequency) are not necessarily all independent.

In this paper, the role played by the view and frequency diversities on the achievable performance
is analysed. To address such a purpose, the singular values decomposition of the scattering operator [5]
is a very powerful mathematical tool. This is because: firstly, all regularisation schemes result in a
proper filtering of the scattering operator singular spectrum [3]; and, secondly, the most common
figures of merits, namely the resolution [6], the Number of Degree of Freedom (NDF) [7] and the
information content [8,9], that allow assessing the performance in linear inverse problem can be
expressed in terms of it.
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In fact, the point-spread function whose main lobe is related to the resolution can be expressed in
terms of the singular functions of the scattering operator spanning the unknown space [10].

The number of degrees of freedom (NDF) that represents the number of independent data required
to represent the field with a given degree of accuracy can be evaluated as the number of singular values
greater than a threshold depending on the noise [11]. More in detail, such a parameter allows us to
gain insightful information about many aspects of the problem. For instance, it is strictly linked to the
achievable resolution as the dimension of the set of the field that can be represented with the assigned
accuracy and also it identifies the subspace of scatterers that can be correctly reconstructed. It can give a
measure on how complicated the design of an optical system can be [12]. By interpreting the scattering
operator as a propagator of information, the NDF has also been linked to the number of independent
channels of communication which significantly connect (i.e., with coupling coefficient higher than
a noise dependent threshold) the scattering and the measurement volumes [13–17]. By following
further the information point of view, for many times the NDF has been considered a measure of
the information that can be conveyed back from scattered field measurements to the scatterer [18,19].
However, although the NDF is linked to the information content, they actually are not the same
thing [20].

A measure of information content can be given by exploiting two main approaches: the Shannon
information theory [8] or the Kolmogorov information theory [9]. The choice between these is based on
prior information about the unknown space, the data space and their mapping. However, regardless of
the approach exploited, the information content can be expressed in terms of the number of significant
singular values (NDF) and their numerical value [21–23].

According to the above discussion, our purpose becomes to assess the impact of the diversities on
the singular values decomposition of the scattering operator. In [4], the same analysis is carried out
when the far-field approximation is assumed. Such an approximation puts serious restrictions on the
size of the investigation domain and/or the distance from the latter and observation domain. Therefore,
here, the aim is to expand previous studies in order to cover configurations which are under the Fresnel
approximation. In particular, our aim is to know the singular values of the relevant scattering operator
in closed form and to link their behaviour to the scattering parameters. Unfortunately, as in [4],
we cannot fill such a gap. Instead, by exploiting the same mathematical tools shown in [4], we
succeed in introducing upper and lower bounds for the singular values and linking their behaviour to
configuration parameters.

The paper is organised as follows: In Section 2, some mathematical notations and concepts are
introduced. In Section 3, the analysis about view and frequency diversities is developed. Finally, a
conclusive summary ends the paper.

2. Notation and Mathematical Preliminaries

The aim of this section is to provide some mathematical preliminaries and notations that are used
in the following sections. The set of all the complex valued functions f (x) supported on I ∈ R that are
square integrable is denoted as L2

I . According to the Plancherel Theorem, the Fourier transform of
such functions can be introduced

F(u) =
∫

I
f (x)e−jux dx (1)

where u is the space frequency. Let the operator BΩ be the band limiting projector such that

BΩ f (x) =
1

2π

∫
Ω

F(u)ejuxdu (2)

where Ω is a single compact interval not necessarily centred around the zero frequency. Similarly, the
space limiting projector PI is given by
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PI f (x) =

{
f (x), x ∈ I
0, x /∈ I.

(3)

Let us consider the operator PIBΩPI f (x). If Ω and I are both centred around zero, its explicit
form is given by

PIBΩPI f (x) =
∫ m(I)/2

−m(I)/2

sin [m(Ω)/2(x− y)]
π(x− y)

f (y)dy (4)

where m(I) and m(Ω) are the measures of the intervals I and Ω, respectively. As well known [24,25],
the operator in Equation (4) is a compact self-adjoint positive definite operator and its eigenspectrum
is given in terms of prolate spheroidal wave-functions un = φn(c, x)/

√
ηn(c), where c = m(I)m(Ω)/4

is the so-called spatial-bandwidth product, φn(c, x) is the nth prolate function and ηn(c) are the
corresponding eigenvalues. The latter exhibit a step-like behaviour: they are almost constant to
one until the index reaches N = [2c/π], with [·] being the greater integer lower than its argument.
Beyond this index, they decay exponentially to zero. The eigenvalues hold the same when Ω and/or
I are not centred intervals, whereas the eigenfunctions are linked to the previous ones by unitary
transformations (phase changes and/or translations).

For our purposes, it is useful to consider also the sum operator

S = α1PIBΩ1PI + α2PIBΩ2PI (5)

where Ω1 and Ω2 are disjoint bands and α1 and α2 are amplitude factors. The eigensystem of
Equation (5) is not known in closed form. However, in [26], it is shown that it can be very well
approximated by the union of the eigensystems of each single operator appearing in Equation (5).
Indeed, if c1 and c2 are both greater than 4, then

PIBΩ1PIun2 ∼= 0

PIBΩ2PIun1
∼= 0 (6)

where un1 and un2 are the eigenfuctions of PIBΩ1PI and PIBΩ2PI , respectively (note that the equality
can never occur because the operators are positive definite and hence have empty null spaces).
Accordingly, the eigensystem of Equation (5) can be approximated as{

{un[S ]} = {un1} ∪ {un2}
{λn[S ]} = {α1ηn(c1)} ∪ {α2ηn(c2)}

(7)

Thus, the λn[S ] exhibit a two-step like behaviour. The first knee occurs at [2c1/π] (when α1 > α2)
or [2c2/π] (for α2 > α1), whereas the second one is at [2c1/π] + [2c2/π]. Moreover, the first eigenvalue
jump is related to the ration α1/α2.

A useful theorem to estimate upper and lower bounds for the eigenvalues of a convolution
operator is introduced:

Theorem 1. Let A and B be two compact operators belonging to the space of linear operators H(X ,Y),
X = L2

X and Y = L2
Y being Hilbert spaces of square integrable functions supported over X and Y. If

〈A†A f , f 〉 ≤ 〈B†B f , f 〉 ∀ f ∈ X

then say λn[A†A] and λn[B†B] the eigenvalues of A†A and B†B

λn[A†A] ≤ λn[B†B] ∀n

Its proof is reported in Appendix of the paper [27].
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Consider a convolution operator

G : f (x) ∈ L2
I −→ g(y) =

∫
I

k(y− x) f (x)dx ∈ L2
I (8)

with the band-limited kernel function k(x) ∈ L2
R. This is a Hilbert–Schmidt operator and, thus, it is

compact. Let K(u) be the Fourier transform of k(y). K(u) is assumed to be a real and positive function
with compact support Ω = [umin, umax]. Divide now the bandwidth Ω in M sub-bands Ωm each of
width ∆ = (umax − umin)/M such that Ωm

⋂
Ωn = 0 for m 6= n and Ω =

⋃
m Ωm. Further, let us

consider the two sequences
K̃1, K̃2, . . . K̃m, . . . K̃M, (9)

and
K̂1, K̂2, . . . K̂m, . . . K̂M, (10)

where
K̃m = max

Ωm
{K(u)},

and
K̂m = min

Ωm
{K(u)}.

After introducing two “auxiliary” operators written as

G̃ f (x) =
m

∑
m=1

K̃mPIBΩmPI f (x) (11)

Ĝ f (x) =
M

∑
m=1

K̂mPIBΩmPI f (x) (12)

the following proposition, consequence of Theorem 1, can be stated [28]:
say λn[G̃], λn[Ĝ] and λn[G] the eigenvalues of G̃, Ĝ and G, respectively. Then, it can be shown that

λn[Ĝ] ≤ λn(G) ≤ λn[G̃] ∀n. (13)

3. Mathematical Formulation

Consider the two dimensional scattering configuration shown in Figure 1. A strip scatterer is
supported over the interval I = [−a, a] along the x-axis, located at z = z′. Invariance is assumed along
the polarisation direction of the incident field, which in turn is orthogonal to the strip. The scattering
scene is illuminated by a filamentary current located at xi on the x-axis. Moreover, along the interval
O = [−Xo, Xo] of the same axis, the only y component of the scattered field is collected in Fresnel zone.

When a multi-view measurement configuration is exploited, one can take advantage of incident
field coming from different directions to improve the performance achievable in the reconstruction.
Suppose obtaining such a multi-view configuration by moving the current position xi along the interval
Si ⊆ O.

Instead, when the frequency diversity is exploited, the illumination frequency varies within the
interval [ fmin, fmax] that corresponds to the interval Sk = [kmin, kmax] of the wavenumber domain.
Accordingly, under the Fresnel approximation, the scattering operator is (apart from some unessential
scalar factors)

Ai f : χ(x) ∈ L2
I −→ ES(xo, xi, k) =

1
z′

∫ a

−a
e−j(2kz′+ k

2z′ (xo−x′)2+ k
2z′ (xi−x′)2)χ(x′) dx′ ∈ L2

(O×Si×Sk)
(14)
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When only view or frequency diversity is exploited, the corresponding operators are denoted
as Ai and A f , respectively. To obtain the singular values of the scattering operator, the following
eigenvalues problem must be solved

A†
lAluln = λnuln (15)

with l = {i, f }, A†
l being the adjoint operator of Al . In fact, it is well known that the singular values

σn[Al ] of Al are equal to
√

λn[A†
lAl ], while uln are the right singular functions of Al .

Figure 1. Geometry of the problem.

3.1. View Diversity

In this section, the impact of view diversity on the singular values of the scattering operator
is analysed. Accordingly, suppose that the scattered field is collected for different directions of the
incident field and at a single frequency. The scattering operator is

Ai : χ(x) ∈ L2
I → Es(xo, xi) =

1
z′

∫ a

−a
e−j(2k0z′+ k0

2z′ (xo−x′)2+
k0
2z′ (xi−x′)2)χ(x′) dx′ ∈ L2

(O×Si)
(16)

where k0 is the wavenumber at the fixed frequency.
At first, let us suppose that Si is a discrete subset of O. Let M be the number of views taken by

uniformly sampling O. Thus, the left side of Equation (15) is written as

A†
iAiuin =

M

∑
m=1

λ

z′
T †PIBΩmPIT uin (17)

where T is an unitary operator defined as

Tk0 : uin ∈ L2
I −→ ūin(x, k0) = e−j k0

z′ x2
uin(x) ∈ L2

I (18)

Ωm =
[

k0
z′ xim − k0

z′ Xo, k0
z′ xim + k0

z′ Xo

]
. The unitary operator Tk0 does not affect the eigenvalues

of A†
iAi but introduces a phase term on uin(x). Accordingly, by including such a phase term in the

eigenfunctions, the eigenvalues problem in Equation (15) is equivalent to

A†
iAiūin = λnūin (19)
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where, now,

A†
iAiūin =

M

∑
m=1

λ

z′
PIBΩmPI ūin (20)

For simplicity, consider the case of M = 2 and M = 3. In the first case, S = {−Xo, Xo} and (20)
becomes

A†
iAiūin =

λ

z′
PIBΩ1PI ūin +

λ

z′
PIBΩ2PI ūin. (21)

Now, since the two considered views are the extremal once (at −Xo and Xo), Ω1 ∩Ω2 = ∅ and
Equation (7) holds. Accordingly, the eigenvalues λn[A∗i Ai] exhibit a step-like behaviour with a flat
part equal to λ

z′ until the index N = 2
[ 2c

π

]
with c = a k0

z′ Xo, and after they decay exponentially. The
same behaviour can be also observed for the singular values of the scattering operator. This single step
behaviour allows identifying N as the number of degrees of freedom (NDF) ideally independent on
the noise. By comparing such result with respect to the single view configuration, it is evident that
adopting two different views, equal to the extremal ones, entails doubling the NDF. An example of
this result is shown in Figure 2.

Figure 2. Case of two views Si = {−Xo, Xo}. The top panel shows the two frequency bands, while in
the bottom panel the singular values of the relative scattering operator are plotted. For the simulation,
the configuration parameters are a = 30λ, Xo = 30λ and z′ = 125λ.

Consider the case of M = 3, since the discrete set of views is Si = {−Xo, 0, Xo}, Equation (20)
becomes

A†
iAiūin =

3

∑
m=1

λ

z′
PIBΩmPI ūin (22)
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where Ω1 =
[
−2 k0

z′ Xo, 0
]
, Ω2 =

[
− k0

z′ Xo, k0
z′ Xo

]
and Ω3 =

[
0, 2 k0

z′ Xo

]
. This situation is slightly

different from the one addressed above. This is because for M = 3 the bands Ωm overlap and the
result given in Equation (7) cannot be exploited. However, such an inconvenience can be overcome
by recasting those bands to make them disjoint. In fact, instead of Ω1, Ω2 and Ω3, the operator A∗i Ai

can be expressed in terms of the disjoint bands Ω̃1 =
[
− k0

z′ Xo, k0
z′ Xo

]
, Ω̃2 =

[
−2 k0

z′ Xo,− k0
z′ Xo

]
and

Ω̃3 =
[

k0
z′ Xo, 2 k0

z′ Xo

]
. Figure 3 gives some explanations about the recasting of the bands. In particular,

the top panel shows the Fourier transform of the kernel functions of each operator appearing in
Equation (22), and the bottom one their overlapping. Accordingly, Equation (22) can be rewritten as

A∗i Aiūin =
λ

z′
PIBΩ̃1

PI ūin + 2
λ

z′
PIBΩ̃2

PI ūin +
λ

z′
PIBΩ̃3

PI ūin. (23)

Now, Equation (7) holds. Hence, as long as c1 = c3 = a k0
2z′Xo > 4 and c2 = a k0

z′ Xo > 4, the
eigenvalues of the operator in Equation (23) (and, thus, also the singular values) exhibit a two-step
behaviour with knees occurring at the indexes N1 =

[
2c1
π

]
and N2 =

[
N1 +

2c2
π + 2c3

π

]
. Unlike before,

a non-uniform increase in the singular values level can be observed that shapes the singular values
behaviour so as to make the NDF dependent on the truncation threshold (hence, noise dependent).
This affects the information metrics positively. In fact, having fixed the noise, higher singular values
can lead to a more stable inversion procedure. However, the number of singular values different from
zero does not change with respect to the the case of two extremal views.

Figure 3. Case of three views Si = {−Xo, 0, Xo}. The top panel gives a qualitative view of the frequency
bands that now overlap. The bottom panel shows the spectrum of the kernel in terms of disjoint bands.

The same reasoning can also be applied to a generic number M (for simplicity odd) of views taken
uniformly in O. The Fourier transform of the kernel of operator in Equation (20) is a band-limited
function with support on [−2 k0

z′ Xo, 2 k0
z′ Xo] and consists in 2M − 3 steps. In particular, each step is
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supported over a spatial frequency interval ∆ =
2 k0

z′ Xo
M−1 in size except for the one centred around

the frequency zero, which is 2∆ large. Accordingly, the singular values exhibit a (M− 1) step-like
behaviour and the number of singular values on each step is 4 cM

π with cM = a∆/2. Moreover, on the

mth step the singular values are equal to
√
(M−m) λ

z′ with m = {1, . . . , M− 1}. This result is very
well verified by the example reported in Figure 4.

0 10 20 30 40 50 60 70

Singular value index

0

0.05

0.1

0.15

0.2

S
in
g
u
la
r
v
a
lu
es

Figure 4. Singular values behaviour of Ai for M = 5 views (the other parameters are setted as in
Figure 2). The foreseen values for the σns on each step are 0.1789, 0.1549, 0.1265 and 0.0894, while for
the knees are 14, 28, 43 and 57. They agree with the values indicated in figure.

The singular values exhibit the expected M− 1 = 4 steps and their value estimation is also in
strict accordance to the numerical result. For example, on the first step, the previous formula returns
0.178, which well agrees with the value given by the numerical simulation. Hence, summarising, the
results obtained show that the maximum number of significant (different from zero) singular values
can be obtained by using only two views at −Xo and Xo, while introducing more views increases the
singular values level. The latter affects positively the performances because it makes the reconstruction
more stable against the noise.

Let us consider the case of views varying continuously, so that Si = O and the operator A†
iAi is

now given by

A†
iAiūin(x) =

∫ a

−a
λ2

sin2
[

k0
z′ xo(x− y)

]
π2(x− y)2 ūin(x)dy. (24)

This operator has already been studied in the literature [29,30]. Unfortunately, its eigenvalues are
not known in closed form and we were not able to address such a lack. However, by following the
same procedure recalled in Section 2 and reported in [4], we manage to introduce upper and lower
bounds for eigenvalues of such operator. We start by observing that the Fourier transform of the kernel
in Equation (24) is a triangular window given by K(u) = λ2

2π

(
2 k0

z′ Xo − |u|
)

with |u| ≤ 2 k0
z′ Xo. After

dividing the frequency interval [−2 k0
z′ Xo, 2 k0

z′ Xo] in 2M disjoint subintervals Ωm, m ∈ {1, 2, . . . , 2M}
of size ∆u = 4 k0

z′ Xo/2M and defining two sequences {K̃m} and {K̂m} as in Equations (9) and (10),

we can build up the auxiliary operators Â†
iAi and Ã†

iAi. The proposition in Section 2 states that the

eigenvalues of such operators bound those of A†
iAi, that is, λn[Ã†

iA] ≤ λn[A†
iA] ≤ λn[Â†

iA]. The

operators Ã†
iA and Â†

iA are in form given by Equation (5). Accordingly, provided that cm = cM =

∆ua/2 is greater than 4, Equation (6) holds and we can foresee an M and M− 1 step-like behaviour
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for λn[Ã†
iAi] and λn[Â†

iAi], respectively. In particular, on each step there are 4cM/π eigenvalues, all
almost constant at the values K̃m and K̂m, respectively. We can summarise these results in the following
statement.

Statement 1:
Let N(τth, c) = ](λn[A†

iAi]) ≥ τth the number of eigenvalues of A†
iAi which are greater than τth. If

cM � 1 and hence c = 2a k0
z′ Xo � 1, then it approximately holds that

N(τth, c) ≤ (m− 1)[4cM/π] K̃m < τth and m ∈ {2, . . . , M}
N(τth, c) ≥ m[4cM/π] τth < K̂m and m 6= M
N(τth, c) ' [4c/π] K̃M > τth

. (25)

Obviously, these results also apply to the singular values given by σn[Ai] =
√

λn[A†
iAi] when

the threshold is set equal to
√

τth.
In Figure 5, it can be appreciated that the singular values of the operator Ai are bounded by√

λn[Ã†
iAi] and

√
λn[Â†

iAi], which show a M and M− 1 step-like behaviour. Moreover, if we choose
a noise threshold

√
τth = 0.42 the number of relevant singular values above this threshold is 36,

whereas the lower and upper bounds foreseen by Equation (25) are 28 and 38, respectively.

0 10 20 30 40 50 60 70
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in
g
u
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r
v
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Figure 5. Singular values behaviour of Ai for the case of continuous views and 2M = 12 (the other
parameters are set as in Figure 2). Yellow and red lines represent the square root of the eigenvalues of
Ã†

i Ai and Â†
i Ai, respectively.

Obviously, by increasing M, the range bounding the effective relevant singular values becomes
narrower and the estimation of their number improves. Finally, we can notice that also in the
continuous case adding more views simply shapes the singular value behaviour.

3.2. Frequency Diversity

In this section we consider the impact of the frequency diversity on the singular values of the
scattering operator. Hence, we suppose to collect the scattering field for a fixed incidence direction
(for the sake of simplicity, xi = 0) by varying the illumination frequency within the interval Sk =

[kmin, kmax]. Accordingly, the scattering operator is

A f : χ(x) ∈ L2
I −→ ES(xo, k) =

1
z′

∫ a

−a
e−j(2kz′+ k

2z′ (xo−x′)2+ k
2z′ x

′2)χ(x′)dx′ ∈ L2
(O×Sk)

. (26)
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As in Section 3.1, at first assume that Sk is a discrete set consisting of M uniformly spaced
frequencies k1 = kmin, k2 = kmin + ∆, . . . , kM = kmax, belonging to the interval [kmin, kmax] and spaced
of ∆ = (kmax−kmin)

(M−1) . Accordingly, the operator A†
fA f can be written as

A†
fA f un =

1
z′

M

∑
m=1

2π

km
T †

km
PIBΩmPITkm u f n (27)

where now Ωm = [− kmXo
z′ , kmXo

z′ ]. On the contrary, as before, the presence of the operator Tkm can affect
the eigenvalues of A†

fA f because it introduces a modulating term that can change the way in which
the bands Ωm overlap. To describe the effect of such a modulating term, we can do the following
approximation

ej km
z′ (x2−y2) = ej km

z′ (x+y)(x−y) ≈ ej km
z′ a(x−y) (28)

Posing x + y = a is equivalent to choosing the intermediate frequency of modulation [31].
Accordingly, this term translates the frequency band Ωm of a km

z′ a factor. It is evident that, if X0 > a, such
translation does not change the way in which the bands Ωm overlap and the effect of such a modulating
term is only to introduce a phase factor over the eigenfunctions. Conveniently, Equation (27) can be
recast as

A†
fA f u f n =

2π

z′
M

∑
m=1

1
km
PIBΩ1PIu f n +

M−1

∑
m=1

2π

z′
M

∑
l=m+1

1
k0l

(
PIBΩ̃m

PIu f n + PIBΩ̂m
PIu f n

)
(29)

where Ω1 = [− kmin
z′ (Xo − a), kmin

z′ (Xo + a)], Ω̃m = [ kmin
z′ (Xo + a) + (m − 1)∆ (Xo+a)

z′ , kmin
z′ (Xo + a) +

m∆ (Xo+a)
z′ , ] and Ω̂m = [− kmin

z′ (Xo − a)−m∆ (Xo−a)
z′ ,− kmin

z′ (Xo − a)− (m− 1)∆ (Xo−a)
z′ ] (see Figure 6 for

a graphical explanation).

Figure 6. Illustration of how to rearrange the frequency bands to obtain Equation (29) with the
assumption X0 > a.
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If ∆ is chosen to have c̃ = a∆(Xo+a)
2z′ � 4, ĉ = a∆(Xo−a)

2z′ � 4 and c1 = a kmin
z′ Xo � 4, by exploiting

the same reasoning as before, the eigenvalues exhibit M steps with knees occurring at Nm = 2akminXo
πz′ +

(m− 1) 2a∆Xo
πz′ , with m = 1, . . . , M. On the mth step, the eigenvalues are equal to 2π

z′ ∑M
l=m

1
kl

. In Figure 7,
an example referred to the case M = 3 is shown: the expected three steps are evident and there
is also an accordance between the theoretical and numerical values of σn[A f ]. As a result of the
discussion above, if X0 > a, we find that the maximum number of significant singular values depends
on the highest adopted frequency and using more frequency simply shapes the singular value to
have a multistep-like behaviour. If X0 ≤ a, the modulating term affects the way in which the bands
Ωm overlap and the previous conclusions cannot be deduced. In such a case, the translation term
introduces a different shaping on the eigenvalues and also an increasing of the number of significant
singular values can be obtained. However, such situation does not have a practical interest because it
is always assumed to collect the measures over a domain greater than the investigation one.
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Figure 7. Singular values behaviour of A f for M = 3 frequencies The configuration parameters are
a = 30λmin, Xo = 45λmin, z′ = 125λmin, λmax = 4λmin and λmin = 1/4m. The foreseen values for the
σn on each step are 0.2298, 0.1442 and 0.0894, while for the knees are 10, 27 and 43. They agree with the
values indicated in figure.

By following the same logical steps followed in the previous section, we can address also the case
of a continuous interval Sk with the assumption Xo > a. Thus, the operator A†

fA f becomes

A†
fA f u f n =

2π

z′

∫ a

−a

∫ kmax

kmin

1
k

ej k
z′ (x2−y2)

sin
[

k
z′Xo(x− y)

]
π(x− y)

dk0u f n(y) dy (30)

Due to Equation (28), we can re-write Equation (30)

A†
fA f u f n =

2π

z′

∫ a

−a

∫ kmax

kmin

1
k

ej ka
z′ (x−y)

sin
[

k
z′Xo(x− y)

]
π(x− y)

dk0u f n(y) dy (31)

The Fourier transform of the kernel in Equation (31) is given by
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K(u) =



2π
z′ ln (kmax/kmin) |u− kmin

a
z′ | ≤ kmin

X0
z′

2π
z′ ln (kmax

X0+a
z′ /u) kmin

X0+a
z′ ≤ u ≤ kmax

X0+a
z′

2π
z′ ln (kmax

X0−a
z′ /(−u)) −kmax

X0−a
z′ ≤ u ≤ −kmin

X0−a
z′

0 elsewhere.

(32)

Suppose discretising the frequency interval [kmin, kmax] as before in M intervals with a step ∆.
Accordingly, the two spatial frequency intervals [kmin

X0+a
z′ , kmax

X0+a
z′ ] and [−kmax

X0−a
z′ ,−kmin

X0−a
z′ ] are

divided into M intervals with steps ∆ X0+a
z′ and ∆ X0−a

z′ , respectively. We can construct the two auxiliary

operators Ã†
fA f and Â†

fA f by adopting the same strategy as in the previous section. Hence,

Ã†
fA f =

2π

z′
ln (kmax/kmin)PIBΩ1PI +

M

∑
m=1

K̃m(PIBΩ̃m
PI + PIBΩ̂m

PI) (33)

and

Â†
fA f =

2π

z′
ln (kmax/kmin)PIBΩ1PI +

M

∑
m=1

K̂m(PIBΩ̃m
PI + PIBΩ̂m

PI) (34)

Now, by exploiting the same approach as before, the eigenvalues of Ã†
fA f and Â†

fA f can be

foreseen and used to upper and lower bound those of A†
fA f . The way to achieve that is summarised

in the following statement.
Statement 2:
Let N(τth, c) = ](λn[A†

fA f ]) ≥ τth be the number of eigenvalues of A†
fA f that are greater than τth. For

example, N0 = [2kmin
aX0
z′π ]. If Xo > a, c̃, ĉ� 1, and hence c = kmax

aX0
z′ � 1, then it approximately holds that

N(τth, c) ≤ N0 + (m− 1)[2(c̃ + ĉ)/π] K̃m < τth and m ∈ {2, . . . , M}
N(τth, c) ≥ N0 + m[2(c̃ + ĉ)/π] τth < K̂m and m 6= M

N(τth, c) ' [2c/π] K̃M > τth

. (35)

Of course, the statement rephrases with σn[A†
fA f ] and

√
τth in place of λn[A†

fA f ] and τth for the
singular value decomposition of the multifrequency scattering operator.

In Figure 8, we show the singular value behaviour of A f and its bounds. By setting a noise
threshold

√
τth equal to 0.34, the number of singular values above this threshold is 24 while the upper

and lower bounds estimated with the statement in Equation (35) are 32 and 21, respectively. According
to the analysis above, if Xo > a, it can be concluded that, to increase the number of significant singular
values, the highest adopted frequency should be increased as well. As for view diversity, the use of
more frequencies shapes the singular value behaviour by increasing the corresponding numerical
values and making the NDF dependent on the tolerable level of noise.
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Figure 8. Singular values behaviour of A f for the case of continuous frequencies for M = 3. The other
parameters are set as in Figure 7. Yellow and red lines represent the square root of the eigenvalues of
Ã†

fA f and Â†
fA f , respectively.

4. Conclusions

In this paper, the role played by the view and frequency diversities on the singular value
decomposition of the scattering operator has been analysed. The analysis has been performed by
assuming that the observation domain is located in Fresnel zone. The interest in the singular values is
due to their link with the metrics (NDF, information content, resolution, etc.) commonly used to assess
the performance in linear inverse scattering problems.

Both the cases of discrete and continuously varying incidence directions and frequencies have
been addressed. For the discrete cases, the results shown in Section 2 allow obtaining the singular
values in closed form and relating their behaviour to the scattering parameters. Instead, for continuous
cases, this is not possible. However, a procedure allowing to obtain upper and lower bounds on the
singular values behaviour has been introduced. Accordingly, for both diversities, two statements
linking the singular values behaviour and the scattering parameters are provided. These can be
exploited within imaging applications to properly set the geometrical parameters in order to reach the
desired performances.

Under the assumption Xo > a, the obtained statements are the same as derived in [4] with the only
difference being that the role of variable umax = sinθmax (with θmax the observation angle) is replaced
by X0

z′ = tanθmax. Accordingly, similar conclusions about the role of the illumination diversities can
be deduced. In fact, to achieve the maximum number of NDF, two extremal views and the highest
adopted frequency are sufficient. By adding views or frequency, we only introduce a shaping on the
singular values that makes the NDF noise-dependent. Thus, we can conclude that multiple views and
frequencies are redundant. However, adding more views or frequency leads to higher singular values
and, hence, to a more stable inversion procedure.

The scenario considered is quite simple but the procedure is general and applicable to more
complex scenarios, such as a multi-dimensional case. However, the presented results have been
obtained for a specific configuration.
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