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Abstract: We consider the problem of joint power allocation (JPA) in a coordinated multi-point (CoMP)
joint diversity transmission (JDT) network with a total coordination point power (TCPP) constraint,
aimed at maximizing the ergodic cooperative capacity (ECC) in Rayleigh fading channels. In this
paper, we first extend the JPA problem in the coordinated two-point (Co2P) JDT networkto the case of
a non-unity TCPP constraint. Furthermore, we introduce more accurate log-quadratic approximated
(LQA) expressions to obtain the coordinated transmission point (CTP) powers. Next, we extend our
study to a coordinated three-point (Co3P) JDT network. Given the mean branch gain-to-noise ratios,
we first obtain a log-linear approximated (LLA) expression for obtaining the optimum power of the
third CTP (i.e., the worst quality-providing CTP). After obtaining the third-CTP power, we obtain
the CTP powers of two better quality-providing CTPs by invoking the LLA CTP power expressions
for Co2P JDT power allocation, under the remaining power given by the TCPP minus the third-CTP
power. The numerical results demonstrate that the LQA and LLA CTP power expressions for Co2P
JDT and the LLA CTP power expressions for Co3P JDT are very efficient in terms of the simplicity for
JPA and CoMP set selection, as well as the resulting ECC.

Keywords: CoMP network; joint diversity transmission; joint power allocation; total coordination
point power constraint; ergodic cooperative capacity

1. Introduction

In a cellular network, the cell-edge user throughput is mainly limited owing to the path loss by
the long distance from the serving base station and the inter-cell interference from neighboring base
stations. Coordinated multi-point (CoMP) transmission technology can improve the signal quality
and/or throughput at a cell-edge region and can also widen the coverage of high throughput via
cooperative transmission and/or coordinated inter-cell interference control by multiple coordinated
transmission points (CTPs) [1,2]. CoMP has been included not only as a promising technology for
fourth-generation (4G) mobile communication standards, but also it is expected to suit even better
in fifth-generation networks, whose novel architectures will accommodate extremely larger amount
of data traffic that can be currently circulated in 4G networks [1]. In particular, CoMP joint diversity
transmission (JDT) can significantly improve the signal quality because two or more CTPs coordinately
transmit signals so as to be meaningfully exploited at a user equipment (UE) receiver, at the expense of
a radio-resource deficiency [2].

Many studies on CoMP transmission technology have been conducted [3–6]. For CoMP
transmission technology, expanded researches have been conducted recently such as the joint
transmission techniques with adaptive modulation [3], spectrum resource allocation method for
CoMP transmissions [4], as well as fundamental researches have been conducted steadily such as the
coordinated beamforming techniques [5], the determination techniques of a CTP set [6]. In the context
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of wireless green communication [7], the total coordination point power (TCPP) over all CTPs in the
cooperating set for a targeted UE could be constrained to a certain level [8–10]. Hence, the CTPs should
share the TCPP by distributing it efficiently. However, in a CoMP configuration where all the CTPs in
the cooperating set for the targeted UE share the TCPP, JDT may not be effective if the received signal
level from one CTP is extremely lower or higher than those from the other CTPs. Therefore, a simple
and efficient process to determine the number of CTPs participating in JDT and subsequently, the
power levels to be allocated over the CTPs in the resulting JDT cooperating set should be developed.

In [11], an optimum joint power allocation (JPA) scheme to maximize the instantaneous capacity
in an orthogonal frequency division multiple access CoMP JDT network with individual CTP power
constraints was introduced. However, this scheme may be used only in a slowly varying fading
environment because the instantaneous channel state information may not be exchanged quickly
enough among the CTPs. In [8], the authors dealt with the problem of JPA in a coordinated two-point
(Co2P) JDT network with a unity TCPP constraint, aimed at maximizing the ergodic cooperative
capacity (ECC) in Rayleigh fading channels. However, the approach in [8] cannot be used in a CoMP
configuration when two CTPs in the cooperating set share a non-unity TCPP and/or in a CoMP
configuration where more than two CTPs participate in JDT under a TCPP constraint.

In this paper, we consider the problem of JPA in a CoMP JDT network with a TCPP constraint, to
maximize the ECC in Rayleigh fading channels. We first extend the JDT power allocation problem
in the Co2P JDT network with the unity TCPP constraint in [8] to the case of a non-unity TCPP
constraint. Furthermore, we introduce more accurate log-quadratic approximated (LQA) and log-linear
approximated (LLA) CTP power expressions with respect to the mean branch gain-to-noise ratios
(GNRs). Next, we extend our study to a coordinated three-point (Co3P) JDT network with the
relationship that yields the optimum three CTP powers as a function of the mean branch GNRs.
Since the relationship contains several complicated operations such as exponentials, exponential
integrals and their products, we derive an LLA expression to obtain the optimum power for the third
CTP (i.e., the worst quality-providing CTP, hereafter referred to as CTP3 in the Co3P JDT network)
with respect to the mean CTP3-UE branch GNR. This LLA expression connects the CTP3 powers
corresponding to two different mean CTP3-UE branch GNR values: the mean CTP3-UE branch GNR
value dividing the Co3P JDT mode and the Co2P JDT mode by the two better quality-providing CTPs,
and the settled point where the mean CTP3-UE branch GNR is equal to the mean median-CTP (i.e., the
median quality-providing CTP, hereafter referred to as CTP2 in the Co3P JDT network) branch GNR
(i.e., the mean CTP2-UE branch GNR). After obtaining the approximate third-CTP power, we obtain
the CTP powers of the two better quality-providing CTPs (i.e., CTP1 and CTP2, with CTP1 denoting
the best quality-providing CTP) by using the LLA CTP power expressions used for Co2P JDT power
allocation, under the remaining power given by the TCPP minus the third-CTP power. Finally, we
perform numerical analyses to demonstrate the ECC efficiencies when the LQA and LLA CTP power
expressions for Co2P JDT and the LLA CTP power expressions for Co3P JDT are used.

2. CoMP JDT Network

We consider a CoMP JDT network where two or more CTPs in a JDT cooperating set, each CTP
equipped with a single antenna coordinately transmit signals to a targeted UE equipped with a single
antenna, as shown in Figure 1a,b. We assume that the CTPs in the cooperating set share data and mean
channel quality indicators for the target UE via reliable backhaul connections. In addition, the CTPs
in the cooperating set share a TCPP PS such as PS = P1 + P2 for Co2P JDT and PS = P1 + P2 + P3 for
Co3P JDT, where P1, P2, and P3 denote the respective CTP powers allocated to CTP1, CTP2, and CTP3.
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(a) (b)

Figure 1. CoMP JDT networks: (a) Co2P case (b) Co3P case.

The respective instantaneous diversity-combined signal-to-noise ratios at the UE receiver, for Co2P
JDT and Co3P JDT are given by [12]

γco2 = P1γ1 + P2γ2, (1)

γco3 = P1γ1 + P2γ2 + P3γ3, (2)

where γ1, γ2, and γ3 denote the CTP1-UE, CTP2-UE, and CTP3-UE branch GNRs, respectively.
In Rayleigh fading channels, γ1, γ2, and γ3 are independent exponential random variables with the
respective means of γ̄1, γ̄2, and γ̄3.

3. Joint Power Allocation for Co2P JDT under a Non-Unity TCPP

We formulate the problem of JPA for Co2P JDT and Co3P JDT under a TCPP constraint, to
maximize the ECC in Rayleigh fading channels. This problem can be expressed as

max
Pi

C̄jdt, (3a)

s.t.
M

∑
i=1

Pi ≤ PS, (3b)

0 ≤ Pi ≤ PS, i = 1, · · · , M, (3c)

where C̄jdt denotes the ECC achieved by the CoMP JDT network; and M denotes the number
of CTPs in the JDT cooperating set. It should be noted that C̄jdt is the single-branch ergodic
capacity in the case of non-cooperative transmission (i.e., non-JDT mode) and the ECC in the case
of cooperative transmission (i.e., CoMP JDT mode). In Rayleigh fading channels, the instantaneous
diversity-combined signal-to-noise ratio in Equation (1) is the sum of two independent exponential
random variables P1γ1 and P2γ2. Hence, the probability density function by the Co2P JDT network
can be expressed as

fΓco2 (γco2) =


e
− γco2

P1 γ̄1 −e
− γco2

P2 γ̄2
P1γ̄1−P2γ̄2

, if P1γ̄1 6= P2γ̄2,
γco2
P2

1 γ̄2
1
e−

γco2
P1 γ̄1 , if P1γ̄1 = P2γ̄2,

(4)

Then, the ECC achieved by the Co2P JDT network is given by Equation (5) [8]

C2,jdt =


log2(e)

P1γ̄1−P2γ̄2

{
P1γ̄1e

1
P1 γ̄1 E1

(
1

P1γ̄1

)
− P2γ̄2e

1
P2 γ̄2 E1

(
1

P2γ̄2

)}
, if P1γ̄1 6= P2γ̄2,

log2(e)
{

1−
(

1
P1γ̄1
− 1
)

e
1

P1 γ̄1 E1

(
1

P1γ̄1

)}
, if P1γ̄1 = P2γ̄2,

(5)

where E1(·) denotes the first-order exponential integral function [13].
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To calculate the optimum CTP powers to maximize the ECC, substituting P1 = PS − P2 into the
top of Equation (5), differentiating the resulting ECC expression with respect to P2, and setting the
derivative to zero, we obtain the following expression:

log2 (e)(
PS − P∗2

)
γ̄1 − P∗2 γ̄2

{(
γ̄2 −

1
P∗2

)
e

1
P∗2 γ̄2 E1

(
1

P∗2 γ̄2

)
+

(
γ̄1 −

1
PS − P∗2

)
e

1

(PS−P∗2 )γ̄1 E1

(
1(

PS − P∗2
)

γ̄1

)
+ γ̄1 + γ̄2

}
(6)

+
(γ̄1 + γ̄2) log2 (e){(

PS − P∗2
)

γ̄1 − P∗2 γ̄2
}2

{
P∗2 γ̄2e

1
P∗2 γ̄2 E1

(
1

P∗2 γ̄2

)

− (PS − P∗2 ) γ̄1e
1

(PS−P∗2 )γ̄1 E1

(
1(

PS − P∗2
)

γ̄1

)}
= 0.

Here, P∗1 and P∗2 denote the respective optimum CTP powers to be allocated to CTP1 and CTP2
for Co2P JDT. Because Equation (6) contains several complicated operations such as exponentials,
exponential integrals, and their products, we can solve Equation (6) by only using numerical techniques.
Thus, the optimum CTP powers for Co2P JDT might not be used in practice owing to the high
complexity of implementation.

At this point, we introduce a much simpler CTP power expression for use in practice. The solid
lines in Figure 2a–c show P∗2 versus γ̄2[dB], with γ̄1[dB] as a parameter, when PS = 2, 4, and 8 W,
respectively. In this study, we obtained the solid lines in Figure 2a–c from Equation (6) by using the
bisection method [14]. From these solid lines, we see that in the condition γ̄1 ≥ γ̄2, P∗2 is almost
quadratic with respect to γ̄2[dB] over the corresponding Co2P JDT region (i.e., the region from the
boundary point dividing the Co2P JDT mode and the non-JDT mode, γ̄bd

2 to the balanced point of
P∗2 = P∗1 at γ̄2 = γ̄1). Therefore, we use an LQA CTP power expression for P∗2 versus γ̄2[dB], which
is a quadratic line connecting the respective optimum CTP2 powers at the boundary and balanced
points, while satisfying the slope at the balanced point.

(a) (b) (c)

Figure 2. P∗2 versus γ̄2[dB], with γ̄1[dB] as a parameter: (a) PS = 2 W, (b) PS = 4 W, (c) PS = 8 W.
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To derive the LQA CTP power expression in the condition γ̄1 ≥ γ̄2, we first derive the boundary
point. Given γ̄1, we obtain Equation (7) after substituting the boundary point condition (i.e., P∗2 = 0)
into Equation (6).

− 1
PSγ̄1

{
lim

P∗2→0
γ̄bd

2 e
1

P∗2 γ̄bd
2 E1

(
1

P∗2 γ̄bd
2

)
− lim

P∗2→0

1
P∗2

e
1

P∗2 γ̄bd
2 E1

(
1

P∗2 γ̄bd
2

)

+

(
γ̄1 −

1
PS

)
e

1
PS γ̄1 E1

(
1

PSγ̄1

)
+ γ̄bd

2 + γ̄1

}
(7)

+
γ̄bd

2 + γ̄1

(PSγ̄1)
2

{
PSγ̄1e

1
PS γ̄1 E1

(
1

PSγ̄1

)
− lim

P∗2→0
P∗2 γ̄bd

2 e
1

P∗2 γ̄bd
2 E1

(
1

P∗2 γ̄bd
2

)}
= 0.

Invoking the L’Hopital’s rule, we obtain the following three limiting terms as

lim
P∗2→0

γ̄bd
2 e

1
P∗2 γ̄bd

2 E1

(
1

P∗2 γ̄bd
2

)
= 0, (8a)

lim
P∗2→0

1
P∗2

e
1

P∗2 γ̄bd
2 E1

(
1

P∗2 γ̄bd
2

)
= γ̄bd

2 , (8b)

lim
P∗2→0

P∗2 γ̄bd
2 e

1
P∗2 γ̄bd

2 E1

(
1

P∗2 γ̄bd
2

)
= 0. (8c)

Substituting the three limiting terms in Equation (8) into Equation (7) and rearranging the terms,
we obtain the boundary point as

γ̄bd
2 =

γ̄1

e
1

PS γ̄1 E1

(
1

PSγ̄1

) − 1
PS

. (9)

Next, we derive the slope of P∗2 with respect to γ̄2[dB] at the balanced point. For ease of derivation,
we set α2 = ln(γ̄2). By differentiating Equation (6) with respect to α2, after some manipulations, we
obtain Equation (10).

dP∗2
dα2

=
NT′

DT′
, (10)

with

NT′ =

{
PSeα2 γ̄1 + eα2 − 1

P∗2
− PSγ̄1

P∗2
+

PSγ̄1

P∗22 eα2
− γ̄1

P∗2 eα2

}
e

1
P∗2 eα2 E1

(
1

P∗2 eα2

)

+

(
P∗2 eα2

PS − P∗2
− PSeα2 γ̄1

)
e

1

(PS−P∗2 )γ̄1 E1

(
1(

PS − P∗2
)

γ̄1

)

−{P∗2 eα2 − (PS − P∗2 ) γ̄1}
(

2eα2 − 1
P∗2

)
,

DT′ = {P∗2 eα2 − (PS − P∗2 ) γ̄1}
{

1
P∗32 eα2

e
1

P∗2 eα2 E1

(
1

P∗2 eα2

)

− 1(
PS − P∗2

)3
γ̄1

e
1

(PS−P∗2 )γ̄1 E1

(
1(

PS − P∗2
)

γ̄1

)

+
1

P∗2

(
eα2 − 1

P∗2

)
− 1

PS − P∗2

(
γ̄1 −

1
PS − P∗2

)}
.
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However, we cannot evaluate the slope dP∗2 /dα2|γ̄2=γ̄1,P∗2 =0.5PS because both the numerator and
denominator on the right-hand side of Equation (10) are zero at the balanced point. According to
the L’Hopital’s rule, by taking the respective second-order derivatives of both the numerator and
denominator with respect to α2 and substituting the balanced point condition such as P∗2 = P∗1 = 0.5PS
at γ̄2 = γ̄1 into their respective second derivatives, we obtain Equation (11).

lim
γ̄2→γ̄1,P∗2→0.5PS

dP∗2
dα2

= lim
γ̄2→γ̄1,P∗2→0.5PS

d2NT′/dα2
2

d2DT′/dα22 =
Nβ′

Dβ′
, (11)

with

Nβ′ =

{(
dP∗2
dα2

)2 64
P3

S
+

(
dP∗2
dα2

)2 64
P4

S γ̄1
+

dP∗2
dα2

16
P2

S
+

dP∗2
dα2

32
P3

S γ̄1
+

4
P2

S γ̄1

}

·e
2

PS γ̄1 E1

(
2

PSγ̄1

)
−
(

dP∗2
dα2

)2 16γ̄1

P2
S
−
(

dP∗2
dα2

)2 32
P3

S

−dP∗2
dα2

16
P2

S
− dP∗2

dα2
4γ̄2

1 − PSγ̄2
1 + γ̄1 −

2
PS

,

Dβ′ = −
{(

dP∗2
dα2

)2 384
P4

S
+

(
dP∗2
dα2

)2 256
P5

S γ̄1
+

dP∗2
dα2

128
P3

S
+

dP∗2
dα2

128
P4

S γ̄1
+

8
P2

S
+

16
P3

S γ̄1

}

·e
2

PS γ̄1 E1

(
2

PSγ̄1

)
+

(
dP∗2
dα2

)2 128
P4

S
+

(
dP∗2
dα2

)2 128γ̄1

P3
S
−
(

dP∗2
dα2

)2 32γ̄2
1

P2
S

+
dP∗2
dα2

64
P3

S
+

dP∗2
dα2

32γ̄1

P2
S

+
8

P2
S
+ 2γ̄2

1.

From Equation (11) and by defining β′ = dP∗2 /dα2|γ̄2=γ̄1,P∗2 =0.5PS , we obtain Equation (12) of the
cubic polynomial of β′ after factorization.

− 1
γ̄1

(
4β′

PS
+ 1
)2
[

β′
{(

24γ̄1

P2
S

+
16
P3

S

)
e

2
PS γ̄1 E1

(
2

PSγ̄1

)
+ 2γ̄3

1 −
8γ̄2

1
PS
− 8γ̄1

P2
S

}

+
4

P2
S

e
2

PS γ̄1 E1

(
2

PSγ̄1

)
− PSγ̄3

1 −
2γ̄1

PS
+ γ̄2

1

]
= 0. (12)

From the solid lines in Figure 2a–c, we note that β′ is a positive real value. Therefore, the valid
slope of P∗2 with respect to α2 at the balanced point, β′ = β′ (γ̄1) is

β′ (γ̄1) =
− 4

P2
S

e
2

PS γ̄1 E1

(
2

PSγ̄1

)
+ PSγ̄3

1 +
2γ̄1
PS
− γ̄2

1(
24γ̄1

P2
S

+ 16
P3

S

)
e

2
PS γ̄1 E1

(
2

PSγ̄1

)
+ 2γ̄3

1 −
8γ̄2

1
PS
− 8γ̄1

P2
S

. (13)

The slope of P∗2 with respect to γ̄2[dB] at the balanced point, β̂ (γ̄1) is given by β̂ (γ̄1) =

β′ (γ̄1) ln 10/10 = dP∗2 /dγ̄2[dB]|γ̄2=γ̄1,P∗2 =0.5PS .
To obtain the LQA CTP2 power expression, we express the quadratic equation for P∗2 versus

γ̄2[dB] as Pq∗
2 = Aγ̄2[dB]2 + Bγ̄2[dB] + C. This quadratic equation must meet the following three

conditions: Pq∗
2 = 0 at γ̄2 = γ̄bd

2 (i.e., the boundary point condition), Pq∗
2 = 0.5PS at γ̄2 = γ̄1 (i.e., the

balanced point condition), and the slope at the balanced point β̂ (γ̄1). Using these three conditions, we
obtain three simultaneous equations with respect to A, B, and C:

Aγ̄bd
2 [dB]2 + Bγ̄bd

2 [dB] + C = 0, (14a)
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Aγ̄1[dB]2 + Bγ̄1[dB] + C = 0.5PS, (14b)

2Aγ̄1[dB] + B = β̂ (γ̄1) . (14c)

Solving these three simultaneous equations, we obtain Equation (15) of the LQA CTP power
expression for P∗2 versus γ̄2[dB].

Pq∗
2 = Aγ̄2[dB]2 + Bγ̄2[dB] + C

=

{
− β̂ (γ̄1)

γ̄bd
2 [dB]− γ̄1[dB]

− 0.5PS(
γ̄bd

2 [dB]− γ̄1[dB]
)2

}
γ̄2[dB]2

+

{
β̂ (γ̄1) +

2β̂ (γ̄1) γ̄1[dB]
γ̄bd

2 [dB]− γ̄1[dB]
+

PSγ̄1[dB](
γ̄bd

2 [dB]− γ̄1[dB]
)2

}
γ̄2[dB] (15)

+

{
β̂ (γ̄1)

γ̄bd
2 [dB]− γ̄1[dB]

+
0.5PS(

γ̄bd
2 [dB]− γ̄1[dB]

)2

}
γ̄bd

2 [dB]2

−
{

β̂ (γ̄1) +
2β̂ (γ̄1) γ̄1[dB]

γ̄bd
2 [dB]− γ̄1[dB]

+
PSγ̄1[dB](

γ̄bd
2 [dB]− γ̄1[dB]

)2

}
γ̄bd

2 [dB].

In the condition γ̄1 ≥ γ̄2, we calculate the CTP2 power to be actually allocated to CTP2, P̂∗2 by
using the LQA CTP2 power expression of Equation (15) as

P̂∗2 =

{
0, if Pq∗

2 < 0,
Pq∗

2 , if Pq∗
2 ≥ 0.

(16)

Then, we can obtain the CTP1 power to be actually allocated to CTP1, P̂∗1 as P̂∗1 = PS − P̂∗2 .
Furthermore, using β′ (γ̄1), we obtain the LLA CTP2 power expression similar to Equation (12) of

Ref. [8] as
Pl∗

2 = β′ (γ̄1) (ln γ̄2 − ln γ̄1) + 0.5PS. (17)

In the condition γ̄1 ≥ γ̄2, we calculate the CTP2 power to be actually allocated to CTP2, P̂∗2 by
using the LLA CTP2 power expressions of (17) as

P̂∗2 =

{
0, if Pl∗

2 < 0,
Pl∗

2 , if Pl∗
2 ≥ 0.

(18)

Then, we again can obtain the CTP1 power to be actually allocated to CTP1, P̂∗1 as P̂∗1 = PS − P̂∗2 .
In conclusion, we can decide whether Co2P JDT is performed or not by using Equation (16)

or Equation (18). In the condition γ̄1 ≥ γ̄2, Co2P JDT is performed only if P̂∗2 > 0; single-point
transmission by CTP1 is performed if P̂∗2 = 0.

In the condition γ̄1 < γ̄2, we can obtain Equation (19) of the LQA CTP power expression for
P∗1 versus γ̄1[dB] instead of P∗2 versus γ̄2[dB] by exchanging the roles of CTP1 and CTP2, that is,
Pq∗

2 → Pq∗
1 , γ̄2[dB]→ γ̄1[dB], γ̄1[dB]→ γ̄2[dB], γ̄bd

2 [dB]→ γ̄bd
1 [dB], and β̂ (γ̄1)→ β̂ (γ̄2) in (15).



Electronics 2019, 8, 101 8 of 20

Pq∗
1 =

{
− β̂ (γ̄2)

γ̄bd
1 [dB]− γ̄2[dB]

− 0.5PS(
γ̄bd

1 [dB]− γ̄2[dB]
)2

}
γ̄1[dB]2

+

{
β̂ (γ̄2) +

2β̂ (γ̄2) γ̄2[dB]
γ̄bd

1 [dB]− γ̄2[dB]
+

PSγ̄2[dB](
γ̄bd

1 [dB]− γ̄2[dB]
)2

}
γ̄1[dB] (19)

+

{
β̂ (γ̄2)

γ̄bd
1 [dB]− γ̄2[dB]

+
0.5PS(

γ̄bd
1 [dB]− γ̄2[dB]

)2

}
γ̄bd

1 [dB]2

−
{

β̂ (γ̄2) +
2β̂ (γ̄2) γ̄2[dB]

γ̄bd
1 [dB]− γ̄2[dB]

+
PSγ̄2[dB](

γ̄bd
1 [dB]− γ̄2[dB]

)2

}
γ̄bd

1 [dB].

We also obtain the LLA CTP power expression for P∗1 versus γ̄1[dB] as follows:

Pl∗
1 = β′ (γ̄2) (ln γ̄1 − ln γ̄2) + 0.5PS. (20)

In Figure 2a–c, the dotted and dashed lines, respectively, indicate the CTP2 powers when the LQA
and LLA CTP power expressions are used. From Figure 2a–c, we see that the CTP2 power using the
LQA CTP power expression is closer to the corresponding optimum CTP power over a wider Co2P
JDT region around the balanced point than that using the LLA CTP power expression.

4. Joint Power Allocation for Co3P JDT

In this section, we extend our study to the Co3P JDT network with a non-unity TCPP constraint.
In Rayleigh fading channels, the ECC achieved by the Co3P JDT network is given by Equation (21) [15].

C̄3,jdt =



log2 (e)
3
∑

i=1

{
3

∏
j=1,j 6=i

(
Pi γ̄i

Pi γ̄i−Pjγ̄j

)
e

1
Pi γ̄i E1

(
1

Pi γ̄i

)}
, if P1γ̄1 6= P2γ̄2 6= P3γ̄3,

P1γ̄1log2(e)
(P3γ̄3−P1γ̄1)

2

{
P1γ̄1e

1
P1 γ̄1 E1

(
1

P1γ̄1

)
− P3γ̄3e

1
P3 γ̄3 E1

(
1

P3γ̄3

)}
+

P3γ̄3log2(e)
P3γ̄3−P1γ̄1

{
1− 1

P3γ̄3
e

1
P3 γ̄3 E1

(
1

P3γ̄3

)
+ e

1
P3 γ̄3 E1

(
1

P3γ̄3

)}
, if P1γ̄1 6= P2γ̄2 = P3γ̄3,

log2(e)
2

{
3− 1

P1γ̄1
+

(
1

P2
1 γ̄2

1
− 2

P1γ̄1
+ 2
)

e
1

P1 γ̄1 E1

(
1

P1γ̄1

)}
, if P1γ̄1 = P2γ̄2 = P3γ̄3.

(21)

We can rewrite the top of Equation (21) as

C̄3,jdt =
log2 (e) P2

1 γ̄2
1

(P1γ̄1 − P2γ̄2) (P1γ̄1 − P3γ̄3)
e

1
P1 γ̄1 E1

(
1

P1γ̄1

)
+

log2 (e) P2
2 γ̄2

2
(P2γ̄2 − P1γ̄1) (P2γ̄2 − P3γ̄3)

e
1

P2 γ̄2 E1

(
1

P2γ̄2

)
(22)

+
log2 (e) P2

3 γ̄2
3

(P3γ̄3 − P1γ̄1) (P3γ̄3 − P2γ̄2)
e

1
P3 γ̄3 E1

(
1

P3γ̄3

)
.

To calculate the optimum CTP powers that maximize the ECC, differentiating Equation (22) with
respect to P∗3 and setting the derivative to zero, we obtain Equation (23).
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{
P∗21
′
γ̄1 −

P∗21 γ̄1
(

P∗1
′γ̄1 − P∗2

′γ̄2
)

P∗1 γ̄1 − P∗2 γ̄2
−

P∗21 γ̄1
(

P∗1
′γ̄1 − γ̄3

)
P∗1 γ̄1 − P∗3 γ̄3

− P∗1
′
}

·
log2 (e) γ̄1(

P∗1 γ̄1 − P∗2 γ̄2
) (

P∗1 γ̄1 − P∗3 γ̄3
) e

1
P∗1 γ̄1 E1

(
1

P∗1 γ̄1

)
+

{
P∗22
′
γ̄2 −

P∗22 γ̄2
(

P∗2
′γ̄2 − P∗1

′γ̄1
)

P∗2 γ̄2 − P̃∗1 γ̄1
−

P∗22 γ̄2
(

P∗2
′γ̄2 − γ̄3

)
P∗2 γ̄2 − P∗3 γ̄3

− P2
′
}

·
log2 (e) γ̄2(

P∗2 γ̄2 − P∗1 γ̄1
) (

P∗2 γ̄2 − P∗3 γ̄3
) e

1
P∗2 γ̄2 E1

(
1

P∗2 γ̄2

)
+

{
2P∗3 γ̄3 −

P∗23 γ̄3
(
γ̄3 − P̃∗1

′γ̄1
)

P∗3 γ̄3 − P̃∗1 γ̄1
−

P2
3 γ̄3

(
γ̄3 − P∗2

′γ̄2
)

P∗3 γ̄3 − P∗2 γ̄2
− 1

}
(23)

·
log2 (e) γ̄3(

P∗3 γ̄3 − P∗1 γ̄1
) (

P∗3 γ̄3 − P∗2 γ̄2
) e

1
P∗3 γ̄3 E1

(
1

P∗3 γ̄3

)
+

log2 (e) P∗1 P∗1
′γ̄2

1(
P∗1 γ̄1 − P∗2 γ̄2

) (
P∗1 γ̄1 − P∗3 γ̄3

) + log2 (e) P∗2 P∗2
′γ̄2

2(
P∗2 γ̄2 − P∗1 γ̄1

) (
P∗2 γ̄2 − P∗3 γ̄3

)
+

log2 (e) P∗3 γ̄2
3(

P∗3 γ̄3 − P∗1 γ̄1
) (

P∗3 γ̄3 − P∗2 γ̄2
) = 0.

In Equation (23), P∗1 , P∗2 , and P∗3 denote the respective optimum CTP powers to be allocated to
CTP1, CTP2, and CTP3 for Co3P JDT; and (·)′ denotes d(·)/dP∗3 .

At this point, we again introduce a simple CTP power expression for use in practice. The solid
lines in Figure 3a–c show P∗3 versus γ̄3[dB], with γ̄1[dB] and γ̄2[dB] as parameters, in the condition
γ̄1 ≥ γ̄2 ≥ γ̄3. In this study, the solid lines were obtained using Equation (23) by exhaustive search.
From these solid lines, we see that P∗3 is almost linear with respect to γ̄3[dB] over the corresponding
Co3P JDT region. Given γ̄1 and γ̄2, to obtain an approximate value of P∗3 , we use an LLA CTP power
expression connecting the CTP3 powers corresponding to two different values of γ̄3: the boundary
point dividing the Co3P JDT mode and Co2P JDT mode by CTP1 and CTP2, and the settled point of
P∗3 = P∗2 at γ̄3 = γ̄2, in the condition γ̄1 ≥ γ̄2 ≥ γ̄3.

(a) (b) (c)

Figure 3. P∗3 versus γ̄3[dB], with γ̄1[dB] and γ̄2[dB] as parameters: (a) PS = 2 W, (b) PS = 4 W,
(c) PS = 8 W.

If P∗3 has been obtained, we have to calculate the corresponding optimum CTP powers for CTP1
and CTP2, (i.e., P∗1 and P∗2 ), which maximize the ECC. Now, we define two optimum CTP power
functions with respect to P∗3 , with γ̄1, γ̄2, and PS as parameters, such as P̃∗1 (γ̄1, γ̄2, PS − P∗3 ) and
P̃∗2 (γ̄1, γ̄2, PS − P∗3 ). In the following, for the notational convenience, we use simplified notations such
as P̃∗1 for P̃∗1 (γ̄1, γ̄2, PS − P∗3 ) and P̃∗2 for P̃∗2 (γ̄1, γ̄2, PS − P∗3 ). Please note even though P∗3 has been
given, P̃∗1 and P̃∗2 could also be solved from Equation (23) only via exhaustive search. For the simplicity
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of implementation, we can approximate P̃∗1 and P̃∗2 by invoking the LLA CTP power expression for P∗2
versus γ̄2[dB] in Equation (17), for Co2P JDT in the condition γ̄1 ≥ γ̄2 as

P̃∗1 ≈ β̃ (γ̄1) (ln γ̄1 − ln γ̄2) + 0.5 (PS − P∗3 ) , (24a)

P̃∗2 ≈ β̃ (γ̄1) (ln γ̄2 − ln γ̄1) + 0.5 (PS − P∗3 ) , (24b)

where β̃ (γ̄1) at γ̄2 = γ̄1 is obtained by substituting the remaining power PS − P∗3 instead of PS into
Equation (13) as Equation (25).

β̃(γ̄1)=

− 4

(PS−P∗3 )
2 e

2
(PS−P∗3 )γ̄1 E1

 2
(PS−P∗3 )γ̄1

+(PS−P∗3 )γ̄3
1+

2γ̄2
PS−P∗1

−γ̄2
1

 24γ̄1

(PS−P∗3 )
2 + 16

(PS−P∗3 )
3

e

2
(PS−P∗3 )γ̄1 E1

 2
(PS−P∗3 )γ̄1

+2γ̄3
1−

8γ̄2
1

PS−P∗3
− 8γ̄1

(PS−P∗3 )
2

. (25)

Now, we first obtain the boundary point dividing the Co3P JDT mode and Co2P JDT mode by
CTP1 and CTP2. At the boundary condition of P∗3 =0, β̃ (γ̄1) can be rewritten as

β̃ (γ̄1) =
− 4

P2
S

e
2

PS γ̄1 E1

(
2

PSγ̄1

)
+ PSγ̄3

1 +
2γ̄1
PS
− γ̄2

1(
24γ̄1

P2
S

+ 16
P3

S

)
e

2
PS γ̄1 E1

(
2

PSγ̄1

)
+ 2γ̄3

1 −
8γ̄2

1
PS
− 8γ̄1

P2
S

. (26)

Then, from (24), we can obtain
P̃∗′1 ≈ −0.5, (27a)

P̃∗′2 ≈ −0.5, (27b)

P̃∗21 ≈ β̃(γ̄1)
2(ln γ̄1 − ln γ̄2)

2 + 0.25PS
2

+β̃ (γ̄1) (ln γ̄1 − ln γ̄2) PS, (27c)

P̃∗22 ≈ β̃(γ̄1)
2(ln γ̄2 − ln γ̄1)

2 + 0.25PS
2

+β̃ (γ̄1) (ln γ̄2 − ln γ̄1) PS, (27d)

P̃∗2′1 ≈ −0.5PS − β̃ (γ̄1) (ln γ̄1 − ln γ̄2) , (27e)

P̃∗2′2 ≈ −0.5PS − β̃ (γ̄1) (ln γ̄2 − ln γ̄1) . (27f)

Substituting Equation (27) into Equation (23), after some manipulations, we obtain Equation (28)
of the boundary point between the Co3P JDT mode and Co2P JDT mode by CTP1 and CTP2.

γ̄bd,k
3 =

Nbd,k

Dbd,k
, (28)
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with

Nbd,k =
log2 (e) γ̄1{

β̃ (γ̄1) (ln γ̄1 − ln γ̄2) (γ̄1 + γ̄2) + 0.5PS (γ̄1 − γ̄2)
} {

γ̄1 β̃ (γ̄1) (ln γ̄1 − ln γ̄2) + 0.5γ̄1PS
}

·
[

γ̄1
{
−0.5PS − β̃ (γ̄1) (ln γ̄1 − ln γ̄2)

}
−

0.5γ̄1
{

β̃ (γ̄1) (ln γ̄1 − ln γ̄2) + 0.5PS
}2

(γ̄2 − γ̄1)

β̃ (γ̄1) (ln γ̄1 − ln γ̄2) (γ̄1 + γ̄2) + 0.5PS (γ̄1 − γ̄2)

−
γ̄1
{

β̃ (γ̄1) (ln γ̄1 − ln γ̄2) + 0.5PS
}2

(−0.5γ̄1)

γ̄1 β̃ (γ̄1) (ln γ̄1 − ln γ̄2) + 0.5γ̄1PS
+ 0.5

]

·e
1

γ̄1 β̃(γ̄1)(ln γ̄1−ln γ̄2)+0.5γ̄1PS E1

(
1

γ̄1 β̃ (γ̄1) (ln γ̄1 − ln γ̄2) + 0.5γ̄1PS

)
+

log2 (e) γ̄2{
β̃ (γ̄1) (ln γ̄2 − ln γ̄1) (γ̄2 + γ̄1) + 0.5PS (γ̄2 − γ̄1)

} {
γ̄2 β̃ (γ̄1) (ln γ̄2 − ln γ̄1) + 0.5γ̄2PS

}
·
[

γ̄2
{
−0.5PS − β̃ (γ̄1) (ln γ̄2 − ln γ̄1)

}
−

0.5γ̄2
{

β̃ (γ̄1) (ln γ̄2 − ln γ̄1) + 0.5PS
}2

(γ̄1 − γ̄2)

β̃ (γ̄1) (ln γ̄2 − ln γ̄1) (γ̄2 + γ̄1) + 0.5PS (γ̄2 − γ̄1)

−
γ̄2
{

β̃ (γ̄1) (ln γ̄2 − ln γ̄1) + 0.5PS
}2

(−0.5γ̄2)

γ̄2 β̃ (γ̄1) (ln γ̄2 − ln γ̄1) + 0.5γ̄2PS
+ 0.5

]

·e
1

γ̄2 β̃(γ̄1)(ln γ̄2−ln γ̄1)+0.5γ̄2PS E1

(
1

γ̄2 β̃ (γ̄1) (ln γ̄2 − ln γ̄1) + 0.5γ̄2PS

)
+

−0.5log2 (e) γ̄2
1
{

β̃ (γ̄1) (ln γ̄1 − ln γ̄2) + 0.5PS
}{

β̃ (γ̄1) (ln γ̄1 − ln γ̄2) (γ̄1 + γ̄2) + 0.5PS (γ̄1 − γ̄2)
} {

γ̄1 β̃ (γ̄1) (ln γ̄1 − ln γ̄2) + 0.5γ̄1PS
}

+
−0.5log2 (e) γ̄2

2
{

β̃ (γ̄1) (ln γ̄2 − ln γ̄1) + 0.5PS
}{

β̃ (γ̄1) (ln γ̄2 − ln γ̄1) (γ̄2 + γ̄1) + 0.5PS (γ̄2 − γ̄1)
} {

γ̄2 β̃ (γ̄1) (ln γ̄2 − ln γ̄1) + 0.5γ̄2PS
} ,

Dbd,k =
−log2 (e) γ̄2

1
{

β̃ (γ̄1) (ln γ̄1 − ln γ̄2) + 0.5PS
}2{

β̃ (γ̄1) (ln γ̄1 − ln γ̄2) (γ̄1 + γ̄2) + 0.5PS (γ̄1 − γ̄2)
} {

γ̄1 β̃ (γ̄1) (ln γ̄1 − ln γ̄2) + 0.5γ̄1PS
}2

·e
1

γ̄1 β̃(γ̄1)(ln γ̄1−ln γ̄2)+0.5γ̄1PS E1

(
1

γ̄1 β̃ (γ̄1) (ln γ̄1 − ln γ̄2) + 0.5γ̄1PS

)

+
−log2 (e) γ̄2

2
{

β̃ (γ̄1) (ln γ̄2 − ln γ̄1) + 0.5PS
}2{

β̃ (γ̄1) (ln γ̄2 − ln γ̄1) (γ̄2 + γ̄1) + 0.5PS (γ̄2 − γ̄1)
} {

γ̄2 β̃ (γ̄1) (ln γ̄2 − ln γ̄1) + 0.5γ̄2PS
}2

·e
1

γ̄2 β̃(γ̄1)(ln γ̄2−ln γ̄1)+0.5γ̄2PS E1

(
1

γ̄2 β̃ (γ̄1) (ln γ̄2 − ln γ̄1) + 0.5γ̄2PS

)
.

Next, we consider the settled point of P∗3 = P∗2 at γ̄3 = γ̄2 in the condition γ̄1 ≥ γ̄2 (or γ̄1 ≥ γ̄3).
To calculate P∗3 that maximizes the ECC in the condition P∗3 = P∗2 at γ̄3 = γ̄2, differentiating the middle
of Equation (21) with respect to P3 and setting the derivative to zero, we obtain Equation (29).
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{
P∗3 γ̄3 − e

1
P∗3 γ̄3 E1

(
1

P∗3 γ̄3

)
+ P∗3 γ̄3e

1
P∗3 γ̄3 E1

(
1

P∗3 γ̄3

)}
· (−P∗3 γ̄3 + P∗1 γ̄1)

(
γ̄3 −

dP∗1
dP∗3

γ̄1

)
+(P∗3 γ̄3 − P∗1 γ̄1)

2

{
1

P∗23 γ̄3
e

1
P∗3 γ̄3 E1

(
1

P∗3 γ̄3

)
+ γ̄3e

1
P∗3 γ̄3 E1

(
1

P∗3 γ̄3

)
− 1

P∗3
e

1
P∗3 γ̄3 E1

(
1

P∗3 γ̄3

)
− 1

P∗3
+ 2γ̄3

}
−

dP∗1
dP∗3

γ̄1 (P∗3 γ̄3 − P∗1 γ̄1)

·
{

P∗3 γ̄3e
1

P∗3 γ̄3 E1

(
1

P∗3 γ̄3

)
− P∗1 γ̄1e

1
P∗1 γ̄1 E1

(
1

P∗1 γ̄1

)}
(29)

+2P∗1 γ̄1

(
γ̄3 −

dP∗1
dP∗3

γ̄1

){
P∗3 γ̄3e

1
P∗3 γ̄3 E1

(
1

P∗3 γ̄3

)
− P∗1 γ̄1e

1
P∗1 γ̄1 E1

(
1

P∗1 γ̄1

)}
−P∗1 γ̄1 (P∗3 γ̄3 − P∗1 γ̄1)

{
γ̄3e

1
P∗3 γ̄3 E1

(
1

P∗3 γ̄3

)
− 1

P∗3
e

1
P∗3 γ̄3 E1

(
1

P∗3 γ̄3

)
+ γ̄3

−
dP∗1
dP∗3

γ̄1e
1

P∗1 γ̄1 E1

(
1

P∗1 γ̄1

)
+

dP∗1
dP∗3

1
P∗1

e
1

P∗1 γ̄1 E1

(
1

P∗1 γ̄1

)
−

dP∗1
dP∗3

γ̄1

}
= 0.

At the settled point, we obtain dP∗1 /dP∗3 = −2, noting P∗1 = PS − 2P∗3 . However, Equation (29)
contains several complicated operations such as exponentials, exponential integrals, and their products.
We can solve Equation (29) by only using numerical techniques such as the bisection method. The
solid lines in Figure 4a–c show P∗3 versus γ̄3[dB], with γ̄1[dB] as a parameter, when PS = 2, 4, and 8 W,
respectively, in the condition γ̄3 = γ̄2. In this study, we obtained these solid lines from Equation (29)
by using the bisection method. From these solid lines, we see that in the condition γ̄1 ≥ γ̄2 = γ̄3,
P∗3 is almost quadratic with respect to γ̄3[dB] over the Co3P JDT region (i.e., the region from the
non-JDT boundary point dividing the Co3P JDT mode and the non-JDT mode, to the balanced point of
P∗1 = P∗2 = P∗3 at γ̄1 = γ̄2 = γ̄3). Thus, we use the LLA CTP power expression for P∗3 versus γ̄3[dB]
in the condition γ̄3 = γ̄2, which is a linear line based on the linearization at the balanced point of
P∗1 = P∗2 = P∗3 at γ̄1 = γ̄2 = γ̄3. In addition, we can use an LQA CTP power expression for P∗3 versus
γ̄3[dB] in the condition γ̄3 = γ̄2, which is a quadratic line connecting the non-JDT boundary point of
P∗2 = P∗3 = 0 at γ̄3 = γ̄2 and the balanced point of P∗1 = P∗2 = P∗3 at γ̄1 = γ̄2 = γ̄3, while satisfying the
slope at the balanced point.

(a) (b) (c)

Figure 4. P∗3 versus γ̄3 (=γ̄2)[dB], with γ̄1[dB] as a parameter: (a) PS = 2 W, (b) PS = 4 W, (c) PS = 8 W.
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We can approximate the optimum CTP3 power at the settled point of P∗3 = P∗2 at γ̄3 = γ̄2, using
the LLA or LQA CTP power expression. To derive the LQA expression in the condition γ̄1 ≥ γ̄2 = γ̄3,
we first derive the non-JDT boundary point. Given γ̄1, we obtain Equation (30) by substituting P∗3 = 0,
P∗1 = PS − 2P∗3 , and dP∗1 /dP∗3 = −2 into Equation (29).

lim
P∗3→0

1
P∗3

e
1

P∗3 γ̄bd,e
3 E1

(
1

P∗3 γ̄bd,e
3

)
− lim

P∗3→0

PSγ̄1

P∗23 γ̄bd,e
3

e
1

P∗3 γ̄bd,e
3 E1

(
1

P∗3 γ̄bd,e
3

)

+ lim
P∗3→0

2PSP∗3 γ̄1γ̄bd,e2
3

P∗3 γ̄bd,e
3 −

(
PS − 2P∗3

)
γ̄1

e
1

P∗3 γ̄bd,e
3 E1

(
1

P∗3 γ̄bd,e
3

)
+ lim

P∗3→0

2γ̄1

P∗3 γ̄bd,e
3

e
1

P∗3 γ̄bd,e
3 E1

(
1

P∗3 γ̄bd,e
3

)

+ lim
P∗3→0

2PSγ̄1

P∗3
e

1
P∗3 γ̄bd,e

3 E1

(
1

P∗3 γ̄bd,e
3

)
− lim

P∗3→0
2PSγ̄1γ̄bd,e

3 e
1

P∗3 γ̄bd,e
3 E1

(
1

P∗3 γ̄bd,e
3

)
(30)

− lim
P∗3→0

2γ̄1e
1

P∗3 γ̄bd,e
3 E1

(
1

P∗3 γ̄bd,e
3

)
+ lim

P∗3→0

PSγ̄1

P∗3
+ 2γ̄1e

1
PS γ̄1 E1

(
1

PSγ̄1

)
+2PSγ̄1γ̄bd,e

3 e
1

PS γ̄1 E1

(
1

PSγ̄1

)
− 2PSγ̄2

1 − 3PSγ̄1γ̄bd,e
3 − γ̄bd,e

3 − 2γ̄1 = 0.

Invoking the Taylor series expansion at P∗3 = 0 for the third limiting term in Equation (30),
we obtain Equation (31) [16].

lim
P∗3→0

PSγ̄1

P∗23 γ̄bd,e
3

e
1

P∗3 γ̄bd,e
3 E1

(
1

P∗3 γ̄bd,e
3

)
=

− lim
P∗3→0

PSγ̄1

P∗3
+ PSγ̄1γ̄bd,e

3 − lim
P∗3→0

2PSP∗3 γ̄1γ̄bd,e2
3 + lim

P∗3→0
O
(

P∗23

)
. (31)

Applying the limiting terms of Equation (8) and substituting Equation (31) into Equation (30), we
obtain the non-JDT boundary point between the Co3P mode and the non-JDT mode along the settled
points as follows:

γ̄bd,e
3 =

PSγ̄1 − e
1

PS γ̄1 E1

(
1

PSγ̄1

)
PSe

1
PS γ̄1 E1

(
1

PSγ̄1

) . (32)

Next, we derive the slope of P∗3 with respect to γ̄3[dB] at the balanced point. For ease of derivation,
we set α3 = ln (γ̄3). By differentiating Equation (29) with respect to α3, after some manipulations, we
obtain Equation (33).
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(
d

dα3

(
dP∗1
dP∗3

)
P∗3 γ̄1eα3 +

dP∗1
dP∗3

dP∗3
dα3

γ̄1eα3 +
dP∗1
dP∗3

P∗3 γ̄1eα3

− d
dα3

(
dP∗1
dP∗3

)
P∗1 γ̄2

1 −
dP∗1
dP∗3

dP∗1
dα3

γ̄2
1 −

d
dα3

(
dP∗1
dP∗3

)
2P∗23 γ̄1e2α3

−
dP∗1
dP∗3

dP∗3
dα3

4P∗3 γ̄1e2α3 −
dP∗1
dP∗3

4P∗23 γ̄1e2α3 −
dP∗3
dα3

2P∗3 e2α3

−4P∗3 e2α3 +
dP∗3
dα3

4P∗3 e3α3 + 6P∗23 e3α3 + eα3 +
dP∗1
dα3

4γ̄1eα3

+4P∗1 γ̄1eα3 −
dP∗1
dα3

2P∗3 γ̄1e2α3 −
dP∗3
dα3

2P∗1 γ̄1e2α3 − 4P∗1 P∗3 γ̄1e2α3

−
dP∗1
dα3

2γ̄1

eα3
+

2P∗1 γ̄1

eα3
−

dP∗1
dα3

2P∗1 γ̄2
1

P∗23 eα3

+
dP∗3
dα3

2P∗21 γ̄2
1

P∗33 eα3
+

P∗21 γ̄2
1

P∗23 eα3

)
e

1
P∗3 eα3 E1

(
1

P∗3 eα3

)
+

(
dP∗1
dP∗3

P∗3 γ̄1eα3 −
dP∗1
dP∗3

P∗1 γ̄2
1 −

dP∗1
dP∗3

2P∗23 γ̄1e2α3

−2P∗3 e2α3 + 2P∗23 e3α3 + eα3 + 4P∗1 γ̄1eα3

−2P∗1 P∗3 γ̄1e2α3 −
2P∗1 γ̄1

eα3
−

P∗21 γ̄2
1

P∗23 eα3

)

·
{
−
(

dP∗3
dα3

1
P∗23 eα3

+
1

P∗3 eα3

)
e

1
P∗3 eα3 E1

(
1

P∗3 eα3

)
+

(
dP∗3
dα3

1
P∗3

+ 1
)}

+

{
d

dα3

(
dP∗1
dP∗3

)
2P∗1 P∗3 γ̄2

1eα3 +
dP∗1
dP∗3

dP∗1
dα3

2P∗3 γ̄2
1eα3

+
dP∗1
dP∗3

dP∗3
dα3

2P∗1 γ̄2
1eα3 +

dP∗1
dP∗3

2P∗1 P∗3 γ̄2
1eα3 +

d
dα3

(
dP∗1
dP∗3

)
P∗1 γ̄2

1 (33)

+
dP∗1
dP∗3

dP∗1
dα3

γ̄2
1 −

d
dα3

(
dP∗1
dP∗3

)
P∗3 γ̄1eα3 −

dP∗1
dP∗3

dP∗3
dα3

γ̄1eα3

−
dP∗1
dP∗3

P∗3 γ̄1eα3 −
dP∗1
dα3

4P∗1 γ̄2
1eα3 − 2P∗21 γ̄2

1eα3

}
e

1
P∗1 γ̄1 E1

(
1

P∗1 γ̄1

)
+

(
dP∗1
dP∗3

2P∗1 P∗3 γ̄2
1eα3 +

dP∗1
dP∗3

P∗1 γ̄2
1 −

dP∗1
dP∗3

P∗3 γ̄1eα3 − 2P∗21 γ̄2
1eα3

)
·
{
−

dP∗1
dα3

1
P∗21 γ̄1

e
1

P∗1 γ̄1 E1

(
1

P∗1 γ̄1

)
+

dP∗1
dα3

1
P∗1

}

+
d

dα3

(
dP∗1
dP∗3

)
2P∗1 P∗3 γ̄2

1eα3 +
dP∗1
dP∗3

dP∗1
dα3

2P∗3 γ̄2
1eα3 +

dP∗1
dP∗3

dP∗3
dα3

2P∗1 γ̄2
1eα3

+
dP∗1
dP∗3

2P∗1 P∗3 γ̄2
1eα3 − d

dα3

(
dP∗1
dP∗3

)
P∗21 e3α3 −

dP∗1
dP∗3

dP∗1
dα3

2P∗1 e3α3

−
dP∗1
dP∗3

3P∗21 e3α3 − d
dα3

(
dP∗1
dP∗3

)
P∗23 γ̄1e2α3 −

dP∗1
dP∗3

dP∗3
dα3

2P∗3 γ̄1e2α3

−
dP∗1
dP∗3

2P∗23 γ̄1e2α3 +
dP∗3
dα3

6P∗3 e3α3 + 9P∗23 e3α3 −
dP∗1
dα3

6P∗3 γ̄1e2α3

−
dP∗3
dα3

6P∗1 γ̄1e2α3 − 12P∗1 P∗3 γ̄1e2α3 −
dP∗3
dα3

e2α3 − 2P∗3 e2α3 +
dP∗1
dα3

2γ̄1eα3

+2P∗1 γ̄1eα3 −
dP∗1
dα3

2P∗1 γ̄2
1eα3 − P∗21 γ̄2

1eα3 +
dP∗1
dα3

2P∗1 γ̄2
1

P∗3
−

dP∗3
dα3

P∗21 γ̄2
1

P∗23
= 0.
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Please note P∗1 = PS − 2P∗3 , dP∗1 /dP∗3 = −2, and d
(
dP∗1 /dP∗3

)
/dα3 = 0 at the settled point of

P∗3 = P∗2 at γ̄3 = γ̄2. As mentioned above, assuming P∗3 , P∗1 is a function with respect to P∗3 , with
γ̄1, γ̄2, and PS as parameters, that is, P∗1 = P̃∗1 (γ̄1, γ̄2, PS − P∗3 ). At the settled point of γ̄3 = γ̄2, P∗1
can be also rewritten as P∗1 = P̃∗1 (γ̄1, γ̄3, PS − P∗3 ) with respect to γ̄3 instead of γ̄2. For the simplicity
of implementation, again invoking the LLA CTP power expression of Equation (17) and also noting
P∗1 = (PS − P∗3 )− P∗2 in the condition γ̄1 ≥ γ̄2 = γ̄3, we use the following approximate expression for
P∗1 as

P̃∗1 ≈ β̄ (γ̄1) (ln γ̄1 − ln γ̄3) + 0.5 (PS − P∗3 ) , (34)

with

β̄ (γ̄1) =
− 9

P2
S

e
3

PS γ̄1 E1

(
3

PSγ̄1

)
+ 2

3 PSγ̄3
1 +

3γ̄1
PS
− γ̄2

1{
54γ̄1

P2
S

+ 54
P3

S

}
e

3
PS γ̄1 E1

(
3

PSγ̄1

)
+ 2γ̄3

1 −
12γ̄2

1
PS
− 18γ̄1

P2
S

,

at the balanced point of P∗3 = PS/3. Then, we can obtain

dP̃∗1
dP∗3
≈ −0.5, (35a)

d
dα3

(
dP̃∗1
dP∗3

)
≈ 0, (35b)

dP̃∗1
dα3
≈ β̄. (35c)

Substituting Equation (35) into Equation (33), after some manipulations, we obtain Equation (36)
of the approximate slope χ of P∗3 with respect to α3 at the balanced point.

χ = lim
γ̄3→γ̄1,P∗3→PS/3

dP∗3
dα3

=
Nχ

Dχ
, (36)

with

Nχ =

{
64β̄ (γ̄1)

P3
S

+
64

P4
S γ̄1

+
16β̄ (γ̄1)

P2
S

+
32

P3
S γ̄1

+
4

P2
S γ̄1

}
e

3
PS γ̄1 E1

(
3

PSγ̄1

)
−16γ̄1

P2
S
− 32β̄ (γ̄1)

P3
S

− 16β̄ (γ̄1)

P2
S

− 4γ̄2
1 − PSγ̄2

1 + γ̄1 −
2β̄ (γ̄1)

PS
,

Dχ = −
{

384β̄ (γ̄1)

P4
S

+
256

P5
S γ̄1

+
128β̄ (γ̄1)

P3
S

+
128

P4
S γ̄1

+
8β̄ (γ̄1)

P2
S

+
16

P3
S γ̄1

}
e

3
PS γ̄1 E1

(
3

PSγ̄1

)

+
128β̄ (γ̄1)

P4
S

+
128γ̄1

P3
S
−

32γ̄2
1

P2
S

+
64β̄ (γ̄1)

P3
S

+
32γ̄1

P2
S

+
8β̄ (γ̄1)

P2
S

+ 2γ̄2
1.

To obtain the LQA CTP power expression for P∗3 versus γ̄3[dB] along the settled points of P∗3 = P∗2
at γ̄3 = γ̄2, we express a quadratic equation for P∗3 versus γ̄3[dB] as Pq,sp∗

3 = Aspγ̄3[dB]2 + Bspγ̄3[dB] +
Csp, which must meet the three conditions of Pq,sp∗

3 = 0 at γ̄3 = γ̄bd,e
3 (i.e., the boundary point

condition), Pq,sp∗
3 = PS/3 at γ̄1 = γ̄2 = γ̄3 (i.e., the balanced point condition), and the slope at the

balanced point χ. From these three conditions, we obtain three simultaneous equations with respect to
Asp, Bsp, and Csp, as

Aspγ̄bd,e
3 [dB]2 + Bspγ̄bd,e

3 [dB] + Csp = 0, (37a)
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Aspγ̄1[dB]2 + Bspγ̄1[dB] + Csp = PS/3, (37b)

2Aspγ̄1[dB] + Bsp = χ. (37c)

Solving these three simultaneous equations, we obtain Equation (38) of the LQA CTP power
expression for P∗3 versus γ̄3[dB] along the settled points.

Pq,sp∗
3 = Aspγ̄3[dB]2 + Bspγ̄3[dB] + Csp

=

 χ(
γ̄1[dB]− γ̄bd,e

3 [dB]
) − PS

3
(

γ̄1[dB]− γ̄bd,e
3 [dB]

)2

 γ̄3[dB]2

+

χ− 2χγ̄1[dB](
γ̄1[dB]− γ̄bd,e

3 [dB]
) +

2PSγ̄1[dB]

3
(

γ̄1[dB]− γ̄bd,e
3 [dB]

)2

 γ̄3[dB] (38)

−

 χ(
γ̄1[dB]− γ̄bd,e

3 [dB]
) − PS

3
(

γ̄1[dB]− γ̄bd,e
3 [dB]

)2

 γ̄bd,e
3 [dB]2

−

χ− 2χγ̄1[dB](
γ̄1[dB]− γ̄bd,e

3 [dB]
) +

2PSγ̄1[dB]

3
(

γ̄1[dB]− γ̄bd,e
3 [dB]

)2

 γ̄bd,e
3 [dB].

Furthermore, using χ, we obtain the LLA CTP power expression for P∗3 versus γ̄3[dB] along the
settled points as

Pl,sp∗
3 = χ (ln γ̄3 − ln γ̄1) +

PS
3

. (39)

In Figure 4a–c, the dotted and dashed lines, respectively, indicate the CTP3 powers when the LQA
and LLA CTP power expressions are used, in the condition γ̄3 = γ̄2. From Figure 4a–c, we see that
the CTP3 power using the LQA CTP power expression is closer to the corresponding optimum CTP3
power over the Co3P JDT region than that using the LLA CTP power expression.

Then, we can obtain the LLA CTP power expression for P∗3 versus γ̄3[dB], connecting the
corresponding CTP3 powers at the boundary point between the Co3P JDT mode and Co2P JDT
mode by CTP1 and CTP2, and at the settled point of P∗3 = P∗2 at γ̄3 = γ̄2, as

Pl,o∗
3 =

Pq,sp∗
3

γ̄1[dB]− γ̄bd,k
3 [dB]

(
γ̄3[dB]− γ̄bd,k

3 [dB]
)

, (40a)

or

Pl,o∗
3 =

Pl,sp∗
3

γ̄1[dB]− γ̄bd,k
3 [dB]

(
γ̄3[dB]− γ̄bd,k

3 [dB]
)

. (40b)

Finally, in the condition γ̄1 ≥ γ̄2 ≥ γ̄3, we calculate the CTP3 power to be actually allocated to
CTP3, P̂∗3 by using one of the LLA CTP3 power expressions of Equations (40a) and (40b) as

P̂∗3 =

{
0, if Pl,o∗

3 < 0,
Pl,o∗

3 , if Pl,o∗
3 ≥ 0.

(41)

Substituting P̂∗3 obtained from Equation (41) instead of P∗3 into Equation (24b), we can obtain the
LLA CTP2 power expression for Co3P JDT as

Pl,o∗
2 = β̃ (γ̄1) (ln γ̄2 − ln γ̄1) + 0.5

(
PS − P̂∗3

)
. (42)
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We calculate the CTP2 power to be actually allocated to CTP2, P̂∗2 by using the LLA CTP2 power
expression of Equation (42) instead of Equation (24b) as

P̂∗2 =

{
0, if Pl,o∗

2 < 0,
Pl,o∗

2 , if Pl,o∗
2 ≥ 0.

(43)

Subsequently, we can obtain the CTP1 power to be actually allocated to CTP1, P̂∗1 as P̂∗1 =

PS − P̂∗2 − P̂∗3 .
In conclusion, we can decide whether Co3P JDT or Co2P JDT is performed or not by using

Equation (41) for Co3P JDT or Equations (41) and (43) for Co2P JDT. That is, in the condition γ̄1 ≥
γ̄2 ≥ γ̄3, Co3P JDT is performed if P̂∗3 > 0; Co2P JDT by CTP1 and CTP2 is performed if P̂∗3 = 0 and
P̂∗2 > 0; and single-point transmission by CTP1 is performed if P̂∗3 = 0 and P̂∗2 = 0.

5. Numerical Results

We evaluated the ECCs of the Co2P JDT network using the LQA and LLA CTP power expressions
and the ECCs of the Co3P JDT network using the LLA CTP power expressions. For Co3P JDT, we use
the LQA CTP power expression for P∗3 versus γ̄3[dB] along the settled points, i.e., Equation (38), to
obtain the approximate CTP3 power along the settled points.

Figure 5a–c show the ECCs of the Co2P JDT network as a function of γ̄2[dB], with γ̄1[dB] as a
parameter, when PS = 2, 4, and 8 W, respectively. From Figure 5a–c, we see that the ECCs are constant
when γ̄2 is much smaller than γ̄1 because the ECCs are mainly determined by γ̄1. On the contrary, we
see that the ECCs are mainly determined by γ̄2 when γ̄2 is much greater than γ̄1. When γ̄2[dB] is at
and around the balanced point, we can use Co2P JDT. For PS = 2, 4, and 8 W and γ̄1 = −5, 0, 5, 10, 15,
and 20 dB, the approximate ECC curves using the LQA CTP power expression in Equation (16) have
maximum and average percent errors of 0.0196% and 0.0017%, respectively, while the approximate
ECC curves using the LLA CTP power expression in Equation (18) have maximum and average
percent errors of 0.3818% and 0.0114%, respectively. From Figure 5a–c, we see that the Co2P JDT region
becomes wider and the average percent error increases, as γ̄1 increases. We also see that the Co2P JDT
region becomes wider while the average percent error is almost steady, as PS increases.

(a) (b) (c)

Figure 5. ECCs of the Co2P JDT network as a function of γ̄2[dB], with γ̄1[dB] as a parameter:
(a) PS = 2 W, (b) PS = 4 W, (c) PS = 8 W.

Figure 6a–c show the ECCs of the Co3P JDT network as a function of γ̄3[dB], with γ̄1[dB] and
γ̄2[dB] as parameters, over the regime of γ̄3 ≤ γ̄2, when PS = 2, 4, and 8 W, respectively. From Figure 6a,
the approximate ECC curves using the LLA CTP power expression in Equation (40a) have maximum
and average percent errors of 0.0194% and 0.0079%, respectively. From Figure 6a–c, we see that the
Co3P JDT region becomes wider, although the average percent error is almost steady around 0.01%, as
γ̄1 and/or PS increase.
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(a) (b) (c)

Figure 6. ECCs of the Co3P JDT network as a function of γ̄3[dB], with γ̄1[dB] and γ̄2[dB] as parameters:
(a) PS = 2 W, (b) PS = 4 W, (c) PS = 8 W.

In conclusion, the approximated ECCs using the LLA and LQA CTP power expressions for
Co2P JDT and the LLA CTP power expressions for Co3P JDT trace the optimum ECCs well with no
noticeable difference.

Figure 7a–c show the ECCs achieved by the Co3P JDT network, the Co2P JDT network by CTP1
and CTP2, and the non-JDT network by CTP1 as a function of the mean branch GNR difference
in decibels, when γ̄1 = 5 dB and PS = 2, 4, and 8 W, respectively. Denoting the mean branch GNR
difference in dB as ∆γ[dB], γ̄2[dB] = γ̄1[dB]−∆γ[dB] and γ̄3[dB] = γ̄2[dB]−∆γ[dB] = γ̄1[dB]−2∆γ[dB].
From Figure 7a, for PS = 2 W, the ECC of the Co3P JDT network is higher than the ECC of the Co2P
JDT network over the Co3P JDT region, and the ECC of the Co2P JDT network is higher than the
ECC of the non-JDT network over the Co2P JDT region. As expected, the difference between the ECC
of the Co3P JDT network and the ECC of the Co2P JDT network is the largest at the balanced point
of γ̄1 = γ̄2 = γ̄3, that is, when the mean branch GNR difference in dB is zero. The difference in the
ECC becomes smaller as ∆γ[dB] increases. When PS = 2 W and γ̄1 = 5 dB at the balanced point of
γ̄1 = γ̄2 = γ̄3, the ECC of the Co3P JDT network is 3.1% higher than that of the Co2P JDT network and
12.4% higher than that of the non-JDT single-branch network. From the above results, we see that the
CoMP JDT network can obtain the maximum diversity gain at the balanced point. From Figure 7a–c,
we see that the ECC of the CoMP JDT increases, and the Co3P and Co2P JDT regions become wider, as
PS increases. We also confirm that the ECC of CoMP JDT increases and the CoMP JDT region becomes
wider, as γ̄1 increases, even though we have not demonstrated these results here. When PS increases
from 2 W to 4 W, and PS increases from 4 W to 8 W, the corresponding Co3P and Co2P JDT regions
become wider by 0.2 dB and 0.5 dB, respectively.

(a) (b) (c)

Figure 7. ECCs versus ∆γ[dB] (γ̄1 = 5 dB): (a) PS = 2 W, (b) PS = 4 W, (c) PS = 8 W.

6. Conclusions

In this paper, we presented an efficient JPA method for the CoMP JDT network, aimed at
maximizing the ECC in Rayleigh fading channels. In the Co2P JDT network, we introduced the LQA
and LLA CTP power expressions for obtaining the optimum CTP powers. In the Co3P JDT network,
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we introduced a simple LLA CTP power expression for obtaining the optimum power of the worst
quality-providing CTP. After obtaining the approximate CTP power for the worst quality-providing
CTP, we obtained the respective LLA CTP power expressions for the two better quality-providing
CTPs by invoking the LLA CTP power expressions for Co2P JDT, under the remaining power given
by the TCPP minus the CTP power for the worst quality-providing CTP. From the numerical results,
we verified that the LQA and LLA CTP power expressions for Co2P JDT and the LLA CTP power
expressions for Co3P JDT are very efficient in terms of the simplicity for JPA and CoMP set selection,
as well as the resulting ECC. When PS = 2, 4, and 8 W and γ̄2 = −5, 0, 5, 10, 15 and 20 dB, the
approximate ECC curves of the Co2P JDT network, using the LQA CTP power expression have
maximum and average percent errors of 0.0196% and 0.0017%, respectively, whereas the approximate
ECC curves using the LLA CTP power expression have maximum and average percent errors of
0.3818% and 0.0114%, respectively. When PS = 2, 4, and 8 W, the approximate ECC curves of the Co3P
JDT network using the LLA CTP power expression have maximum and average percent errors of
0.0194% and 0.0079%, respectively. In conclusion, the proposed JDT power allocation method can
efficiently determine how many CTPs participate in JDT and simply and efficiently determine the CTP
power levels to be allocated over the CTPs in the resulting JDT cooperating set.
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The following abbreviations are used in this manuscript:

4G fourth-generation
Co2P coordinated two-point
Co3P coordinated three-point
CoMP coordinated multi-point
CTP coordinated transmission point
ECC ergodic cooperative capacity
GNR gain-to-noise ratio
JDT joint diversity transmission
JPA joint power allocation
LLA log-linear approximated
LQA log-quadratic approximated
TCPP total coordination point power
UE user equipment
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