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Abstract: It is challenging to detect and track frequency hopping spread spectrum (FHSS) signals
due to their wideband frequencies and the limitations of current hardware. In the implementation,
there has been a trend of conducting compressive sensing for blind signal processing of FHSS
signals. The modulated wideband converter (MWC) is a type of sub-Nyquist sampling system,
which accomplishes the recovery of highly accurate broadband sparse signals by multichannel
sub-Nyquist sampling sequences. However, it is difficult to adjust MWC to FHSS signals, because the
support set and sparsity change with the hop. In this paper, we propose a channelized MWC scheme
in order to solve these problems. First, the proposed method distributes the sub-bands to different
channels. We can derive and refresh the frequency support set rapidly without recovery. Secondly,
by reconstructing the low-pass filter and decimation, we reduced the computational cost to 1/m as
the traditional m-channel MWC scheme, where m is the number of channels. Moreover, we propose
a series of strategies to estimate carrier frequency. The numerical simulations show that our method
can detect the channel, which contains FHSS signals in the case of a low signal-to-noise ratio.
Furthermore, the estimation method leads to the successful estimation of the FHSS carrier frequency.
This indicates that our method is also effective in the broadband non-cooperative spectrum sensing.

Keywords: frequency hopping spread spectrum signals; modulated wideband converter; detection;
frequency estimation; channelized

1. Introduction

Due to its advantages, such as its strong anti-interference ability, good security and convenience for
networking, the frequency hopping (FH) system has been applied not only in military communication,
but also in civilian mobile communication [1]. In communication countermeasures, the advantages
of the FH system are based on its wide bandwidth, randomness and paroxysms, which result in
challenges to the blind reconnaissance and blind interference. Nowadays, great attention is put on the
detection and parameter estimation of frequency hopping spread spectrum (FHSS) signals. There are
many novel detection methods for FHSS signals. For instance, time-frequency analysis and wavelet
analysis are applied in the time–frequency domain for detection of FHSS signals [2–6]. These methods
take advantage of the sparsity of two-dimensional distribution. In [2], the non-cooperative FH
signal detection based on the rearrangement algorithm of the Morlet wavelet scale spectrum are
discussed to improve the time–frequency aggregation performance. In [3], an adaptive time–frequency
local threshold, power-detection and time-statistic are used to remove the influence caused by the
interferences and realize the blind detection of FH signals in the intricate electromagnetic environment.
The approach of algorithms in [3–5] is short time Fourier transform (STFT) or Wigner–Ville distribution.
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In [6], a method using discrete stationery wavelet filter banks is proposed for detection. Although these
methods are intuitive for processing, they suffer from enormous computing in practice. As a result,
the computational complexity may exceed the capability of the hardware. Since FHSS signals hop over
large frequency ranges, some studies have used channelized receivers for detection [7–9], in which
a digital filter bank is used to detect energy in each channel. The performance of a channelized receiver
in detecting a frequency hopping signal is analyzed [7], in which the number of parallel radiometers
can be reduced when the signal-to-noise ratio (SNR) is relatively high. The frequency channelized
receiver based on hybrid filter bank is a promising receiver structure for ultra-wideband radio because
of its relaxed circuit requirements and robustness to interference [8]. In [8], the adaptive performance
of the proposed channelized receiver to different propagation channels is similar to that of an ideal
full band receiver. Furthermore, a detection method for the frequency channelized receiver when
input noise is colored in ultra-wideband systems is proposed. The proposed receiver significantly
outperforms the full band receiver. However, the FHSS signals should be sampled at a high enough
rate to capture the full FHSS bandwidth in these receivers. This requires analog-to-digital converters
(ADC) with a very high rate. The sweeping spectrum analyzer (SSA) is another method to detect
energy over a large frequency range [10,11]. It can scan bands over the whole frequency for a certain
period of time. However, if the scanning rate of the SSA is not high enough, there is a risk that the
hopping signal might be missed. Briefly, conventional detectors cannot cover such a large bandwidth,
since the FHSS signal is a non-stationary signal. Furthermore, time-varying and the sampling rates
of ADC can be relatively high, which satisfies the Nyquist theorem. This requires a considerable
amount of computations for further digital processing, especially when the communication is the form
of non-cooperation.

A theory of compressive sampling (CS) has emerged for wideband sparse signals, such as FHSS
signals. This exploits the sparsity and compression prior to performing signal recovery using fewer
measurements than the number required by the Nyquist theorem. According to CS, we can obtain
only a small amount of observation data through the inner-product operations. If these data conform
to the restricted isometry property (RIP) principle, the original signals can be recovered perfectly
with an overwhelmingly high probability. Some methods have been presented to apply this theory in
practice, such as the Random Demodulation (RD) method [12,13], Multi-coset method [14], Modulated
Wideband Converter (MWC) [15–19] and so on. Since the FHSS signals are obviously sparse in the
time–frequency domain, using the CS theory for the recovery, estimation and detection of FHSS signals
is a hot spot of recent research. In [20], Yidong Zhang focused on studying of the digital domain
compressive sampling and reconstruction algorithm of FHSS signals by using the basic principles and
methods of compressed sensing. In [21], Binwu Li proposed a novel adaptive synchronous estimation
method of hopping frequency for FHSS signals without reconstructing the original signal. Several
methods for compressive detection were proposed, which assume that the signal can be sparsely
represented in the known dictionaries [22,23]. Some other methods take advantage of the CS theory
for further processing of FHSS signals [24–27]. However, the major difficulties in using the CS theory
for processing of FHSS signals are described as follows:

1. The support set of FHSS signals changes rapidly, which has critical real-time requirement.
2. There are significant performance penalties under a low SNR.

In [28], compressive detection strategies that sample the full FHSS spectrum in a compressive
manner are proposed. This focuses on the use of random measurement kernels and specifically
designed measurement kernels in the proposed architecture. However, the parameters of FHSS
signals are not taken into consideration, which is important for further processing. In this paper,
we propose methods for the detection of FHSS signals using MWC, which is based on channelization
and energy detection. Our methods amplify the signals in the frequency domain and do not require
an intermediate step of signal recovery. The proposed channelized MWC scheme has advantages
in processing FHSS signals, such as the clear division of sub-bands, ease of implementation using
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existing devices and flexible structure. Furthermore, we improved the structure of MWC to reduce
the computational cost and estimate the carrier frequency of FHSS signals. Although the analysis
in this work focuses on the single-target FHSS signal detection, the extension of this framework to
a multi-target setting is also possible.

The rest of this paper is organized as follows. In Section 2, we provide the basic information
related to FHSS Signals. We present the detailed design of the channelized MWC method and further
improve it in Section 3. The effect of some parameter settings and simulation results are given in
Section 4 and we conclude our paper in Section 5.

2. Fundamental of FHSS Signals

Traditional Structure of FH System

Figure 1 shows the traditional structure of the FH system.
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The transmitter can encode the information before sending it to the information modulator.
The PN sequence generator controls the FH modulator for each hop. The generator in the cooperation
receiver, which is the same generator as that used in the transmitter, controls the direct digital
frequency synthesizer (DDS) for the FHSS demodulator. In general, the interactions between the FH
synchronization and information demodulator allow for FH tracking during the normal information
collection phase. Assuming that there are Lh hops during ∆t, with the first and last hops being partial
and K hops in the middle being complete, the received clean signal can be expressed as:

xn(t) = αn(t)×


exp[j(ωn0 t + jn0)]rect

(
t

∆tn0

)
+

K
∑

k=1
exp[j(ωnk + jnk)]rect

(
t−(k−1)THn−∆tn0

THn

)
exp[j(ωnLh + jnLh)]rect

(
t−KTHn−∆tn0

∆tn0

)
 (1)

where THn is the hop duration, αn(t) is the baseband complex envelope; ωnk is the carrier frequency;
φnk is the initial phase of kth hop and rect(·) is a rectangle window function.

During the blind processing of FHSS signals, the non-cooperation receiver does not have the
generator and cannot get the frequency hopping pattern, this non-cooperation receiver includes
detecting signals, estimating parameters, separating mixed signals and so on. The purpose of the
non-cooperation receiver in this paper is to detect and follow the carrier frequency of FHSS signals
from the estimation of ωnk under sub-Nyquist sampling.



Electronics 2018, 7, 170 4 of 18

3. MWC for FH Signal

3.1. Channelized MWC

The basic structure of the MWC system is given in Appendix A. The core idea of MWC is based on
spreading the information of the input signal to the whole spectrum by a set of analog mixers. This is
achieved by applying a Tp–periodic function pi(t) so that all sparse sub-bands can be moved to the
baseband. After this, we can truncate the baseband by a low-pass filter (LPF) and sample the baseband
at a relatively low rate. Although FHSS signal is varies with time and does not meet the needs of the
sparse requirements of MWC on a long time scale, it is stationary and sparse in the frequency domain
during one hop or several hops. Thus, the following conditions should be satisfied in order to detect
FHSS signals using MWC.

(1) There should be the ability to rapidly derive and refresh the support set.
(2) There must be enough sampling points for a single hop to obtain adequate information for MWC

and subsequent processing.
(3) The whole spectrum of FHSS signal must be covered.

To solve these problems, we propose a channelized MWC method as follows:
The received signal x(t) consists of the FHSS signal xh(t) and other signals xo(t).

x(t) = xh(t) + xo(t) (2)

Based on (A5), the discrete time Fourier transform (DTFT) of yi[n] can be expressed as:

Yi

(
ej2π f Ts

)
=

+L0
∑

l=−L0

cilXh( f − l fp)

+
+L0
∑

l=−L0

cilXo( f − l fp)

f ∈ Fs (3)

where Xh( f ) and Xo( f ) are the DTFT of xh(t) and xo(t) respectively. It is clear that cil is the
weighting coefficient of sub-band l in the ith channel. To channelize MWC, we can restructure
A = {cil}1≤i≤m,1≤l≤L, while Yi selectively denotes the information of certain sub-bands selectively.

As described in Appendix A, the whole band is divided into L = 2L0 + 1 sub-bands, which should
be covered by m channels. Since the real signal of a single hop takes up to 4 symmetrical sub-bands,
for convenience, we distributed these four sub-bands into each channel, which is depicted in Figure 2.
Thus, the number of channels should not be less than m = dL/4e+ 1 = dL0/2e+ 1, which meets the
basic parameter choice of m ≥ 4N based on the theory presented in [16], where N is the number of
non-overlapping sub-bands for X( f ).Electronics 2018, 7, x FOR PEER REVIEW  5 of 18 

 

0
L−

0
1L− +

0
2L− +

0
3L− +

0

1−

2−

}
}

}

{
{

{

0
L

0
1L −

0
2L −

0
3L −

0

1

2

mY

1mY −

2Y

1Y  
Figure 2. Sub-band distribution. 

Without a loss of generality, we take the ith channel containing ( )hX f  as an example, which 
corresponds to sub-band ± −(2 3)i  and ± −(2 2)i ≠( 1)i . We obtain the new coefficient by using 
the following equation: 

ρ
ρ
μ

 = =
 = = ± − ± − ≠
 = ≠ ± − ± − ≠

0 0 0ˆ 1
ˆ (2 3), (2 2) 1
ˆ (2 3), (2 2) 1

i i i

il il il

il il il

c c i
c c l i i i
c c l i i i

 (4) 

where μl  and ρl  are the fading factors of the lth sub-band, while ρ μ μρ− −= =* *,l l l l . Generally 
speaking, the sub-band that we choose for the channel should be enhanced and the other 

sub–bands should be attenuated, which essentially means that the information of ( )hX f  will be 

retained and the information of ( )oX f  will be eliminated. However, a necessary condition for 
accurate blind recovery using MWC is that the number of effective channels cannot be less than 2N 
[15]. It is better to keep as much information as possible for each channel to improve the precision 
of recovery. In this paper, we amplified the sub-bands that we distributed to the channels for FH 
signal detection and recovered these from other channels. The weighting factor ρ  is flexible 
according to SNR. We will analyze and discuss it in Section 4. 

For the convenience of analysis and design, we set the following rules: 

ρ ρ
ρ ρ
ρ ρ
μ

∗

 = =
 = = + − + − ≠
 = = − − − − ≠
 = ≠ ± − ± − ≠

0 2 1
(2 3), (2 2) 1
(2 3), (2 2) 1

1 (2 3), (2 2) 1

i

il

il

il

i
l i i i
l i i i
l i i i

 (5) 
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Without a loss of generality, we take the ith channel containing Xh( f ) as an example, which
corresponds to sub-band ±(2i− 3) and ±(2i− 2)(i 6= 1). We obtain the new coefficient by using the
following equation: 

ĉi0 = ρi0ci0

ĉil = ρilcil

ĉil = µilcil

i = 1

l = ±(2i− 3),±(2i− 2) i 6= 1

l 6= ±(2i− 3),±(2i− 2) i 6= 1

(4)

where µl and ρl are the fading factors of the lth sub-band, while ρ−l = ρ∗l , µ−l = µ∗l . Generally
speaking, the sub-band that we choose for the channel should be enhanced and the other sub–bands
should be attenuated, which essentially means that the information of Xh( f ) will be retained and the
information of Xo( f ) will be eliminated. However, a necessary condition for accurate blind recovery
using MWC is that the number of effective channels cannot be less than 2N [15]. It is better to keep as
much information as possible for each channel to improve the precision of recovery. In this paper, we
amplified the sub-bands that we distributed to the channels for FH signal detection and recovered
these from other channels. The weighting factor ρ is flexible according to SNR. We will analyze and
discuss it in Section 4.

For the convenience of analysis and design, we set the following rules:
ρi0 = 2ρ

ρil = ρ

ρil = ρ∗

µil = 1

i = 1

l = +(2i− 3),+(2i− 2) i 6= 1

l = −(2i− 3),−(2i− 2) i 6= 1

l 6= ±(2i− 3),±(2i− 2) i 6= 1

(5)

Thus, the new sensing matrix Â can be expressed as follows:
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Based on (A1), we have the new measurement equation:

Y( f ) = ÂZ( f ) f ∈ Fs (7)

where each channel keeps the information of its selective sub-bands. During one hop, the FH Signal
may influence two channels at most. Figure 3 shows the relationship among Y( f ), X( f ) and Â.
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From Figure 3, it is clear that all the channels keep the information of the source signal while Yi( f )
is amplified, which allows channelization of MWC.

3.2. Structure Design of Channelized MWC

The relationship between the time domain waveform pi(t) and its Fourier series coefficient is
given by (A2) and (A3). Thus, we can obtain the new time domain waveform:

p̂i(t) =
+∞

∑
l=−∞

ĉilej2πl fpt =
L0

∑
l=−L0

ĉilej2πl fpt (8)

Based on (4) and (5), the number of attenuated sub-bands is significantly smaller than others.
Therefore, p̂i(t) can be expressed as follows:

p̂i(t) = pi(t) + (2ρ− 1)ci,0 i = 1
p̂i(t) = pi(t) + ∑

l = ±(2i− 3)
l = ±(2i− 2)

ρcilej2πl fpt i 6= 1
(9)

Thus, we have the structure of the channelized MWC, which is shown in Figure 4. Compared
with the basic MWC system, it restructures the periodic sequence pi(t).
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In actual implementation, there must be enough transmission gain in the selective channel before
restructuring. This means that the amplitude of the selective cil should be relatively high in order to
characterize the sub-band so we can detect the differences after the amplification by restructuring.
To ensure that this condition is met, an undesirable periodic function should be replaced in the
preprocessing before the system continues on with its regular functions.

3.3. Improved Structure for Channelized MWC

Using the MWC theory (Appendix A), we can see that all sparse sub-bands are moved to the
baseband. The information of a certain sub-band can be extracted by a mixer and a low-pass filter.
For example, we extracted lth sub-band in ith channel. Assuming that x′ i(k) is sampling x′ i(t) at
a Nyquist rate and decimation rate is D: D =

⌈
fnyq/ fs

⌉
, we have:

yi(n) =
{[

x′ i(k)ej2πl fpk
]
∗ h(k)

}
|k=nD (10)
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where h(•) is the same low-pass filter as that in Figure A1. It is difficult to implement MWC, especially
when there is a high number of channels, because the order of h(•) can be relatively high. Although
an analog filter is used, this results in high computation requirements. We improve the structure for
channelized MWC as follows:

We rewrote (10) as:

yi(n) =

{
+∞
∑

τ=−∞
x′ i(k− τ)ej2πl fp(k−τ) · h(τ)

}
|k=nD

=
+∞
∑

τ=−∞
x′ i(nD− τ)ej2πl fp(nD−τ) · h(τ)

=
D−1
∑

r=0

+∞
∑

τ=−∞
x′ i(nD− τD− r)ej2πl fp(nD−τD−r) · h(τD + r)

(11)

From (11), x′ i(t) is tested and sampled at the same time. For ease of description, we defined
the following:

x′ ir (n) = x′ i(nD− r) (12)

hr(n) = h(nD + r) (13)

ωlp = 2πl fp (14)

Thus, we have:

yi(n) =
D−1
∑

r=0

+∞
∑

τ=−∞
x′ ir(n− τ)hr(τ)ejωlp(nD−τD−r)

=
D−1
∑

r=0

[
+∞
∑

τ=−∞
x′ ir(n− τ)ejωlp(n−τ)D · hr(τ)

]
e−jωlpr

(15)

We defined the following:

sir (n) =
+∞
∑

τ=−∞
x′ ir(n− τ)ejωlp(n−τ)D · hr(τ)

=
[

x′ ir(n)e
jωlpD

]
∗ hr(n)

(16)

Based on (15) and (16), we have:

yi(n) =
D−1

∑
r=0

sir(n)e
−jωlpr (17)

In MWC, since the baseband has all the information for the whole spectrum, we can extract the
baseband by substituting ωlp = 0 into (17). Thus, we obtain the following:

yi(n) =
D−1

∑
r=0

sir(n) =
D−1

∑
r=0

x′ ir(n) ∗ hr(n) (18)

where x′ ir(n) and hr(n) are defined in (12) and (13).
Based on (18), the source signal and low-pass filter is decimated. This structure can be reused by

all m channels through an interleaver and a summer, which is shown in Figure 5.
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The main purpose of the interleaver used in this present study is storage and delay.
In implementation, we used the same two interleavers as those used for the ping-pang operation. It is
obvious that D > m so there is enough time for reading before the spillover of the other interleaver
since it starts reading as soon as the matrix is full. From Figure 6, it can be concluded that the D time
of decimation occurs before the filters. The filter in the improved channelized MWC is a multiphase
version of the original low-pass filter, which only requires 1/m computational cost. The real-time
processing capability of the system has been greatly improved.

3.4. Detection and Frequency Estimation of FH Signal

Detection and estimation are most important during the blind signal processing of FH,
which means catching and estimating time–frequency distribution of the signal. Although most
of the compressive sensing methods aim to reconstruct a signal by exploiting its sparsity, our goal
is not only to detect the presence of the FHSS signals, but also to estimate the channel that contains
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the FHSS signals in the frequency domain. Based on the above-mentioned system, we can rapidly
determine the hopping frequency without recovering the original signal.

In Appendix A, we constructed the equation between the observed signals and original signals in
the frequency domain. Furthermore, it is clear that the total power of a certain channel, which contains
an FH signal, could be relatively high in the channelized MWC. The algorithm of the frequency
estimation can be described as follows:

Step 1: Calculate fast Fourier transform (FFT) for yi[n]: ŷi( f ), as the estimation of yi( f ). The
estimation of power spectrum is:

R̂yi ( f ) = E
[
ŷi( f )ŷH

i ( f )
]

(19)

Thus, we have:
R̂y( f ) = E

[
ŷ( f )ŷH( f )

]
=

L0
∑

l=−L0

|cil |2Px( f − l fp)

= ΛRx( f )

(20)

where Px( f ) = E
[
|X( f )|2

]
and f ∈ Fs. The new sensing matrix Λ is a column symmetric real matrix.

Step 2: Adopt the smoothing filter for R̂yi ( f ).

R̂′yi
( f ) = R̂yi

( f ) ∗ hs( f ) (21)

The order of the smoothing filter is related to the width of signal power spectrum.
Step 3: Extract the channel as the support, which has a maximum value for the smoothed

spectrum R̂′yi
( f ) that exceeds the threshold. The truncation threshold can be calculated or given by the

host computer. Assume that the frequency point of the maximum value is fmax.
Step 4: Eliminate the vagueness of the sub-band. In the above-mentioned channelized MWC,

each channel corresponds to two pairs of sub-bands. We should analyze the channel which is extracted
in Step 3, to distinguish the real sub-band for single support. Since the main energy source is from
the support sub-band, we can obtain an estimation of the real support sub-band index lS, which is
depicted as:

lS = arg min
l

[
σ
(
Λ−1(i, l)R̂yi ( fmax)

)]
1 ≤ i ≤ m (22)

where Λ(i, l) is the element of Λ; l corresponds to the extracted channel; and σ(x) represents the
standard deviation of sequence x.

Step 5: Recover the power spectrum of the source signal.

R̂x( f ) = Λ†
lS

R̂y( f ) f ∈ Fs (23)

The sub-matrix ΛlS
consists of the column, which is indexed by lS. Λ†

lS
is the pseudo-inverse

matrix of ΛlS
.

Step 6: Estimate the carrier frequency.

f̂h = (ls − 0.5) fp + f̂b (24)

where fp is the width of the sub-band; fb is estimated from R̂x( f ). In order to improve carrier frequency
estimation performance, we utilized the gravity method for R̂x( f ):

f̂b = ∑ f •R̂x( f )
∑ R̂x( f )

R̂x( f ) > η (25)

where η is the threshold related to the specific scenes and SNR. In implementation, we can obtain the
threshold using previous measurement data.



Electronics 2018, 7, 170 10 of 18

4. Numerical Simulations and Discussion

Numerical simulations are conducted in this section to evaluate the performance of our method.
In this section, we discuss the performance of sub-band detection and frequency estimation. In order to
clarify certain points, the intermediate results of the channelized MWC are also discussed. These will
give guidance in selecting parameters for the system. Without loss of generality, the relative simulation
parameters are shown in Table 1. The carrier frequency of source signals is transformed to [0, 5 GHz]
as the input of our system.

Table 1. Simulation Settings.

Parameter Value

Carrier Frequency [2, 7 GHz]
Hop Rate [10, 100 khop/s]

Single Hop Bandwidth B [5, 30 MHz]
Mode Type DQPSK

Sub-band Number L 195
Periodic Sequence Frequency fp 51.3 MHz

Sampling Rate fs 51.3 MHz
Channel Number m 50

Length of FFT 128

In addition, fs ≥ fp is necessary condition to allow accurate spectrum-blind recovery [15].
According to Section 3.1, m should not be less than 50 for channelized requirement.

4.1. Channel Detection

In this part, we analyze the performance of the channel detection at different SNR levels. It is
important to emphasize that this SNR is a whole bandwidth SNR rather than an SNR on the equivalent
narrow band. In this present study, we assumed that each sub-band is already characterized before
reconstructing. A comparison of the original periodic function and the reconstructed one is shown
in Figure 7. It can be seen that one period of the original periodic function in the time domain
(Figure 7a) is a pseudorandom binary sequence. In the frequency domain (Figure 7b), each sub-band
gets an arbitrary coefficient and is moved to a baseband based on this coefficient. This revealed
that the sub-bands cannot be distinguished in the original MWC before recovery. Figure 7c shows
one period of the reconstructed periodic function in the time domain. Compared with the original
function, the reconstructed one is multivalued and amplified. In the frequency domain (Figure 7d),
it is obvious that the sub-band that we chose for the channel is amplified, while others stay the same as
that in Figure 7b. The amplitude of the reconstructed function is expanded and diversified. In actual
implementation, each channel can simply add the sinusoid signal to its relative frequency.

Figure 8 shows the spectrum of a single hop, which has a carrier frequency of 2.4098 GHz.
Here, we assume that the single hop bandwidth is B = 10 MHz. We can see that the original spectrum
has narrow bands under high resolution. The amplitude of the single hop spectrum is quite high in
its equivalent narrow band. This characteristic makes it possible for the detection of FH signals in
frequency domain. Figure 9 shows one result of the channel estimation. Here, we used the weighting
factor ρ = 5 and SNR = −15 dB. It can be seen that the total power of the channel that contains the
single hop is much higher than others.
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For further discussion, we calculated the probability of successful channel detection Pc by
1000 Monte Carlo simulations. Figure 10 shows the results under the condition of different SNR
levels and weighting factors. We concluded that the weighting factor has a significant impact on the
probability of detection, especially when the SNR is relatively low. Since the power of a single hop is
relatively stable and the MWC system spreads all the information of input signals, including noise,
to the baseband, the inherent systemic characteristics of the noise limit the sensitivity of detection.
For practical applications, the choice of weighting factor should consider the channel condition and
source power. If the channel condition is good and the SNR on the equivalent narrow band is relatively
high, we prefer a low weighting factor to reduce power consumption.
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In addition to the channelized MWC, a compressive detection with random measurement kernels,
which was proposed in previous study [28], was also implemented as a reference. Although the
compressive detection method can only detect the presence of the FHSS signals and cannot find the
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specific channel, it serves as a benchmark. As the paper points out, the distribution of measurement
energy λ for the signal in the present case follows the central Chi-squared distribution given by:

p(λ) =
λ(MNb−1)e

− λ

σ2
s +σ2

n

(σ2
s + σ2

n)
MNb Γ(MNb)

(26)

where M is the number of measurements; and Nb is the number of samples. The channel noise is
modeled as complex zero-mean additive white Gaussian noise with a variance σ2

n that covers the entire
FHSS hopping range. To simplify our derivations, the FHSS signal is modeled as a complex zero-mean
Gaussian white signal with variance σ2

s . Based on (26), we can obtain the theoretical compressive
detection performance, which is shown in Figure 10. It can be observed that the channelized MWC
has a higher detection probability because it changes the SNR on the entire FHSS hopping range by
amplifying the power of particular channels.

Channel detection is the foundation for further processing. Compared with orthogonal matching
pursuit (OMP) algorithm [15] for support recovery methods, our method has the advantages of less
calculation requirements and adjustability. The amount of calculation is shown in Table 2, where we
set m channels and N samples for each channel.

Table 2. Amount of Calculation Required

Operation OMP Channelized MWC

Multiplication m2N + o(m3) mN
2 log2 N

Addition m2N + o(m3) mN log2 N

Furthermore, FH code sequences always have the characteristics of a wide gap. The probability
of two adjacent hops in different channels can be relatively high. It is beneficial for our system to sense
changes in the hop.

4.2. Frequency Estimation

Figure 11 shows the frequency estimation performance on different SNR levels and different
single hop bandwidths. As the mode type is the differential quadrature phase shift keying (DQPSK),
the carrier frequency of a single hop is suppressed, which will influence the estimation precision
significantly. The simulations use the relative frequency error (RFE) to analyze the frequency estimation
performance of the FH signals. The RFE of the frequency estimation can be modeled as:

RFE =
1
N

N

∑
n=1

∣∣∣ f̂hn − fh

∣∣∣
fs

(27)

where N denotes the number of experiments; f̂hn denotes the frequency estimation of the nth
experiment; and fs denotes the sampling rate. The weighting factor here is ρ = 4 and the wrong
channel estimation is eliminated. Monte Carlo experiments were conducted 100 times for each integer
point of SNR. It can be concluded that the bandwidth results in lower precision in estimation. When the
SNR is above −9 dB, the proposed method has a similar RFE and has good estimation performance for
the signal. The main sources of error come from the precision of FFT and the spectrum offset.
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5. Conclusions

In this paper, we propose an improved channelized MWC scheme for non-cooperative detection
and frequency estimation of FHSS signals. Channelized MWC can capture the full FHSS bandwidth
by distributing the sub-bands to each channel. Without an intermediate step of signal recovery,
we detected the channel that contains FHSS signals in the frequency domain. The amount of calculation
is significantly reduced compared to the traditional method. After this, we estimated the carrier
frequency by directly processing the compressed sampling data. The theoretical analysis and numerical
simulations demonstrate the validity and correctness of our method. The experimental results illustrate
that the weighting factor of the channel and the width of a single hop have remarkable influence on the
performance of detection and estimation in the channelized MWC. We can improve the sensitivity of
the system by adjusting the weighting factor, which is flexible, SNR is relatively low. In future research,
we would like to explore the real implementation of channelized MWC and extend the system to detect
multi-target FHSS signals.
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experiments and analyzed the results. L.Z. contributed analysis tools and reviewed the paper.

Funding: This research received no external funding.

Acknowledgments: Our work had received important English editing from MDPI.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

This part shows the basic Structure of the MWC compressed sampling system.
The MWC is mainly aimed at sparse multi-band signals. Assume that x(t) is a continuous time

signal with a range within F = [−1/2T, 1/2T), where Nyquist frequency fNYQ = 1/T. If x(t) is
a sparse multi-band signal, it can be reconstructed from the low dimension projection of the original
signal [15]. Figure A1 shows the basic structure of MWC under-sampling system.
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MWC consists of m parallel channels. In each channel, the multiband signal x(t) is multiplied
with a different mixing function, and pi(t), i = 1, 2, . . . , m. Each mixing function is periodic with period
Tp = 1/ fp. pi(t) is set as a sign function for each of the M equal time intervals and other forms are
possible, since the system only requires pi(t) periods, which is expressed as follows:

αik = pi(t), k Tp
M ≤ t ≤ (k + 1) Tp

M (A1)

where 0 ≤ k ≤ M− 1 and αik ∈ {+1,−1}.
The purpose of this mixing function is to create aliases, so that the mixed signals x′ i(t) have

information about the entire spectrum in the baseband Fp =
[
− fp

2 , fp
2

]
. Taking the ith channel as

an example, the Fourier expansion of pi(t) is as below:

pi(t) =
+∞

∑
l=−∞

cilej2πl fpt (A2)

where cil is Fourier series coefficient and is expressed as:

cil =
1

Tp

∫ Tp

0
pi(t)e−j2πl fptdt (A3)

The Fourier transform of mixing signal x′ i(t) = x(t)pi(t) is:

X′ i( f ) =
+∞

∑
l=−∞

cilX( f − l fp) (A4)

Suppose that the filter H( f ) is an ideal rectangular function. Consequently, the uniform sequence
yi[n] has only frequencies in the [− fs/2, fs/2]. The DTFT of yi[n] is expressed as:

Yi

(
ej2π f Ts

)
=

+L0

∑
l=−L0

cilX( f − l fp), f ∈ Fs (A5)

where L0 is selected as the smallest integer as:

− fs

2
+ (L0 + 1) fp ≥

fnyq

2
→ L0 =

⌈
fnyq + fs

2 fp

⌉
− 1 (A6)

where fs = 1/Ts is the sampling rate; and d•emeans round up.
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From the above equation, cil can be denoted as:

cil = 1
Tp

∫ Tp
0 pi(t)e−j2πl fptdt

=
M−1
∑

k=0
αike−j 2π

M lk
(

1
Tp

∫ Tp
M

0 e−j2πl fptdt
) (A7)

Setting θ = e−j2π/M, the expression in the parentheses from the above equation can be written as:

dl =
1

Tp

∫ Tp
M

0
e−j2πl fpt dt =

 1
M l = 0
1−θl

j2πl l 6= 0
(A8)

Let F be the M × M discrete Fourier transform (DFT) matrix with the ith column, which is
denoted by:

Fi =
[
θ0i, θ1i, · · · , θ(M−1)i

]T
, 0 ≤ i ≤ M− 1 (A9)

Let F be the subset of F with columns
[
FL0 , · · · F−L0

]
. Let S be the m × M sign matrix,

with Sik = αik, while D = diag
{

dL0 , · · · , d−L0

}
is L × L diagonal matrix with dl defined by (A8).

The Y( f ) can be:
Y( f ) = SFDZ( f ) = AZ( f ) f ∈ Fs (A10)

where Z( f ) = [X( f − L0 fp), · · · , X( f ), · · · , X( f + L0 fp)]
T and A = SFD.

Recovering Z from Y involves finding the sparsest solution that satisfies (A10), which is equivalent
to finding the set as support S = supp(Z(Fp)) and it is an NP-hard problem. Furthermore, each X( f )
is a function of f inFs and is interpreted as an infinite measurement vector (IMV) problem. Mishali and
Eldar developed a two-stage process called the ‘Continuous-to-Finite’ (CTF) block [15,16], which forces
(A1) to a finite dimensional problem.
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