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Abstract: A broadband switch-less bi-directional low noise amplifier based on negative group delay
(NGD) matching circuits with a non-Foster characteristic is proposed. To validate the feasibility,
two circuits were designed and compared, which are matched by NGD circuits and traditional lumped
elements respectively. The structure proposed in this paper has a measured relative bandwidth (RBW)
of 32.6% rather than 5.1% for the traditional one. From 797 MHz to 1095 MHz, the input and output
return losses (RL) are more than 10 dB with a noise factor (NF) of about 3.5 dB and peak gain of
12.2 dB. Meanwhile, the reverse isolation and stability factor (SF) are greater than 20 dB and 1,
respectively. The group delay (GD) value is 0.5 ns ± 0.25 ns in the operating frequency band, which
is much flatter and lower compared to that of the traditional one.

Keywords: negative group delay; non-Foster circuit; negative capacitance; bi-directional low
noise amplifier

1. Introduction

In recent years, wireless communication systems have been rapidly developed, in which amplifiers
are required to improve system performance. Since wireless systems are preferably designed for
small size, the reuse of amplifiers is widely adopted to reduce the number of devices. Therefore,
the designs of bi-directional amplifiers are concerned by researchers. In this case, there are some
structures to create a bi-directional amplifier [1,2]. However, the additional transmitter/receiver (T/R)
switches in the amplifier result in large size and significant losses. For overcoming these weaknesses,
methods to eliminate the switch have been put forward [3–7]. In Reference [3], the switches were
placed within the bias circuit to achieve a compact structure. However, the operating bandwidth
was narrow and it was difficult to simultaneously optimize the matching network in both forward-
and reverse-paths. To reduce the design complexity of the matching network, some methods were
presented in References [4–6]. Nevertheless, only the interconnected network at the input and output
terminals has been considered, while the amplifier itself is ignored. Since the input- and output-port
impedance of the single amplifier is not flat, the operating band of the bi-directional amplifier cannot
be wide. In Reference [7], resistors were added to a matching network to increase the input and output
return losses (RL). However, the bi-directional amplifier [7] still suffers from a narrow bandwidth.
To improve the bandwidth, distributed bi-directional amplifiers were proposed [8], but the structure
was so complex that it was oversized. Therefore, it could not be applied to miniaturized equipment.
To achieve broadband matching, and maintain a small size, non-Foster reactive elements can be
used [9]. The traditional methods for realizing the non-Foster reactive elements, in general, rely on
active devices (i.e., negative impedance converters and negative impedance inverters), which are
susceptible to instability [10]. Recently, a new method to achieve negative capacitance, and inductance
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with negative group delay (NGD) networks, was proposed [11]. NGD networks can be classified as
passive and active circuits. Passive NGD circuits can be implemented by using RLC resonators [11,12],
finite unloaded quality-factor resonators [13], the feedback loop technique [14], or signal interference
techniques [15,16]. There is loss generated in the NGD networks. Usually, amplifiers are adopted to
compensate for this loss. The NGD circuits including amplifiers is the active NGD circuits [17–19].
Among existing NGD circuits, passive NGD circuits based on RLC resonators are more suitable for
matching networks. In this paper, a modified NGD circuit composed of an RLC resonator is proposed
to achieve broadband matching of a switch-less bi-directional amplifier. At the same time, the NGD
effect can be used to compensate for the positive delay generated by the rest of the amplifier, so
that the overall delay of the bi-directional amplifier is decreased. Compared to the amplifier with
traditional lumped elements, the group delay (GD) becomes flatter. This paper is organized as follows:
the NGD circuits used as matching networks are analyzed in Section 2, in Section 3 a switch-less
bi-directional low noise amplifier with NGD matching network is presented, Section 4 discusses the
results of simulations and measurements, and conclusions are drawn in Section 5.

2. Analysis of Matching Network for Low Noise Amplifier

In this work, the ATF-54143 field-effect transistor (FET) was used to design a low noise amplifier
operating at 0.915 GHz. The amplifier was simulated using Advanced Design System version 2011.
The traditional L-type matching networks (series inductors and shunt capacitors) were used to achieve
matching. The input and output impedance curves after matching are shown in Figure 1. It is seen that
the impedance of the real part is only matched to 50 Ω and the imaginary part is matched to 0 at the
center frequency of 0.915 GHz and their fluctuation was obvious. Therefore, the matching bandwidth
was narrow.
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Figure 1. Impedance curves of the amplifier matched with the traditional method.

In order to improve the matching bandwidth of the amplifier, non-Foster elements are needed.
In recent years, non-Foster elements implemented by NGD circuits were proposed in References [20,21].
Figure 2a,b gives the traditional configurations of NGD circuits. The non-Foster characteristic can be
obtained using these two configurations or their combinations. Compared to the second configuration,
the first configuration is easier to connect with the microstrip line; thus, it is more suitable for the
microstrip matching network.

It can be established that the series impedance of the NGD circuit shown in Figure 2a is:
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S21 can be obtained as:
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S21 =
[

1− Za/
(
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√

Z01Z02 + Za

) ]√
Z02/Z01 (2)

where Z01 and Z02 are the input- and output-port impedances, respectively.Electronics 2018, 7, x FOR PEER REVIEW  3 of 12 
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where U and V are the differential coefficients of Ra and Xa, respectively. The expressions of U and 
V are shown in Equations (6) and (7). 
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Figure 2. Schematics of the (a) original parallel NGD (negative group delay) circuit, (b) original series
NGD circuit, and (c) modified NGD circuit.

According to Equations (1) and (2), the S21 can be further deduced as:

S21 =
2Ra
√
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√
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√
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where Ra and Xa are the real and imaginary part of Za, respectively. Subsequently, the phase can be
derived as:

∠S21 = arctan
(

Xa/(2
√

Z01Z02 + Ra)
)

(4)

By solving the differential of phase, the expression of group delay can be obtained as:
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where U and V are the differential coefficients of Ra and Xa, respectively. The expressions of U and V
are shown in Equations (6) and (7).
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Through analysis, if a negative group delay is required, the following conditions must be satisfied:

(
√

Z01 Z02 + Ra)V < UXa (8)
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As can be seen from Equation (1), only a negative capacitance was obtained under the conditions
of Equation (9).

ωC− 1/(ωL) < 0 (9)

The calculated values of Ca with R = 22 Ω for 0.915 GHz are shown in Figure 3a. It is observed
that some negative capacitance could not be realized. For example, when the input impedance of
the FET was 35.7 − j22.5 Ω at 0.915 GHz, the expected negative capacitance was −7.7 pF for the
impedance matching, but the realizable range of the negative capacitance was from−60 pF to−15.5 pF.
Therefore, a series inductor was inserted into the NGD circuit to ensure the realization of the expected
negative capacitance, as shown in Figure 3b, with R = 22 Ω and Ls = 2.6 nH. The series impedance of
the modified NGD circuit was obtained as:

Zm =
1
R

1
R2 +(ωC− 1

ωL )
2 + j

[
ωLs −

(ωC− 1
ωL )

1
R2 +(ωC− 1

ωL )
2
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= Rm − j 1

ωCm

(10)
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Furthermore, the modified NGD circuit was required to satisfy Equation (11) to achieve
impedance matching.

Rm + M− j
1

ωCm
+ jN = Z0 (11)

where M is the real part of the port impedance of the FET and N (N < 0) is the imaginary part. Therefore,
the compensation of the imaginary part and the matching of the real part can both be achieved. As long
as proper values of the lumped elements are selected, a suitable negative capacitance with the NGD
characteristic can be obtained.
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As there are four unknown quantities, but only two equations (Equations (8) and (11)); the values
cannot be obtained directly. Therefore, Taguchi optimization [22] is applied. C, R, L, and Ls are
optimization variables with the optimization objective of Eqautions (12) and (13).

Rm + M− Z0 = 0 (12)

− 1/(ωCm ) + N = 0 (13)

In order to obtain the NGD characteristic, Equation (8) was also used as a condition for the end of
the iteration. After a finite number of iterations, the values of lumped elements could be obtained.

3. Design of Switch-Less BDLNA

A schematic of the proposed switch-less bi-directional low noise amplifier is shown in Figure 4.
Two low noise amplifiers are loop-back-connected using transmission lines with the characteristic
impedance of Z0 = 50 Ω. The direction of amplification could be controlled by reversing the direct
current (DC) voltage of FET 1© and FET 2©. When FET 1© is working, isolation is obtained by keeping
FET 2© in the deep pinch-off region, and vice versa. The specific working status is shown in Table 1.
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Figure 4. Schematic of the proposed switch-less bi-directional low-noise amplifier. Figure 4. Schematic of the proposed switch-less bi-directional low-noise amplifier.

Table 1. Working status.

Working Mode Input Port Output Port
DC Voltage

FET 1© FET 2©
V1 V2

Forward Port 1 Port 2 5 V 0 V ON OFF
Reverse Port 2 Port 1 0 V 5 V OFF ON

In order to make sure that one path is not affected by the other path, the overall input and
output impedance was considered, which was revealed by the single amplifier in the ON and OFF
modes. The specific method makes the input- and output-port impedances of the amplifier in the OFF
mode as close as possible to the open-circuit impedance. This is achieved by employing a one-section
transmission line of appropriate electrical length [6] so that the ON-mode amplifier, operating in the
active region (VDC = 5 V), is matched by the modified NGD circuit to the 50 Ω impedance at the input,
as well as output, ports, while the OFF-mode amplifier (VDC = 0 V) provides a high impedance at
two ports. Furthermore, the static working point of the ON-mode amplifier was selected to be 3 V,
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with 60 mA, so the bias resistors were R01 = 68 Ω, R02 = 430 Ω and R03 = 51 Ω. The blocking capacitor
Cb and choke inductor Lc were 15 pF and 47 nH, respectively.

Due to the need to combine forward and reverse paths, the flatness of port impedance generated
by a single amplifier was significant. If the impedance could be kept constant in a broadband,
the optimizations, that focus on impedance matching after forward and reverse paths are combined,
will be easy.

In order to simplify the design of the matching circuit, the impedance of the matching network
was selected according to the input impedance of the port, instead of the minimum noise. For the
input port, the impedance of FET was 35.7 − j22.5 Ω. Optimized using the Taguchi algorithm, the
values of elements in the modified NGD circuit were obtained as R1 = 22 Ω, L1 = 4.5 nH, C1 = 1.6 pF,
Ls1 = 2.6 nH. The value of GD generated by the modified NGD circuit is given in Figure 5. The NGD
time was −30 ps at 0.915 GHz. Therefore, the modified NGD circuit cannot only be used to achieve
impedance matching, but also can compensate for the positive group delay.

Similarly, the matching circuit at the output port can be obtained for the impedance
(35.4 − j29.2 Ω) of FET. Therefore, the values of the elements were achieved as R2 = 20 Ω, L2 = 3.3 nH,
C2 = 8.2 pF, Ls2 = 4.7 nH.
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The impedance curves of the input and output after matching with the proposed method are
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4. Manufacturing and Measurements

To validate the proposed method, two switch-less BDLNAs were designed to operate at 0.915 GHz.
The circuits were implemented on a 1.5-mm-thick FR-4 substrate with a relative permittivity of
4.4. The amplifiers were measured using a vector network analyzer and a noise figure analyzer.
A photograph of the traditional BDLNA, using the L-type matching network, is shown in Figure 7a
and that of the proposed one, using NGD matching network, is shown in Figure 7b. The characteristic
impedance of the meander microstrip line is 50 Ω. This is used to transform the input- and output-port
impedances of the OFF-mode amplifier to be a high impedance, meanwhile decrease the influence on
the ON-mode amplifier.
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Figure 7. Photograph of (a) traditional matching BDLNA (bi-directional low noise amplifier) and
(b) proposed matching BDLNA.

The curves of |S11| and |S22| for measurement or simulation are shown in Figure 8. Since the
input and output matching circuits are topological mirror images, the results for the forward- and
reverse-modes are the same. Therefore, only the curves of |S11| and |S22| in the forward mode
are given in Figure 8. As can be seen from Figure 8a, the operating band of the proposed BDLNA
is broader than that of the traditional one. This is because a flatter port impedance is obtained by
using the modified NGD matching circuit for the ON-mode amplifier. After combining the ON- and
OFF-mode amplifiers, the operating band is mainly determined by the bandwidth of the ON-mode
amplifier when the OFF-mode amplifier has a high port impedance.

The curves of the measured |S11| and |S22| are shown in Figure 8b. There are some negligible
differences between the simulation and measurement, which is due to fabrication discrepancies. For the
traditional one, the measured bandwidth of return losses greater than 10 dB is 46 MHz from 899 MHz
to 945 MHz. For the proposed one, the measured bandwidth is 298 MHz from 797 MHz to 1095 MHz.

The gain and isolation curves are depicted in Figure 9. For the proposed one, although there are
some differences between simulated curves and measured curves, the general trend is basically the
same. However, the difference between the isolation of the measurement (16.8 dB) and the simulation
(23.5 dB) is significant for the traditional BDLNA. The reason for this may be due to the port impedance
of the traditional one is not smooth and is greatly affected by the inaccuracy of the fabrication process.
In this case, some energy will be returned to the input port through the reverse path as a result of the
reduced isolation. For the comparison between the measured curves, the gain of the proposed BDLNA
(12.2 dB at 0.915 GHz) is lower than that of the traditional one (14.7 dB). The measured isolation of the
proposed BDLNA (24.2 dB) is better than that of the traditional one (16.8 dB). The reason is that the
NGD circuit can consume energy by leaking from the reverse path. In this way, the proposed BDLNA
can give a better characteristic of isolation.
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The value of the stability factor (SF) is shown in Figure 10. The proposed BDLNA is full-band
stable (SF > 1) within 0.6 GHz–1.2 GHz, but the traditional BDLNA is not stable within some bands
(0.668 GHz–0.784 GHz and 1.105 GHz–1.182 GHz). The reason may be that there is some energy going
through the reverse path to the input port. However, even though there was energy feedback in part
of the frequency band in the proposed structure, the resistors used in the matching network could
consume some feedback energy. Therefore, the stability of the proposed one was better than that of the
traditional one.

The value of the group delay is described in Figure 10; it was 1.67 ns at 0.915 GHz generated
by the traditional BDLNA while it was 0.48 ns for the proposed one. Obviously, the reduction in the
group delay was attributed to the use of the NGD circuits. The NDG matching network does not
introduce positive delay, it also counteracts the positive delay caused by the FET and the transmission
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line. Moreover, larger resistances (R1, R2) could decrease GD more, but also generate more losses.
Meanwhile, a suitable resistance is needed to transfer the port impendence to be 50 Ω. Therefore, there
is a trade-off between the GD and impendence matching performances. In addition, the GD value
of the proposed circuit was much flatter compared to that of the traditional one. However, there is a
drawback; the resistors used in the NGD matching networks will cause additional noise. Therefore,
there also is a trade-off between the GD and noise factor (NF) performances.
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The curves of the measured NF are given in Figure 11. For the traditional BDLNA, the value of NF
is around 3 dB, but the fluctuation is large near the center frequency of 0.915 GHz. For the proposed
BDLNA, the value is about 3.5 dB. The increase in NF was due to the application of resistors in the
NGD matching networks. However, the NF curve of the proposed circuit was flatter compared to that
of the traditional one. Therefore, the flatness of the NF can also be improved using the NGD circuit.Electronics 2018, 7, x FOR PEER REVIEW  10 of 12 

 

 

Figure 11. Measured NF (noise factor) of the traditional and proposed circuit. 

A comparison of the traditional and proposed BDLNAs in this paper with those of previous 
work is shown in Table 2. The relative bandwidth (RBW) of the proposed BDLNA is broader and 
the NF was lower than those in References [6,7,23–26]. For the gain, it was lower than those in 
References [6,7,22,24] except for those in References [25,26]. This is because only a one-stage FET 
was adopted in the proposed circuit, but the cascade of the multi-stage transistor was used in those 
works [6,7,23–26]. In summary, the NGD circuits with non-Foster characteristics can be used for 
impedance matching in order to achieve broadband matching. 

Table 2. Performance comparison. 

Ref. f0 (GHz) Stage Gain (dB) NF (dB) RL (dB) RBW (%) 
[6] 43.3 2 34.1 4.7 10 7.0 
[7] 80.0 3 26.4 7.6 10 8.8 

[23] 7.0 2 6.7 6.1 6.5 - 
[24] 60.3 4 18.8 8.0 10 20.9 
[25] 60.0 4 21.5 6.7 10 17.0 
[26] 42.0 2 6.0 5.5 10 11.9 
[26] 2.5 2 11.0 - 10 * 24.0 

Traditional 0.915 1 14.7 3.0 10 7.7 
Proposed 0.915 1 12.2 3.5 10 32.8 

* is the RL at the input port (the output port is unmatched with RL of 5 dB). 

5. Conclusions 

In this paper, a switch-less BDLNA with an NGD matching circuit was proposed to realize 
broadband characteristics. The direction of amplification could be controlled by simply reversing 
the bias voltages of the FETs. To prove the concept, two amplifiers (a traditional one and the 
proposed one) were fabricated and measured. For the proposed amplifier, the peak gain was about 
12 dB and the noise figure was about 3.5 dB. In addition, the proposed amplifier achieved a broader 
relative bandwidth (32.6%) compared to the traditional one (5.1%). Additionally, the stability factor 
is obviously superior to that of the traditional one, and the group delay is much flatter. 

Author Contributions: Y.M. and Z.W. contributed to the overall study design, analysis, and writing of the 
manuscript. S.F., T.S. and H.L. provided technical support and revised the manuscript. 

Funding: This work was supported in part by the National Natural Science Foundation of China under Grant 
61571075, Grant 61871417, and Grant 51809030, in part by the Youth Science and Technology Star Project 
Support Program of Dalian City under Grant 2016RQ038, in part by the China Postdoctoral Science 

Figure 11. Measured NF (noise factor) of the traditional and proposed circuit.

The measurement results of these two BDLNAs verified that the proposed NGD circuit could
achieve broadband matching. At the same time, higher stability and flatness could also be obtained.

A comparison of the traditional and proposed BDLNAs in this paper with those of previous
work is shown in Table 2. The relative bandwidth (RBW) of the proposed BDLNA is broader and
the NF was lower than those in References [6,7,23–26]. For the gain, it was lower than those in
References [6,7,22,24] except for those in References [25,26]. This is because only a one-stage FET
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was adopted in the proposed circuit, but the cascade of the multi-stage transistor was used in those
works [6,7,23–26]. In summary, the NGD circuits with non-Foster characteristics can be used for
impedance matching in order to achieve broadband matching.

Table 2. Performance comparison.

Ref. f 0 (GHz) Stage Gain (dB) NF (dB) RL (dB) RBW (%)

[6] 43.3 2 34.1 4.7 10 7.0
[7] 80.0 3 26.4 7.6 10 8.8
[23] 7.0 2 6.7 6.1 6.5 -
[24] 60.3 4 18.8 8.0 10 20.9
[25] 60.0 4 21.5 6.7 10 17.0
[26] 42.0 2 6.0 5.5 10 11.9
[26] 2.5 2 11.0 - 10 * 24.0

Traditional 0.915 1 14.7 3.0 10 7.7
Proposed 0.915 1 12.2 3.5 10 32.8

* is the RL at the input port (the output port is unmatched with RL of 5 dB).

5. Conclusions

In this paper, a switch-less BDLNA with an NGD matching circuit was proposed to realize
broadband characteristics. The direction of amplification could be controlled by simply reversing the
bias voltages of the FETs. To prove the concept, two amplifiers (a traditional one and the proposed one)
were fabricated and measured. For the proposed amplifier, the peak gain was about 12 dB and the noise
figure was about 3.5 dB. In addition, the proposed amplifier achieved a broader relative bandwidth
(32.6%) compared to the traditional one (5.1%). Additionally, the stability factor is obviously superior
to that of the traditional one, and the group delay is much flatter.
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