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Abstract: The Phase Locked Loop (PLL) technique has been studied to obtain the phase and
frequency information in grid-connected distributed generations for the sake of synchronizing the
grid voltage and the inverter output current. In particular, the line frequency information, such as the
anti-islanding function, is very important for the grid connection requirement. This paper presents
a novel frequency measurement method from the digital PLL control structure for single-phase
grid-connected PV applications. The conventional PLL controller uses the phase information to
calculate the frequency of PV inverter output voltage after every line cycle and has shown a relatively
low accuracy. This paper uses the angular frequency to directly measure the frequency after every
line cycle. To verify the validity of the proposed method compared with the conventional method,
a simulation was conducted. According to the simulation results, the measurement error of the
proposed method is 80 times lower than the conventional one.

Keywords: phase locked loop; grid-connection; photovoltaic generation; frequency measurement;
PV inverter

1. Introduction

The grid interactive PV system has the fastest growth rate in the world energy industry and has
started to play the dominant role in that industry [1–3]. To obtain grid synchronization between the
grid voltage and the inverter output current, it is very important to obtain grid voltage information,
such as the phase, frequency, and magnitude [3–9]. The frequency measurement, used in the PV
inverter controller, is especially important, since it plays a key role in the inverter current command,
such as the anti-islanding function [10–15].

In general, PLL control methods are commonly used to estimate the phase and frequency of
PV inverter output voltage in order to synchronize them with the utility voltage in distributed
power systems. The simple Zero Crossing Detection (ZCD) method has been used to obtain voltage
phase information by detecting the zero-crossing points of the PV inverter output voltage [16,17].
The ZCD method has several disadvantages, such as low detection speed and possible inaccurate
phase information between the two crossing points [16–18]. Another method, called the digital PLL,
uses the quadrature of the input waveform, shifted by 90 degrees, and has been studied widely until
the present day [18]. In a three-phase system, the dq transformation of the three-phase variables has
the same properties as the digital PLL, and the PLL can be implemented easily [18]. However, in a
single-phase system, it must achieve an additional signal, introducing a phase shift of 90 degrees with
respect to the fundamental frequency of the power system. Single-phase PV systems have received
considerable attention because of their emerging applications, such as PV micro-inverter systems,
as well as vehicle-to-grid and grid-to-vehicle connections [19,20].
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Usually, PLL is used to detect voltage information [21,22]. The conventional PLL controller uses
phase information to calculate the frequency of PV inverter output voltage after every line cycle,
and has shown a relatively low accuracy [23–28]. This paper presents a novel frequency measurement
method, with high accuracy, from the digital PLL control structure for single-phase grid-connected PV
applications. Unlike the conventional PLL technique, the PLL method proposed in this paper uses the
angular frequency to directly measure the frequency after every line cycle.

This paper consists of three sections. Firstly, the control system for a digital PLL, using an all
pass filer, is described. Secondly, the proposed PLL method for a novel line frequency measurement is
explained, analyzed, and compared with the conventional method. Lastly, a frequency measurement
performance comparison between the proposed method and the conventional one, is discussed through
several simulation results for a 350 W single-phase PV micro-inverter.

2. System Configuration

In a three-phase system, utility voltage information, such as the magnitude and angle of the
grid-voltage vector, can easily be obtained. In a single-phase system, the grid voltage information is
obtained by detecting the zero-crossing point. However, the zero-crossing detection method is not
practical due to its sensitivity to noise. Therefore, two virtual phases of PLL operation must be used
for a single-phase system.

To use the reference frame theory for a simple control, the single-phase voltage should be virtual
two-phase voltage that has a 90-degree out-of-phase component. Based on this concept, the PLL for a
single-phase system consists of two stages: A two-phase generator and a phase controller, as shown in
Figure 1.
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Figure 1. Block diagram of PLL for a single-phase PV inverter controller.

2.1. Two-Phase Generator

In Figure 1, Vqs is defined as a 90-degree lagging component of Vds. There are a few ways to
calculate Vqs. In this paper, an all-pass filter is used to achieve the 90-degree out-of-phase component
in the utility voltage, as shown in Figure 2. When the input resistance Ri is equal to the feedback
resistance Rf, there is no magnitude attenuation.

Vout

Vin
=

(
1− j2π f RC
1 + j2π f RC

)
(1)
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Figure 2. Analog lagging all-pass filter topology.

The output voltage phase will be changed to the transfer function in (1), based on the input voltage.

Vout

Vin
=

C1∠θ1

C2∠θ2
=

C1

C2
∠θ1 − θ2 = −2 tan−1(2π f RC) (2)

1∠θ = −2 tan−1(2π f RC) = −90◦, RC =
1

2π f
(3)

Vout

Vin
=
−s + a
s + a

, a =
1

RC
= 2π f (4)

After applying a bilinear transformation of (5) into (4), the discrete all-pass filter equation can be drawn
as Equations (6) and (7).

s =
2
Ts

z− 1
z + 1

(5)

where Ts is the sampling period

Vout(z)
Vin(z)

=
−β + z−1

1− βz−1 , β =
1− aTs

2

1 + aTs
2

=
1− π f

fs

1 + π f
fs

(6)

Vout[n] = −β ·Vin[n] + Vin[n− 1] + β ·Vout[n− 1] (7)

To obtain a 90-degree out-of-phase component from the input voltage, the filter resistance and
capacitance should be determined by (3). If the filter resistance is 1 kΩ, then the filter capacitance will
be 1.5315 µF. In that case, the β is 0.963, and it can be simulated based on (7), as shown in Figure 3.
Obviously, the output signal has a 90-degree out-of-phase lag with respect to the input voltage.

With the grid voltage Vds and the calculated 90-degree out-of-phase lagging voltage Vqs,
the active and reactive component in the reference frame can be drawn by applying the reverse
Park transformation as (8). In (8) and (9), the rotating reference frame is based on the estimated phase
angle θ̂ and the estimated frequency ω̂, as shown in Figure 4.

(
Vde
Vqe

)
=

 cos
∧
θ sin

∧
θ

− sin
∧
θ cos

∧
θ

 ·( Vds
Vqs

)
=

 Vds · cos
∧
θ + Vqs · sin

∧
θ

−Vds · sin
∧
θ + Vqs · cos

∧
θ

 (8)

Vde = Vds · cos
∧
θ + Vqs · sin

∧
θ = Vm sin θ · cos

∧
θ −Vm cos θ · sin

∧
θ = Vm sin(θ −

∧
θ) (9)
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2.2. Phase Controller

As shown in (9), the reactive voltage component Vde should be maintained at zero for the unity
power factor of the estimated phase angle θ̂ to be equal to the real phase angle θ. To control the
estimated phase angle error, ∆ω is obtained using a PI controller. ∆ω is added to the initial value ωff
to achieve the estimated frequency ω̂ and the estimated phase angle θ̂, as shown in Figure 1.

3. The Line Frequency Measurement Techniques from the Digital PLL

The accurate line frequency information from the PLL controller is very significant for the
evaluation of the system’s safety status, which is required to meet national and international grid
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code requirements [29–31]. In addition, this information is used to generate the PV inverter controller
command, such as the anti-islanding function and the Active Frequency Drift (AFD) method [10–12,14].
This section discusses both the conventional PLL technique and the proposed one to calculate the
line frequency.

3.1. The Conventional Method

The operational principle of the conventional PLL technique to calculate the line frequency of
PV inverter output voltage is shown in Figure 5. Angular frequency information (ω̂), as shown in
Figure 1, is also used to calculate phase information. Based on the phase information, the line frequency
is calculated by the relationship between the sampling frequency (fsampling) and the number of the
counter (F_N) during a line cycle, as shown in Figure 5. After a line cycle, the phase information
(wt_vco) does not match the exact one-line cycle phase 2π, because the incremental phase (dwt_vco) is
not small enough. Since the sampling frequency is limited by the microcontroller performance, it is
hard to increase the sampling frequency. In other words, the incremental phase is not small enough.
Thus, the amount of error caused by the phase difference between wt_vco, after a line cycle, and 2π has
a negative effect on the calculated line frequency measurement. Thus, the conventional PLL technique
to measure the line frequency has shown low accuracy.

Electronics 2018, 7, x FOR PEER REVIEW  5 of 11 

 

3. The Line Frequency Measurement Techniques from the Digital PLL 

The accurate line frequency information from the PLL controller is very significant for the 

evaluation of the system’s safety status, which is required to meet national and international grid 

code requirements [29–31]. In addition, this information is used to generate the PV inverter controller 

command, such as the anti-islanding function and the Active Frequency Drift (AFD) method [10–

12,14]. This section discusses both the conventional PLL technique and the proposed one to calculate 

the line frequency. 

3.1. The Conventional Method 

The operational principle of the conventional PLL technique to calculate the line frequency of 

PV inverter output voltage is shown in Figure 5. Angular frequency information (�̂�), as shown in 

Figure 1, is also used to calculate phase information. Based on the phase information, the line 

frequency is calculated by the relationship between the sampling frequency (fsampling) and the number 

of the counter (F_N) during a line cycle, as shown in Figure 5. After a line cycle, the phase information 

(wt_vco) does not match the exact one-line cycle phase 2π, because the incremental phase (dwt_vco) is 

not small enough. Since the sampling frequency is limited by the microcontroller performance, it is 

hard to increase the sampling frequency. In other words, the incremental phase is not small enough. 

Thus, the amount of error caused by the phase difference between wt_vco, after a line cycle, and 2π 

has a negative effect on the calculated line frequency measurement. Thus, the conventional PLL 

technique to measure the line frequency has shown low accuracy. 

 

Figure 5. Flowchart of the conventional PLL technique to calculate the line frequency. 

3.2. The Proposed Method 

The operational principle of the proposed PLL technique to calculate the line frequency of PV 

inverter output voltage is shown in Figure 6. Unlike the conventional method, this method uses the 

angular frequency to directly measure the frequency after every line cycle. As shown in Figure 6, by 

summing the angular frequency (wt_vco) during a single line cycle, the summation of angular 

frequency wt_vco_s can be achieved. After a line cycle, the averaged angular frequency information 

can be generated by dividing the number of the counter F_N for a line cycle. It could be converted to 

Figure 5. Flowchart of the conventional PLL technique to calculate the line frequency.

3.2. The Proposed Method

The operational principle of the proposed PLL technique to calculate the line frequency of PV
inverter output voltage is shown in Figure 6. Unlike the conventional method, this method uses the
angular frequency to directly measure the frequency after every line cycle. As shown in Figure 6,
by summing the angular frequency (wt_vco) during a single line cycle, the summation of angular
frequency wt_vco_s can be achieved. After a line cycle, the averaged angular frequency information can
be generated by dividing the number of the counter F_N for a line cycle. It could be converted to the
line frequency with an appropriate scaling factor k. The scaling factor k is related to several parameters,
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such as the sampling frequency of the microcontroller, the nominal line frequency, etc. In this paper,
the scaling factor k was easily determined by using only one example case. Unlike the conventional
method, there is little relationship between the proposed method and the phase error, causing a phase
difference between wt_vco and 2π. With the proposed method, the phase error only affects the number
of the counter, and its impact is negligible. Therefore, the averaged angular frequency information is
quite reliable for calculating the line frequency.
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4. Simulation Results

To verify the performance accuracy of the proposed PLL method, a simulation was conducted
using a 350 W grid-connected PV micro-inverter application, as shown in Figure 7. Further electrical
specifications of the simulation circuit are shown in Table 1. According to the related international
standards, such as IEEE Std. 1547, the normal frequency range was determined to be between 59.3 Hz
and 60.5 Hz [21].

First, the steady-state responses were discussed. Throughout the normal frequency range,
measured line frequency information was obtained using both the conventional PLL technique and
the proposed one, shown in Figures 8–12. In these figures, the actual frequency means the frequency
command of the grid voltage Vgrid, as shown in Figure 7. As shown in Figure 8, when the grid
voltage source is operated at 60 Hz, the PV inverter output current is maintained in phase with the
PV inverter output voltage. The line frequencies are measured by two different PLL techniques,
as shown in Figure 8. While the measurement error of the line frequency using the conventional
method changes from −0.048 Hz to +0.096 Hz, the measurement error of the line frequency using the
proposed method varies from –0.004 Hz to +0.003 Hz. Obviously, the proposed method shows
a measurement error at least 10 times smaller than that of the conventional method. Similarly,
the measured line frequencies, when the grid frequencies are 60.5 Hz and 59.3 Hz, are shown in
Figures 9 and 10. According to the results shown in Figures 9 and 10, the proposed method shows
higher accuracies than the conventional one. The quantitative analysis of the accuracy of both PLL
techniques is summarized in Table 2. Using the proposed method, the measurement error is around
80 times lower that using the conventional one.
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Secondly, the transient responses using both PLL techniques were analyzed when the grid voltage
frequency was changing dramatically. It was assumed that the grid voltage frequency was changing
from the nominal frequency 60 Hz to two other states, 60.5 Hz and 59.3 Hz. This condition can be
implemented by changing the frequency command of the grid voltage Vgrid at 0.3 s, as shown in
Figure 8. The key waveforms of the PV inverter, when the grid voltage frequency is changing rapidly
from 60 Hz to 60.5 Hz at 0.3 s, are shown in Figure 11. Both methods have the same transient time
of 0.179 s. Similarly, both methods have the same transient time of 0.290 s when the grid voltage
frequency is changing rapidly from 60 Hz to 59.3 Hz at 0.3 s, as shown in Figure 12. This is because
both methods have the same sampling counter for detecting a line cycle.

According to the simulation results, it can be stated that the proposed PLL technique has a higher
accuracy than the conventional one and the same transient response time.

Table 1. Electrical specification of the simulation circuit.

Parameters Value

PV inverter nominal power, Pinv 350 [W]
Nominal grid voltage, Vgrid 220 [V]

Nominal grid frequency, fgrid 60 [Hz]
Number of phase Single

Normal frequency range 59.3 [Hz] ≤ f ≤ 60.5 [Hz]
The scaling factor, k 0.1592

The sampling frequency, fsampling 25 [kHz]

Table 2. Measurement error using two different PLL techniques.

No Grid Frequency PLL Technique Positive Error (%) Negative Error (%)

1 60 Hz
Conventional 0.096 Hz (0.160%) 0.048 Hz (0.080%)

Proposed 0.003 Hz (0.005%) 0.004 Hz (0.007%)

2 60.5 Hz
Conventional 0.033 Hz (0.055%) 0.114 Hz (0.190%)

Proposed 0.002 Hz (0.003%) 0.004 Hz (0.007%)

3 59.3 Hz
Conventional 0.082 Hz (0.137%) 0.058 Hz (0.097%)

Proposed 0.001 Hz (0.002%) 0.003 Hz (0.005%)
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5. Conclusions

In this paper, a novel frequency measurement method for the digital PLL control structure for
single phase grid-connected PV applications is presented. While the conventional PLL controller
uses phase information to calculate the frequency of PV inverter output voltage after every line
cycle, this paper uses the angular frequency to directly measure the frequency after every line cycle.
Thus, the measured frequency of the proposed method is more accurate than that of the conventional
one. According to the corresponding simulation, measuring the line frequency, the measurement
error of the proposed method is around 80 times less than that of the conventional one. By using the
proposed PLL technique, a more accurate line frequency can be achieved, and a more accurate control
command, such as the anti-islanding function and over/under frequency protection, can be generated.
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