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Abstract: Prevalent converters for induction heating (IH) applications employ two-stage conversion
for generating high-frequency magnetic field, namely, AC to DC and then DC to high-frequency
AC (HFAC). This research embarks upon a direct conversion of utility AC to high frequency AC
with the design of a single-phase matrix converter (SPMC) as a resonant converter using a modified
switching technique for IH application. The efficacy of the proposed approach is validated through
different attributes such as unity power factor, sinusoidal input current and low total harmonic
distortion (THD). The developed prototype-embedded system has high pragmatic deployment
potential owing to its cost effectiveness using Arduino mega 2560 and high voltage/current as
well as low switching time IXRH40N120 insulated-gate bipolar transistor (IGBT). Different results
of the prototype-embedded system for IH application have been verified using Matlab Simulink
environment to corroborate its efficacy.

Keywords: Arduino 2560; bi-directional switches; induction heating; resonant converter; resonant
frequency and single-phase matrix converter

1. Introduction

The recent trend shows that the industrial as well as domestic induction heating (IH) has become
extremely popular because of its unique advantages such as higher efficiency, reduced heating time
and environmental friendliness. To implement the IH for different appliances, a high-frequency
(HF) alternating electromotive force (e.m.f.) is required that typically lies between 20 KHz to
100 KHz depending on the type of applications such as brazing, melting processes and for domestic
cooking [1–4]. In the last few decades, various new topologies of HF resonant inverter have been
proposed to generate H.F alternating e.m.f. [5]. However, ongoing research and development are
entering into a new phase ensuring cost-effectiveness [6,7], increased cooling capabilities [8] and high
efficiency [9,10] within the field of electrical power conversion and process.

The conventional IH system follows two stages: (a) rectification [11,12] and (b) HF resonant
inverter operation [13–15]. In the first stage, DC power is obtained using a full bridge diode rectifier.
After rectification, a small value of inductor and capacitor is connected to obtain DC with ripple content
ensuring unity input power factor [12]. This high ripple DC link voltage acts as a power supply for the
HF resonant inverter (Figure 1a). This is also an indirect method for the conversion of supply/grid
frequency to HFAC.

Electronics 2018, 7, 149; doi:10.3390/electronics7080149 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-9893-472X
http://www.mdpi.com/2079-9292/7/8/149?type=check_update&version=1
http://dx.doi.org/10.3390/electronics7080149
http://www.mdpi.com/journal/electronics


Electronics 2018, 7, 149 2 of 17

Various topologies of HF resonant inverters have been developed such as the half-bridge series
resonant inverter (HB-SRI) [16], full bridge series resonant inverter (FB-SRI) [17], single switch
topology [18] etc. Although, these converters have been designed using insulated-gate bipolar
transistor (IGBT) because of its higher current/voltage handling capability, reduced control complexity
and less cost. In addition, IGBTs should have low reverse recovery time and high switching frequency.
It can be seen that owing to different stages in the conventional IH system, its efficiency is automatically
reduced. Moreover, indirect method of conversion uses reactive energy storage elements. Thus,
this method makes the converter bulky and unnecessary losses occur across the diode. Additionally,
two-stage conversion of AC to HFAC conversion increases the number of components used along with
complex control algorithms (such as Phase Locked Loop (PLL), Proportional Integral Derivative (PID)
and Fuzzy logic controller) for obtaining high power factor, low total harmonic distortion (THD) at the
input side and good power quality [19,20]. Overall, these existing topologies increase the cost as well
as complexity of the controller.
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Figure 1. (a) Conventional IH Topology and (b) Block diagram of proposed topology. 
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Figure 1. (a) Conventional IH Topology and (b) Block diagram of proposed topology.

Because of some preceding demerits, the popularity of an indirect method started decreasing
and therefore, researchers started focussing on a direct method of AC conversion [21]. However,
a lot of work has been done in this field and has been widely used in several applications [22,23].
By employing direct AC–AC converters, reductions in both component count, as well as intermediate
DC link reactive element, have been accomplished [24,25]. Matrix converters, Cycloconverter and
AC voltage controllers are examples of direct AC–AC conversion. Recent research shows that with
the evolution of these direct AC–AC converters and their various advanced control techniques, it is
possible to avail it in many applications such as traction system, industrial as well as domestic IH.
The matrix converters are newly advanced converters (AC–AC) that enables high power density and
eliminates DC link components with improved operational life [26].

Currently, direct AC–AC conversion is being applied for IH applications [27–29]. All these
converters use HB–SRI, which relies on four-quadrant equivalent switching devices that are
combination of two anti-series IGBTs. In [30], a SiC based AC to AC converter for domestic IH



Electronics 2018, 7, 149 3 of 17

has been proposed, which uses solely four switches and only single stage energy conversion has been
achieved. Moreover, single-phase matrix converter (SPMC) (which is the part of Matrix Converter)
may also be used for IH applications [31]. Numerous studies have been done related to SPMC and its
switching algorithm but because of its complicacy, less use of SPMC has been seen for IH application
till date [21,32]. However, some authors have proposed a suitable switching algorithm ensuring unity
power factor, commutation strategy and low THD for SPMC in IH applications [33,34]. But these
switching algorithms seem too complicated. Therefore, in this article, to enhance potency and eliminate
DC link components, a SPMC (direct AC–AC converter) is proposed using modified technique to
make it appropriate for IH applications (Figure 1b). This modified switching algorithm/technique
requires only two pulse width modulation (PWM) signal to operate SPMC as a frequency changer or
as resonant converter for IH applications and these pulses has been generated through embedded
system. Due to requirement of less number of PWM signals, the overall cost and complexity of the
controller reduces.

The major contribution of this research is to develop an effective switching pattern such that
SPMC works as a resonant converter and hence, can be applied for IH applications. In pursuance
of this goal, switching frequency is kept higher than the resonant frequency so as to ensure zero
voltage switching (ZVS). The high power factor, sinusoidal input current and low THD have been
major achievements for improving its efficacy considerably. The proposed prototype system is in
full agreement with recent developments in embedded technology Arduino mega 2560 and high
voltage/current as well as low switching time IXRH40N120 IGBT (Appendix A, IXYS Corporation,
Santa Clara, CA, USA). Another unique feature of the proposed technique based on embedded system
is that it utilizes a single stage conversion of 50–60 Hz AC power to HFAC directly (i.e., as a frequency
changer) without any intermediate DC link element using proposed switching algorithm and it has
been congruous with simulated results. Using this technique, a higher frequency can be generated to
meet the criteria of IH system.

The rest of the article is divided into five sections. In Section 2, the modified switching algorithm
for SPMC as a resonant converter for IH application is extensively explained. Simulation results
using modified switching algorithm for SPMC as a resonant converter for IH application has been
done in MATLAB Simulink environment and is presented in Section 3 for validation. Finally,
the hardware/experimental results have been shown in Section 4 which validates the simulation
results and the main conclusion of the proposed article is given in Section 5.

2. Single-Phase Matrix Converter and Its Modified Switching Technique for Induction Heating
(IH) Applications

2.1. Single-Phase Matrix Converter (SPMC)

In this presented work, modified switching technique has been developed for SPMC topology to
generate high frequency directly from grid/supply frequency. SPMC topology was first invented by
Zuckerberger in 1997. It consists of a matrix of input and output lines with four bidirectional switches
which connect the 1-ø input to 1-ø output (Figure 2a,b). Each bidirectional switch has the capability of
conducting current as well as blocking voltage of both polarities simultaneously depending on the
control signal. Generally, common emitter configuration is used for making bi-directional switches for
SPMC. It is also referred to as 2 × 2 order matrix converter. Actually, SPMC can be operated in many
types of converters such as controlled rectifier (AC–DC), inverter (DC–AC), a boost converter (DC–DC)
and as a cycloconverter (AC–AC) [35]. However, in this article, only SPMC as a frequency changer or
as resonant converter is discussed, which is appropriate for the IH applications. This section discusses
how input frequency can be synthesized with the help of this SPMC configuration using modified
switching technique and makes it essential for IH applications.
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Figure 2. (a) 1-ø matrix converter topology and (b) bi-directional switch (common emitter
configuration mode).

2.2. Proposed Switching Technique for SPMC in IH Applications

In the proposed switching technique, only two PWM signal (i.e., Vg1 and Vg2) is required to
operate SPMC as a resonant converter for IH applications. Regarding the generation of these pulses,
a controller has been designed which is based on embedded system. The IH system based on SPMC
topology using proposed controller which generates pulses Vg1 and Vg2 is shown in Figure 3. In this
figure, the proposed controller comprises of zero crossing detector (ZCD), microcontroller unit and
isolation circuit. For generation of pulses, the AC voltage (230 Vr.m.s) is stepped down to 12 Vr.m.s.
Subsequently, this stepped down AC is given to ZCD block that is used to synchronize the pulses (Vg1
and Vg2) with the input AC supply. Now this output of ZCD is fed to the microcontroller Atmega 2560,
which detects the rising and falling edge of the pulse, i.e., Vg (generated from the ZCD). According to
the program fed to the microcontroller, when it detects the rising edge of the pulse (Vg), it generates
the pulse (Vg1) of 10 ms (if the 100 Hz output of the converter is required). When it detects the falling
edge, again it generates a pulse (Vg2) of 10 ms, but this pulse is in complete phase opposition from
previous pulses, shown in Figure 4b. For generating a higher frequency of the pulse, the time period
of the pulses should be considered less during programming. The detailed explanation of prototype
implementation and the experimental results of this proposed controller regarding generation of pulses
(Vg1 and Vg2) have been well explained in Section 4.
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Now, with the help of these two pulses (Vg1 and Vg2), frequency synthesization has been well
presented. The proposed configuration (power circuit of SPMC as in Figure 3) of SPMC as a frequency
changer/resonant converter for IH applications is shown in Figure 4a–c which shows the waveform of
SPMC as a frequency changer (i.e., at 100 Hz output) and as a resonant converter (i.e., at high frequency
of output) using proposed control technique. In Figure 4a, Vi is the input supply voltage, Ls and Cf
are the input inductor and filter capacitor respectively, that are used to reduce the electromagnetic
interference (EMI) effect and also prevent the HF component of voltage/current (generated from the
load side). Four bidirectional switches are used and each of them is a combination of two IGBTs and
two diodes. It is already known that the resonant inverter works at a resonant frequency (Equation (1)).
However, for the IH application, the switching frequency of the resonant inverter should be kept higher
or lower than the resonant frequency to ensure zero voltage switching (ZVS) or zero current switching
(ZCS) conditions for reducing the switching losses across switches [36]. In this work, ZVS condition has
been achieved by maintaining the switching frequency higher than the resonant frequency. To analyze
the system behaviour, IH coil and its load can be modelled as the series equivalent of R0 and L0,
which is already shown in Figure 4a. In addition, the resonating capacitor (Cr) is connected in series
with R0 and L0 to create the series resonance condition.
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The operation of the SPMC using modified switching technique for IH application can be
understood by using 4 modes of operation according to the polarity of the input voltage. Modes 1 and
2 are explained for the positive half cycle and Modes 3 and 4 are explained for the negative half cycle.

Mode 1 (0 < t < t1): In the positive half cycle, switches S1a, S4a, S2b, S3b are forward biased and
S3a, S2a, S4b, S1b are reverse biased. Forward biased switches can be turned ON at any time between
0 to t1 by applying the pulses (Vg1 and Vg2). During this time 0 < t < t1, among the forward biased
switches only two switches (i.e., S1a and S4a) are receiving PWM signal (Vg1) shown in Figure 4b.
Owing to this, only S1a and S4a will be turned ON to create a path for the load current that is,
S1a → D1 → load→ S4a → D7 shown in Figure 5a.
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Mode 2 (t1 < t < t2): This mode is also for the positive half cycle. In this mode, since switches
S1a and S4a are not receiving PWM signal (Vg1), these switches get turned OFF. Now in this mode,
among the forward biased switches, only two switches (S2b and S3b) are receiving PWM signal (Vg2)
shown in Figure 4b. Owing to this, S2b and S3b will be turned ON. Now, the path for the load current
becomes reverse i.e., S2b → D3 → load→ S3b → D5 shown in Figure 5b.

Mode 3 (t2 < t < t3): In the negative half cycle, switches S1a, S4a, S2b, S3b are reverse biased and
S3a, S2a, S4b, S1b are forward biased. Forward biased switches can be turned ON at any time between
t2 to t3 by applying the pulses (Vg1 and Vg2). During this time t2 < t < t3, among the forward biased
switches only two switches (i.e., S3a and S2a) are receiving PWM signal (Vg1) shown in Figure 4b.
Owing to this, only S3a and S2a will be turned ON to create a path for the load current that is,
S3a → D6 → load→ S2a → D4 shown in Figure 6a.Electronics 2018, 7, x FOR PEER REVIEW  7 of 19 
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Table 1. Switches operation status of SPMC. 

Input Voltage 
(Vin) Mode 

Switches 
status 

Time 
Interval 

Output Voltage 
(Vout) 

Vin > 0 
Mode 1 

(S1a/S4a) ON 
(S2b/S3b) OFF 0 to t1 Vout > 0 

Mode 2 (S1a/S4a) OFF 
(S2b/S3b) ON 

t1 to t2 Vout < 0 

Vin < 0 
Mode 3 (S3a/S2a) ON 

(S4b/S1b) OFF 
t2 to t3 Vout > 0 

Mode 4 (S3a/S2a) OFF 
(S4b/S1b) ON 

t3 to t4 Vout < 0 

There are several merits of the proposed switching strategy over conventional techniques [21]. 
Some of them are: 

• Compared to a previous switching strategy, the modified switching strategy has a simple but 
unique generation capability of resonant frequency or switching frequency which is the basic 
need of SPMC as a resonant converter for IH application.  

• Using this modified/proposed switching technique, SPMC can achieve a high frequency 
current very easily but using traditional/conventional switching technique, SPMC can generate 
only integral multiple of input supply frequency i.e., 50 Hz,100 Hz, 150 Hz and so on. That is 
why previous switching topology cannot be applied in the field of IH applications. 

• Also, the design of the controller for the proposed technique is quite simple because it needs to 
generate only two pulses as compared to previously developed switching techniques in which 
four pulses are needed for synthesization of frequency. Owing to this, the proposed technique 
reduces the design complexity of the controller. 

Figure 6. Negative mode of operation (a) Mode 3 and (b) Mode 4.



Electronics 2018, 7, 149 7 of 17

Mode 4 (t3 < t < t4): This mode is also for the negative half cycle. In this mode, since switches
S3a and S2a are not receiving PWM signal (Vg1), these switches gets turned OFF. Now in this mode,
among the forward biased switches, only two switches (S4b and S1b) are receiving PWM signal (Vg2)
shown in Figure 4b. Owing to this, S4b and S1b will be turned ON. Now, the path for the load current
becomes reverse i.e., S4b → D8 → load→ S1b → D2 shown in Figure 6b.

The aforementioned four modes of operations have been applied and are illustrated in
Figures 5 and 6.

From the above modes of operation it can be concluded that SPMC can work as a frequency
changer device as well as resonant converter. From the circuit diagram shown in Figure 4a, it can be
seen that there are two paths for load current in each half cycle. In the positive half cycle, the two paths
for the load current are S1a, D1, load, S4a, D7 and S2b, D3, load, S3b, D5, respectively. In the negative half
cycle, the two paths for the load current are S4b, D8, load, S1b, D2 and S3a, D6, load, S2a, D4, respectively.
Therefore, in this proposed switching algorithm, in each half cycle, the direction of load current could
be changed depending on the time period of the conduction of switches. In other words, the desired
output frequency of the load voltage/current depends on the switching frequency of the switches.
Due to its frequency changer operation, it can be applied in IH application which has been shown in
Figure 4c. By using the above modes of operation, switches’ operation status is given in Table 1.

Table 1. Switches operation status of SPMC.

Input Voltage (Vin) Mode Switches Status Time Interval Output Voltage (Vout)

Vin > 0
Mode 1 (S1a/S4a) ON

(S2b/S3b) OFF 0 to t1 Vout > 0

Mode 2 (S1a/S4a) OFF
(S2b/S3b) ON t1 to t2 Vout < 0

Vin < 0
Mode 3 (S3a/S2a) ON

(S4b/S1b) OFF t2 to t3 Vout > 0

Mode 4 (S3a/S2a) OFF
(S4b/S1b) ON t3 to t4 Vout < 0

There are several merits of the proposed switching strategy over conventional techniques [21].
Some of them are:

• Compared to a previous switching strategy, the modified switching strategy has a simple but
unique generation capability of resonant frequency or switching frequency which is the basic
need of SPMC as a resonant converter for IH application.

• Using this modified/proposed switching technique, SPMC can achieve a high frequency current
very easily but using traditional/conventional switching technique, SPMC can generate only
integral multiple of input supply frequency i.e., 50 Hz, 100 Hz, 150 Hz and so on. That is why
previous switching topology cannot be applied in the field of IH applications.

• Also, the design of the controller for the proposed technique is quite simple because it needs to
generate only two pulses as compared to previously developed switching techniques in which
four pulses are needed for synthesization of frequency. Owing to this, the proposed technique
reduces the design complexity of the controller.

• The proposed switching technique can be applied for both operation of SPMC i.e., as a frequency
changer or as resonant converter.

Consequently, the proposed configuration of SPMC for IH applications shown in Figure 4a has
been modelled as an RLC circuit, which consists of a resistor (Ro), an inductor (Lo) and a capacitor (Cr)
can be used to analyze the system behavior. It should also be noted that, at the resonant frequency,
maximum output power is transferred to the load. Owing to this, a practical converter for IH
applications always works at equal to or greater than the resonant frequency. For analyzing the
circuit of SPMC as a resonant converter for IH applications, the following equations have been applied:
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2.2.1. Resonant Frequency

fr =
1

2π
√

L0Cr
(1)

In terms of angular resonant frequency:

ωr =
1√

L0Cr
(2)

2.2.2. Characteristics Impedances

Zeq =

√
L0

Cr
=

1
2π frCr

= 2π frL0 (3)

In terms of angular frequency:

Zeq =

√
L0

Cr
=

1
ωrCr

= ωrL0 (4)

2.2.3. Load Quality Factor

Q =
Zeq

R0
=

2π frL0

R0
=

1
2π frR0Cr

(5)

In terms of angular frequency:

Q =
Zeq

R0
=
ωrL0

R0
=

1
ωrR0Cr

(6)

2.2.4. Output Impedance of Equivalent Circuit (Figure 4a)

Zeq = R0 + j
(

2π fr −
1

2π frCr

)
= R0

{
1 + jQ

(
2π fn −

1
2π fn

)}
(7)

Zeq = R0

√
1 + Q2

(
2π fn −

1
2π fn

)2
(8)

where 2π fn = 2π f
2π fr

, ϕ = arg{Z(2π f )} = arctan
{

Q
(

2π fn − 1
2π fn

)}
≥ 0.

2.2.5. Fundamental Output Voltage

V0 =

{
Vd, 0 < 2π fst < π

−Vd, π < 2π fst < 2π

}
(9)

Vm =
2Vd
π

2.2.6. Ieq, That Is, Load Current Flowing Through Tank

iLo = Im sin(ωt− ϕ) (10)

where Im = Vm
|Zeq| =

2Vd
π|Zeq| =

2Vd cos ϕ
πRo

= 2Vd

πRo

√
1+Q2

(
2π fn− 1

2π fn

) .
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2.2.7. The Output Power

Pout = I2
m

R0

2
=

2V2
d

πRo

{
1 + Q2

(
2π fn − 1

2π fn

)2
} (11)

In Equation (11), atωn = 2π fn = 1, the circuit becomes resonant, therefore, maximum power is
transferred to the load. Moreover, output power could be varied with the help of a different value of
quality factor (Q).

3. Simulation Results and Its Discussion

To validate the modified proposed technique, simulation has been done in MATLAB/SIMULINK
(R2012a, Dhanbad, Jharkhand, India) environment by using parameters given in Table 2. Firstly,
simulation has been done for the general SPMC under R (100 Ω) load to create different output
frequencies, that is, 100 Hz, 150 Hz and 200 Hz, by using the modified proposed technique with
experimental validation. Subsequently, simulation has been done for the SPMC as a resonant converter,
which works at a switching frequency of 25 kHz (Table 2) in order to validate the modified technique.
Various results and waveforms of voltage and current have been taken along with THD of the input
current through the simulation. Figure 7a shows the PWM controller that generates pulses (Vg1
and Vg2) of different frequencies. Figure 7b depicts the simulation results of pulses waveform (Vg1
and Vg2), generated by the PWM controller are given to the switches of SPMC converter to generate
output voltage/current of a different step up frequency. The frequency and duty cycle of this pulse
is maintained at 25 kHz and 50% respectively. By changing the time period of this PWM controller,
the desired output frequency can be achieved. Basically, in this study, SPMC as a resonant converter
for IH application is focused upon. This direct AC–AC converter has been designed to operate at
a resonant frequency (switching frequency) of 25 kHz, which is greater than the frequency as per
calculation from equation (1), with the parameters of L0 = 52.7 × 10−6 and Cr = 0.8 × 10−6 to satisfy
the criteria of ZVS.

Table 2. Parameters used for the simulation.

Symbol Parameters Value

Vin Input Voltage 230 Vr.m.s
Ls Filter inductance 20 mH
Cf Filter Capacitance 3 uF
f Fundamental Frequency 50 Hz

Cr Resonant Capacitor 0.8 uF
L0 Coil Inductance 52.7 uH
R0 Coil Equivalent Resistance 5 Ω
P0 Output Power for heating 1100 W
fs Resonance Frequency (Switching Frequency) 25 kHz
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Figure 8a,b shows the waveforms of the input voltage (230 Vr.m.s) and input current. Figure 8c
shows the value of THD in input current which was found to be 2.60%. To achieve this low THD
value, a passive filter has been used which is an essential part of SPMC when it needs to operate as
resonant converter for IH system. The HF switching results in the generation of HF harmonics that
has an inherent tendency to back flow towards the supply side and deteriorate the power quality,
resulting in a wide variety of problem like distortion in the grid voltage/current. Thus, the low value of
THD of 2.60% in input current ensures the attenuation of HF harmonics and makes the power supply
of IH system practically viable. As aforementioned, first simulation has been done for generating
100 Hz output using proposed switching technique which is shown in Figure 9a,b. Figure 10 shows
the typical simulated results of output voltage and load current for SPMC as a resonant converter in
IH applications. The root mean square (RMS) value of output voltage and load current are 225.2 V
and 5.162 A, which have been calculated from the continuous RMS block. Therefore, average output
power can be calculated by using the product of these two RMS values. Here, for the calculation of
maximum output average power, ideally cosφ (power factor) is taken as unity because it is known
that at resonant frequency, capacitive reactance and inductive reactance becomes equal, but it is not
the case for practical purposes.

P = VI cosφ; cosφ ≈ 1

P = 225.2× 5.162× 1 = 1162 W
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Figure 10. (a) Simulated waveform of output voltage (Vout) and (b) simulated waveform of output
current (Iout) as a resonant converter for IH application.

Figure 11 depicts the simulated result of the output average power. In this study, the passive filter
has been designed to protect from the high-frequency component at the input side. The equivalent
circuit of the passive filter is shown in Figure 12a. From this figure, it can be observed that Zeq is too
high at a higher resonant frequency (switching frequency), which prevents the flow of HF component
current at the grid side. The simulated voltage waveform across the filter capacitor is shown in
Figure 12b. This figure shows how the HF component has been blocked at the input side.
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In this section, various simulation results of the proposed SPMC as a resonant converter for IH
application using the modified switching technique and its performance analysis have been provided.
As aforementioned, the RLC circuit, which is modeled as an IH load, has been used for analysis.
In the next section, prototype implementation of SPMC as a resonant inverter and its results has
been discussed.

4. Prototype Implementation and Its Results

To verify the converter performance followed by simulation result of SPMC, based on proposed
switching technique for IH application, a prototype laboratory set up has been developed with resistive
load which is shown in Figure 13. When this converter needs to be operated as a resonant converter for
IH application, IH coil could be connected instead of resistive load. An embedded technology-based
Arduino mega 2560 (Mouser electronics, Banglore, India) is used for generating PWM for the gate of
the switches. In this study, firstly, a prototype of the SPMC has been tested for 100 Hz output (i.e., as a
frequency changer operation) using the modified technique. For this, only the resistive load is assumed.
Subsequently, this converter has been tested as a resonant inverter for IH application using the same
modified technique to show the uniqueness of developed technique.
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Figure 13. Experimental setup of (a) SPMC and its (b) bi-directional switch.

The implementation of the hardware circuit is divided into four parts: (a) designing of Power
circuit; (b) ZCD circuit; (c) controller; (d) isolation and protection circuit. For designing of the power
circuit, eight IGBTs and eight diodes have been used. Two IGBTs and two diodes have been used
for making one bidirectional switch. In this study, four bidirectional switches have been used for a
prototype implementation of the power circuit of SPMC, which has been shown in the Figure 13b.
It is known that ZCD is used to detect every zero crossing of input AC voltage for synchronization of
pulses. ZCD has been implemented with the help of Opamp IC741 (Fairchild semiconductor, San Jose,
CA, United States), which works as a voltage amplifier. A synchronized pulse (Vg) generated from
the ZCD is given to interrupt pin of Atmega 2560 (Mouser electronics, Banglore, India) (i.e., digital
pin 2 and digital pin 3) which is assigned as INT0 and INT1, detects the rising and falling edge of the
pulse i.e., Vg (generated from the ZCD). As explained in Section 2.2, that according to program fed
to the microcontroller, when it detects the rising edge of the pulse (Vg), it generates the pulse (Vg1)
of 10 ms (if the 100 Hz output of the converter is needed). Similarly, when it detects the falling edge,
again microcontroller generates a pulse (Vg2) of 10 ms, but this pulse is in complete phase opposition
from previous pulse. The experimental validation of synchronized pulse is shown in Figure 14a,b
shows the validity of synchronization of output voltage with respect to pulses (Vg1 and Vg2).
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As discussed in section 2.2, proposed controller comprises of three main units i.e., ZCD unit, 
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Time, 10 ms/div).

After the synchronized pulses (Vg1 and Vg2) generation, it is given to the isolation circuit which
isolates the converter (higher power level) and controller part (lower power level). The supply for the
microcontroller and isolation circuit is given through a diode rectifier, which is shown in the block
diagram of Figure 3. Subsequently, an isolation circuit has been prepared which is also called the
gate driver circuit. For this, TLP250 optocoupler has been used. The circuit diagram and prototype
implementation of the isolation or driver circuit are shown in Figure 15a,b, respectively. The output
pulses (Vg1 and Vg2) from the isolation circuit are given to the switches of SPMC power circuit.
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As discussed in Section 2.2, proposed controller comprises of three main units i.e., ZCD unit,
microcontroller unit and isolation circuit unit. On combining these three units, the detailed hardware
circuit diagram of the controller is shown in the Figure 16.
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As aforementioned, using the modified technique, SPMC is operated first as a frequency changer 
(which converts 50 Hz grid frequency to 100 Hz with the input of 230 Vr.m.s) with a resistive load and 
later, it is tested as a resonant converter for IH application. Figure 17a,b shows the experimental 
results of SPMC as a frequency changer (at 100 Hz output voltage/current) and SPMC as a resonant 
converter for IH applications at a frequency of 25 kHz which validate simulation results. As seen 
from the Figure 17a,b, current and voltage are almost in the same phase. So experimentally, the load 
power factor in case of when SPMC has operated as a frequency changer (i.e., at 100 Hz output on 
resistive load) was found to be 0.98 which is quite close to unity. In the case of when SPMC has operated 
as resonant converter for IH applications was found to be 0.91. Figure 18 shows the experimental result of 
output voltage with respect to input current which validate that output is perfectly synchronized with 
input supply. The value of THD for the input current is experimentally found to be 3.91% which is quite 
low. Various experimental results of voltage and current waveform under R load or IH coil have been 
taken in a 200 MHz digital signal oscilloscope (DSO) using a current sensor probe to verify the 
validity of proposed/modified switching algorithm. It has been found that, the proposed technique 
can be used in the field of IH applications. 
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IH applications.

As aforementioned, using the modified technique, SPMC is operated first as a frequency changer
(which converts 50 Hz grid frequency to 100 Hz with the input of 230 Vr.m.s) with a resistive load
and later, it is tested as a resonant converter for IH application. Figure 17a,b shows the experimental
results of SPMC as a frequency changer (at 100 Hz output voltage/current) and SPMC as a resonant
converter for IH applications at a frequency of 25 kHz which validate simulation results. As seen from
the Figure 17a,b, current and voltage are almost in the same phase. So experimentally, the load power
factor in case of when SPMC has operated as a frequency changer (i.e., at 100 Hz output on resistive
load) was found to be 0.98 which is quite close to unity. In the case of when SPMC has operated as
resonant converter for IH applications was found to be 0.91. Figure 18 shows the experimental result of
output voltage with respect to input current which validate that output is perfectly synchronized with
input supply. The value of THD for the input current is experimentally found to be 3.91% which is
quite low. Various experimental results of voltage and current waveform under R load or IH coil have
been taken in a 200 MHz digital signal oscilloscope (DSO) using a current sensor probe to verify the
validity of proposed/modified switching algorithm. It has been found that, the proposed technique
can be used in the field of IH applications.
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Figure 17. (a) Experimental verification of simulated output voltage and current at 100 Hz i.e., as a
frequency changer. (Scale: output voltage, 75 V/div; output current, 1 A/div and time, 10 ms/div)
and (b) experimental validation of output voltage and current of SPMC as a resonant converter for IH
applications at 25 KHz. (Scale: Output voltage, 35 V/div; output current, 2 A/div).
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5. Conclusions

In this proposed work, a cogent switching algorithm has been employed for direct conversion
of utility frequency to HFAC through SPMC topology for IH applications. The algorithm requires
less number of components along with fewer PWM signals as compared to the conventional IH
system, thus leading to reduction in the cost and complexity of the controller. This direct AC to high
frequency AC conversion based on proposed switching algorithm enhances the overall efficiency
of the IH system. Various simulation and experimental results corroborate the potential pragmatic
applications of the SPMC as a resonant converter using the proposed switching technique to generate
25 kHz current/voltage directly from the 50 Hz grid frequency. It has the additional ability of reducing
switching losses by incorporating a ZVS condition, high power factor and low input THD which
improve the power quality at the input side.
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Appendix A

Table A1. List of components used for experimental design and their specification.

Components Specification/Ratings

GBT (IXRH40N120)
diode (10A7)

microcontroller
op-amp

diode (1N4007)
centre taped transformer

TLP250
IC Socket base

heat sink
resistance
capacitor

IH coil

(1200 V, 55 A)
(700 V, 10 A)
Atmega 2560

IC741
(1000 V, 1 A)

(12–0–12) V, 2 A
25 kHz

8 pin DIP
for IGBT

1 K, 12 K, 100 Ω, 44 K
470 µF

Litz wire based
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