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Abstract: We address multi-walled carbon nanotubes (MWCNTs) for structural health monitoring in
adhesive bonds, such as in building structures. MWCNT-loaded composites are employed to sense
strain changes under tension load using an AC impedance measurement setup. Different weight
percentages of 1, 1.5, 2 and 3 wt % MWCNTs are added to the base epoxy resin using different
dispersion times, i.e., 5, 10, and 15 min. The equivalent parallel resistance of the specimens is first
measured by applying an alternating voltage at different frequencies. To determine the mechanical
as well as sensory properties, the specimens are then subjected to a tensile test with concurrent
impedance measurement at a fixed pre-chosen frequency. Using alternating voltage, a higher
sensitivity of the impedance reading can be achieved. Employing these sensors in buildings and
combining the readings of a network of such devices can significantly improve the buildings’ safety.
Additionally, networks of such sensors can be used to identify necessary maintenance actions
and locations.
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1. Introduction

The aim to fabricate smart composite structures to improve safety and to monitor structures as
part of our living environment has resulted in a major research effort regarding the composition and
performance of composites based on advanced materials. Advanced materials are used to fabricate
smart sensors based on carbon particles, such as carbon fibers, carbon blocks, graphite [1,2], and also
multi-walled carbon nanotubes (MWCNTs). MWCNTs have distinctive mechanical and electrical
properties. They provide a unique potential to improve the mechanical [3–5] as well as electrical
properties [6–10] of polymer–matrix composites. MWCNT–epoxy adhesives are used for applications
such as electronic devices, smart adhesive joints in buildings and bus structures [11–13], and gas
sensors [14]. In [3], the authors study the tensile behavior of carbon nanotubes (CNT)-loaded epoxy
nanocomposite films, and report that, by adding CNTs to the polymer matrix, the tensile modulus,
yield strength, and ultimate strength of the final polymer films can be increased. In [7], the electrical
properties of CNT–epoxy nanocomposites were improved by surface treatment of the CNT specimens.
A comparison of the electrical and mechanical properties of various carbon-loaded composites with
a focus on their piezo-resistive properties is presented in [15].
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The changes in the electrical resistance result from deformations and failures within the polymer
matrix when the composites are subjected to mechanical loading [16–18]. The two predominant
factors governing the resulting resistance are as follows [19]: first, the contact between two adjacent
carbon nanotubes, which might be broken; second, the change in the tunneling resistance between two
adjacent carbon nanotubes due to variation of the distance between them. A detailed elaboration of
the mechanisms governing the change of the electrical resistance of MWCNT–epoxy nanocomposites
under mechanical stress is given in [20]. Based on these changes in electrical resistance, MWCNT thin
films have been employed for damage sensing [21–23], and CNT-loaded composites were suggested
as strain sensors in the industrial sector for health monitoring [24–26].

It has further been shown that the morphological properties of carbon nanoparticles influence
the response of the respective nanocomposite sensors [27]. The nanocomposite sensors are comprised
of conductive networks or agglomerates distributed within the polymer matrix, where MWCNT
form 1-D structures. The network conductivity is further affected by the weight percentage of
the nanoparticles, mutual interactions between them, and their state of dispersion in the polymer
matrix [28,29], which strongly depend on the preparation and activation process.

In this work, we present a study which investigates the influence of weight percentage of MWCNT
and its dispersion time on the alternating current (AC) impedance. This AC impedance measurement
can provide higher sensitivity by considering, also, the electrostatic properties of the material.
Considering also such frequency dependent parameters, the sensing functionality of MWCNT–epoxy
composites can thus be exploited or even improved, investing less energy. This presents a novelty
compared to aforementioned studies, where direct current (DC) measurement is employed to determine
the electrical properties of the considered specimens.

Low necessary energy facilitates the design of autarkic sensor systems [30] to monitor building
structures. Using technologies such as transducer electronic data sheets (TEDS) [31], these devices
can additionally be integrated into modern building automation facilities. There, a network of such
sensors can provide information on the health state of a building and indicate necessary maintenance.

In Section 2, the material and equipment needed for the preparation method, as well as
the mechanical and electrical testing of the nanocomposites, is presented. First, the preparation
method, which consists of only basic steps, such as mixing and deagglomeration, is introduced.
Then, the tensile testing machine and the electrical impedance measurement for, first, the percolation
threshold, and secondly, during the tensile testing, are described. In Section 3, the results of the
percolation threshold measurements and tensile testing are described, then the microstructure of
the nanocomposites is presented based on scanning electron microscopy (SEM) images. Finally, in
Section 4, concluding remarks on the presented study are given.

2. Materials and Methods

2.1. Materials

The base of the prepared nanocomposites is epoxy as matrix, and MWCNTs as the conductive
nanofiller. The used epoxy resin is EpoThin® (Buehler, Braunschweig, Germany), a free-flowing,
low viscosity, low shrinkage epoxy resin which allows the nanofiller to easily distribute in the EpoThin
matrix. It has a typical cure time of nine hours at 27 ◦C, according to the manufacturer datasheet.
MWCNT conductive nanoparticles by Cheaptube (Grafton, VT, USA) were used. The outer diameter
of the considered MWCNT is 30 to 50 nm. The length of the used MWCNT is between 10 to 20 µm,
with a purity of more than 95%.

2.2. Preparation of Specimens

Due to the exploitation of the conduction, as well as electrostatic effect occurring in the specimen,
the fabrication process can be kept less sophisticated than those reported in previous work [32,33]
without significant loss of sensory properties.
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Weighed amounts of epoxy resin and carbon nanotubes (measured by a digital scale with
accuracy equal to 0.1 mg) were mechanically stirred for 5 min in a beaker. The mixture was then
placed in a shear mixer (IKA T18 digital ULTRA TURRAX, IKA, Staufen, Germany), at 1000 rpm
for 15 min. Then, the dispersion of the MWCNT in the epoxy resin was further accomplished using
an ultrasonic bath (see Figure 1a). Effective means of deagglomerating and dispersing are needed to
overcome the bonding forces after wettening the powders. Therefore, an ultrasonic bath with high
frequency (35–60 kHz) was used to disperse the MWCNTs in the epoxy resin appropriately, and break
agglomerated particles. The time was set accordingly to the considered respective time of dispersion
(see Table 1), and the environmental temperature was kept constant at 25 ◦C. Thus, CNTs with weight
percentages of 1, 1.5, 2, and 3 wt % were dispersed in the epoxy matrix at different dispersion times.
The resin was then combined with hardener in the ratio of 2:1 for 15 min on the stirrer, and was
immediately poured into the dog-bone molds. After 24 h, the dog-bone shape samples, for tensile
testing, were extracted from the mold. The curing temperature affects the electrical properties and
strength of the nanocomposites. Therefore, it is preferred to use room temperature (25 ◦C) for a duration
of one day to cure the specimens. The mold was designed according to the ASTM D638 standard.
In this process, we avoid commonly employed, often complex, activation procedures.

Table 1. Processing conditions of carbon nanotube (CNT)–epoxy sensor.

Amount of CNT Dispersion Time

1; 1.5; 2; 3 5; 10; 15

To facilitate the electrical measurement of the samples, two metallic wires were applied close
to the necking end parts at a specific distance of 7.5 cm. The wires are fixed using conductive silver
adhesive. The surface-ring contact was used to minimize electrical contact resistance (see Figure 1b).
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Figure 1. (a) Magnetic stirrer and ultrasonic bath (b) nanocomposite specimen.

2.3. Mechanical and Electrical Acquisition System

Three specimens were prepared under equivalent conditions for each test case of this study,
and the effect of the dispersion time and various filler contents were investigated on the initial
equivalent parallel resistance. Then, the specimens were subjected to a longitudinal loading
until fracture using a Zwick/Roell Z020 (Zwick, Ulm, Germany) universal testing machine
(see Figure 2 upper right). A crosshead displacement rate of 1 mm/min was applied according to the
standard for polymer testing. The tensile force, longitudinal displacement, and voltage changes were
measured simultaneously versus time.

Electrical measurements were conducted in two steps. The first step was to determine the
frequency-dependent initial equivalent parallel resistance Rp of the specimens using an LCR
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measurement bridge by Extech Instruments. This instrument determines the equivalent parallel
resistance at different frequency settings. The shape of the resulting measurement curves can be
analyzed to determine the respective percolation threshold of the samples; for non-conducting
materials, the resistance will decrease with increasing frequency. This is due to the predominant
capacitive effect that can be observed here. Above the percolation threshold, the resistive behavior will
dominate, and the impedance of the samples stays constant over frequency.

The second step is the impedance measurement at a fixed frequency during the tensile
test. The frequency is chosen in order to optimally exploit the range of the input amplifier.
These measurements are done using a high-speed, high-resolution measurement platform [34,35].
It is based on an FPGA system with a customized analog front-end to enable high-speed,
high-resolution measurements. For series production, the components can be integrated into a system
which, in terms of size and costs, is well suited for the application of commercial structural health
monitoring in buildings.
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The measurement setup is illustrated in Figure 2: Left is the nanocomposite specimen which,
on one side, is connected to the input analog amplifier chain as part of the impedance measurement
hardware. The other side is connected to the output, which supplies a digitally generated sine
signal. In the digital domain, the measurement platform also supplies the algorithms necessary for
signal processing, e.g. down-conversion of the acquired signal. Down-conversion is done to transfer
the measurement signal from a higher measurement frequency to a lower frequency, together with
a reduction of the necessary number of samples. The results can then be used for further processing,
such as analysis and visualization.

A higher measurement frequency can, in the first place, be beneficial to avoid or reduce the
influence of other electrical equipment present near the sensors. This is important when these
nanocomposite sensors are to be employed in buildings which commonly suffer from high electric
emissions due to the used machinery and other equipment. Secondly, in this application, we assume
that improved impedance readings are achieved also for samples below the percolation threshold
through the application of a high frequency measurement signal. Thus, also samples with less attractive
electrical properties, but prepared using a simplified and less time-consuming fabrication process,
might as well be used for sensing.

Through preliminary analysis done in the initial impedance measurements described in Section 3.1,
the measurement frequency for the tensile testing (Section 3.3) is chosen to be 100 kHz with an excitation
voltage of 1 V (signal generator in Figure 2) to optimally exploit the input range of the equipment.
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Via the shunt resistance of 50 Ω, which incorporates a voltage divider with the measurement impedance
(see Figure 2), a voltage reading is recorded, which is proportional to the resistance of the sample.
For a resistance change, the voltage signal also changes accordingly. To determine the impedance
as illustrated in the result diagrams, first a calibration measurement using a known resistance is
done. Using this calibration measurement, and a proportionality factor (to relate the voltage at the
measurement impedance to the voltage at the shunt resistance), the recorded voltage reading can be
corrected to give the equivalent impedance.

3. Results and Discussions

3.1. Achieved Impedance Without Mechanical Loading

The equivalent parallel resistance of the nanocomposite specimens changes significantly when
measured at different frequencies. The results of this initial equivalent parallel resistance measurements
are illustrated for dispersion times of 10 and 15 min in Figures 3 and 4, respectively. In all of these
diagrams, the equivalent parallel resistance Rp decreases with increasing frequency. It can be seen
from the Figure 3 that, when the filler content of MWCNTs increases up to 3 wt %, Rp decreases from
180 MΩ to less than 6 MΩ, given the same dispersion time. The equivalent parallel resistance clearly
shows a flat curve shape at 3 wt %. At this point, the transition from the insulating to the conductive
phase, called percolation threshold, is observed. The experimental method for the determination of the
respective percolation threshold measurement was in compliance with the method used in [36]. Due to
simplifications in the preparation process of the samples, the percolation threshold was achieved with
samples containing a higher weight percent of CNTs.
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Conductive networks formed in the epoxy matrix as conductive fillers are distributed
appropriately within the epoxy matrix [37]. As a result, the initial resistance changes with the employed
dispersion time.

Based on the equivalent parallel resistance value, the effect of dispersion time was investigated
using statistical analysis in Minitab (see Figure 5a,b). Since the resistance does not change significantly
for an increase of the dispersion time above 10 min, this value could be identified as sufficient with
respect to the given process settings. Additionally, this analysis shows that the effect of the dispersion
time is higher at a low weight percent of MWCNTs.
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3.2. Morphology

The dispersion of MWCNTs in the epoxy resin was validated using SEM images. SEM pictures of
the fracture surface of the nanocomposite specimens were taken after the tensile test. In Figure 6a,b,
SEM images of nanocomposites containing 2 wt % MWCNTs at lower and higher magnifications with
5 min dispersion time are given. The highlighted circles in Figure 6a,b mark agglomerated zones of
MWCNTs in the epoxy matrix. When compared to the scale given at the lower right corner of the
images, it can be seen that the size of the highlighted zones is between 10 and 20 µm (see Figure 6b).
However, high degrees of agglomeration have to be avoided when preparing MWCNT composites,
agglomeration zones of diameters larger than 10 µm are required to achieve a sufficient conductivity.
Additionally, we observed a nearly uniform distribution of MWCNTs in the epoxy matrix with
increasing dispersion time and weight percent (see Figure 6c).
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of 1000×.

3.3. Sensing Capabilities during Mechanical Loading

The majority of previous studies used the two-probe method to measure the electrical resistance
changes during the tensile test [38–40], which may provide disadvantages for the DC measurements.
Here, we use an AC measurement setup at an intermediate frequency, therefore, the two-probe method
is sufficient, and the cumbersome preparation of two additional connections per specimen can be
avoided. The sensitivity of the specimen is proportional to the normalized resistance change ∆R/R0,
where ∆R is the resistance increment and R0 is the equivalent parallel resistance value at the chosen
measurement frequency (here 100 kHz). For every specimen, R0 is constant, so that the sensitivity of the
specimen can be related to the impedance changes ∆R [41]. In the following Figures, we consequently
report the absolute impedance change ∆R. The axes giving the impedance changes are plotted at
different scales in the following result graphs. This is done because the impedance changes are at
different ranges.

According to the diagrams in Figure 7, for specimens with a filler content of 2 wt % MWCNTs and
the lowest dispersion time of 5 min, a non-constant and non-uniform change of the electrical impedance
was observed (see Figure 7a). The steep curve segments result from deferments of large agglomeration
zones of CNTs in the epoxy matrix present due to the low dispersion time. The uniformity of the
electrical impedance change curves improves for dispersion times of 10 and 15 min, separately,
as depicted in Figure 7b,c. The curve observed for 3 wt % MWCNTs shows a nearly constant increase
without additional peaks, and thus qualifies the fabricated nanocomposites for continuous sensing
of damage and damage progression. Figure 8 shows the resistance change for a nanocomposite
specimen including 3 wt % MWCNTs with a dispersion time value of 5 min. Nanocomposite
specimens with higher percentage of carbon nanotubes generally exhibit a steeper slope in the electrical
resistance change (see Figure 9). Although an impedance increase cannot be seen for the specimens
with 1, 1.5, 2 wt % CNTs for a displacement lower than 3 mm, it is seen for 3 wt % MWCNTs and
a displacement of at least 0.8 mm. In this region where there is no impedance change, we see the elastic
behavior of the fabricated nanocomposite material. Up to the point where the impedance starts to
change, the material is structurally able to compensate for the applied force.
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Consequently, the specimen with 3 wt % with 10 min dispersion time is more sensitive than the
others (see Figure 9) given the chosen measurement setup. These results are also further consistent with
the SEM image of the nanocomposite with 3 wt % MWCNT at 10 min dispersion time (see Figure 6c).
This filler amount is also determined to be the percolation threshold as elaborated in Section 3.1.
In comparison to the specimens including 1 and 2 wt % MWCNT, the slope of the resistance changes
diagram for the specimens with 3 wt % MWCNTs also exhibits a smoother shape. Georgousis et al. [36]
reported that the highest sensitivity can be achieved close to the percolation threshold. In the present
study, we confirm these results showing that the smoothest curves are achieved above the percolation
threshold. Obviously, the samples below the percolation threshold (1, 1.5, and 2 wt %) can be used
for sensing by applying an AC impedance measurement setup and a suitable read-out strategy to
correct for the non-smooth curve shape. The employment of specimen with different filler content and
dispersion times may be adapted to the application and the sensitivity requirements at certain force
and displacement regions.

Based on the max forces of the specimens using different dispersion time, the max strength was
obtained for every weight percent (Table 2). The maximum strength is the ultimate strength of the
nanocomposite (the apex point of the force-displacement diagram). This is different from the failure
stress, which occurs after this maximum point. A significant difference could be observed between the
maximum forces achieved for specimens containing different percentages of MWCNTs. The specimens
including 3 wt % MWCNTs could withstand less longitudinal force. It can further be seen from
Table 2 that when increasing the filler amount from 1 to 3 wt %, the maximum strength decreases from
68.36 MPa to 50.19 MPa. In general, the strength of nanocomposites obtained from tensile tests were
improved by adding MWCNT to the epoxy matrix. As reported in Table 2, the maximum strength of
the nanocomposites increased with respect to pure epoxy. However, the maximum strength decreased
by adding more than 1 wt % MWCNTs, which is similar to what was reported in [42].
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Table 2. Mechanical properties of the nanocomposites.

Specimen Young‘s Modulus (GPa) Max Strength (MPa)

Pure epoxy 3.533 ± 0.04 47.19 ± 1.05
1 wt % CNT–epoxy 3.045 ± 0.03 68.36 ± 2.74

1.5 wt % CNT–epoxy 3.109 ± 0.04 64.89 ± 1.33
2 wt % CNT–epoxy 2.932 ± 0.05 62.26 ± 1.40
3 wt % CNT–epoxy 2.008 ± 0.02 50.19 ± 1.65

The slopes of the electrical impedance diagrams show that a filler amount equal to 3 wt %
MWCNTs, and at least 10 min dispersion time, provided the highest sensitivity with respect to
displacement and applied force using the suggested measurement setup. However, the mechanical
strength decreased to 50.19 MPa.

4. Conclusions

In this work, we introduce a measurement technique for condition monitoring of damage in
composites for structures and buildings by conductive nano-adhesive. The conductive nano-adhesive
was prepared with various MWCNT contents and different dispersion times. Then, the capability
of the prepared MWCNT–epoxy composites as nanocomposite sensors was studied by determining
their electrical impedance changes during longitudinal loading. It was observed that dispersion
times longer than 10 min provide no significant improvement in the equivalent parallel resistance of
the nanocomposite. Although the maximum tolerated forces of these nanocomposite sensors were
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achieved with 1 wt % MWCNT content, the nanocomposite sensors fabricated with 3 wt % MWCNTs
and a dispersion time of 10 minutes showed better self-damage sensing capabilities in the considered
setup, while still achieving a mechanical strength higher than that of pure epoxy.
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