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Abstract: Contemplating the importance of studying current–voltage curves in superconductivity,
it has been recently and rightly argued that their approximation, rather than incessant measurements,
seems to be a more viable option. This especially becomes bona fide when the latter needs to
be recorded for a wide range of critical parameters including temperature and magnetic field,
thereby becoming a tedious monotonous procedure. Artificial neural networks have been recently
put forth as one methodology for approximating these so-called electrical measurements for various
geometries of antidots on a superconducting thin film. In this work, we demonstrate that the
prediction accuracy, in terms of mean-squared error, achieved by artificial neural networks is rather
constrained, and, due to their immense credence on randomly generated networks’ coefficients,
they may result in vastly varying prediction accuracies for different geometries, experimental
conditions, and their own tunable parameters. This inconsistency in prediction accuracies is resolved
by controlling the uncertainty in networks’ initialization and coefficients’ generation by means of
a novel entropy based genetic algorithm. The proposed method helps in achieving a substantial
improvement and consistency in the prediction accuracy of current–voltage curves in comparison
to existing works, and is amenable to various geometries of antidots, including rectangular, square,
honeycomb, and kagome, on a superconducting thin film.

Keywords: superconducting film; Shapiro steps; artificial neural networks; genetic algorithms;
entropy

1. Introduction

Precisely measuring critical current density in superconducting materials and systems requires
understanding of the fundamentals of current–voltage (IV) characteristics, also called the transport
measurements [1]. Recent studies have shown that these IV curves may show sudden jumps,
which resemble Shapiro Steps, in voltage around critical current (Ic) and/or critical temperature
(Tc) in superconducting thin films. These steps usually appear when the vortex lattice is formed, which
may lead to instability at high vortex velocities. These instabilities have been studied in different
systems including nanotube Josephson Junctions [2], superconducting nanowires [3], low temperature
thin films [4], and a square array of periodic antidots on an Nb film [5]. Studying such behavior in
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superconducting films is important since Shapiro Steps are exploited to make flux Qubits that are
essential for superconducting quantum computers [6]. Other mechanisms that may lead to such
jumps include thermo-magnetic instabilities of vortex matter [7], thermally-assited flux flow [8], or just
overheating of the superconducting film on SiO2 substrate.

Fabrication of various geometries by electron-beam lithography, to obtain transport measurements
via a physical properties measurement system (PPMS), is an expensive, tedious and cumbersome
process [9]. It has been recently pointed out that these curves, especially when they are needed for a
wide range of temperature and magnetic field values, may not be necessarily measured incessantly;
instead, they may be obtained using some approximation technique applied on a finite amount of
curves already obtained via PPMS [10–12]. Artificial Neural Networks (ANN) have been used as
the approximation method in each of these solutions to extrapolate the IV curves for unforeseen
values of critical parameters. It shall be discussed in Section 2.2 that training the ANN requires two
randomly generated networks’ coefficients called weights and biases, which are updated in each iteration,
until an optimal solution (with the smallest mean-squared error, MSE) is obtained. Mainly due to
this randomness in the coefficient generation, ANN tends to converge to one local minima from a
pool of possible solutions, which makes training of the ANN a nondeterministic process. The latter,
in turn, may lead to inordinately varying values of MSE, number of iterations, and time to converge.
In this way, two rounds of training on the same data may result in different prediction accuracies.

The proposed work intends to address the aforesaid problem by controlling the randomness in
coefficient generation, such that the ANN always converges (close) to the global minima, by means
of a novel entropy based genetic algorithm. Our case study is the prediction of IV curves for four
different geometries of antidots, including rectangular, square, honeycomb, and kagome, on an Nb
film. However, the proposed approach is equally applicable to other superconducting films as an
alternative approximation technique for measuring other properties at the same time. The main
contribution of the proposed work, therefore, is the increased accuracy in the prediction of IV curves
by means of Entropy, which in a nutshell is the uncertainty measurement associated with initialization
of the weights and biases. Since ANN are highly dependent on their initial conditions for their fast
convergence and accurate approximation, the selected vector of weights and biases should have a
minimum entropy. To the best of our knowledge, entropy, especially in conjunction with genetic
algorithm (GA), has never been adopted for the prediction of IV curves for a superconducting film,
which, we show, outperforms the conventionally used predictors.

The rest of the paper is organized as following: Section 2 covers our experimental setup and a
brief overview of existing methodologies and relevant works. We present the problem formulation
in Section 3. Section 4 presents the proposed methodology, and an overview of GA. In Section 5,
we present simulation results and a comparative analysis of the used algorithms, before we conclude
the paper in Section 6.

2. Related Work and Experimental Setup

In order to be able to draw a fair comparison between the proposed methodology and the existing
works, we decided to adopt the same experimental setup and the superconducting film of the same
thickness. In what follows, we give an overview of the experimental setup and fundamentals of the
ANN, which is mainly an extract of the benchmark works [10–12].

2.1. Experimental Setup and Measurements Using PPMS

For our experiments, we deposited a high quality 60 nm Nb film on a SiO2 substrate, followed
by fabrication of micro-bridges by ultraviolet photolithography and dry etching in order to obtain
transport measurements. The desired geometries of circular antidots were obtained by applying
e-beam lithography on a photo-resist layer. Finally, magnetically enhanced dry etching transferred the
patterns to the film. A commercially available PPMS was used to perform the transport measurements.
Figure 1 presents the scanning electron microscopy (SEM) of various geometries.
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Figure 1. Scanning Electron Micrograph of superconducting Nb film with four geometries:
top left-right (rectangular-square), bottom left-right (honeycomb-kagome).

In the IV curves measured at different values of temperature and magnetic field, shown in Figure 2,
we observed Shapiro steps around Tc. However, these steps continued to weaken with increasing
temperature until it completely vanished. These temperature dependent curves might be divided into
three regions: between two regions—in each of which the curve showed some slope—there was a
region that comprised the Shapiro steps. We repeatedly varied magnetic fields and kept the current
constant, and vice versa to collect 25,600 samples arranged in a 4 × 4 × 1600 matrix for each
geometry, where 4 × 4 refers to the 4 constant values of current and magnetic fields. In our proposed
work, we isolated one sample from each matrix and subjected the rest for training the ANN model.
Once trained, the isolated sample should be compared with the predicted curve for the same values of
magnetic field and temperature.

2.2. Approximation Using ANN

ANN imitate a human brain and are supposed to perform learning in a given situation and repeat
in another [13]. They tend to establish relationships between independent variables of a small subset,
and are widely used for approximation on a larger sample space by utilizing those relationships.
An ANN architecture, mainly, is an interconnection of several neurons [14] in a directed graph,
which provide mapping from an input layer to an output layer via a few hidden layers sandwiched
in between. The neurons in each layer carry some real weights and bias—together called networks’
coefficients. A different set of weights, which are updated in each iteration of the training process,
leads to a different network’s response. A number of training algorithms exist in literature—each of
which updates the coefficients in a unique manner, but, for most of them backpropagate, their errors
from the output layer to input layer in order to minimize the objective function. The goal of this
training or learning process is to achieve the smallest mean squared error (MSE) between the target
and the actual system’s response [15]. The network’s response carrying only one hidden layer is given
by Equation (1):

yk = δo(
M

∑
j=0

wy
kj(δH(

N

∑
i=0

wH
ji xi + bi)) + bj), (1)

where δo and δH are the threshold or activation function in the output and hidden layer, respectively,
w and b represent weights and bias terms, respectively, and xi represents the ith element in the
input layer.
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Figure 2. The IV characteristics of four geometries at different temperatures and magnetic fields:
top left-right (rectangular-square), bottom left-right (honeycomb-kagome).

Without going into details of the available training algorithms, in this work, we will stick only to
those that were used for the same purpose in the benchmark works. The first work [12] that proposed
to approximate the IV curves for an Nb film made use of Bayesian Regularization (BR) algorithm
for training the ANN for a square array of antidots. The algorithm converged in fifty-five iterations
(epochs), and managed to achieve the best MSE of 2.08× 10−8. This work did not explore other
available options—be it in terms of training algorithms or ANN architectures.

The second benchmark work [10] in contrast did the same for a diluted square lattice and presented
a thorough comparison between three different ANN architectures, each with ten different configurations
(number of neurons in each layer), and trained by six training algorithms—a total of 180 ANN models
were developed, and the best MSE obtained was 4.55× 10−8. Figure 3 shows the MSE obtained by all
the models, where cascaded, feedforward, and layer recurrent are the three ANN architectures; it is
important to note the diversity in the obtained results, which is mainly due to random nature of the
generated coefficients.

The last benchmark work [11] was an extension of the second benchmark, in which a comparison
was drawn between four geometries of antidots on the same Nb film. The lowest MSB reported in this
work was in the order of × 10−9 for a specific architecture and a specific training algorithm. However,
the diversity in the obtained results was once again enormous, and nondeterministic.

Other than these benchmark works, there have been a few notable attempts on proposing
formal models for analyzing IV curves for superconducting devices and films. For instance,
a formal, self-consistent, model was presented for estimating critical current of superconducting
devices [16]. The authors admitted that an array of antidots based thin film was very difficult to
model mathematically. Although its computation burden was less than that of the ANN based
models, it lacked accuracy—tolerance of 4–6% within actual values as compared to the ANN models
having tolerance less than 1% with the actual values. Another attempt based on ANN was presented
by Bonanno et al. [17]. The authors proposed a radial basis function neural network (RBFNN)
and demonstrated that it had a prediction accuracy of about 10−1 (MSE), which is even lesser than the
already existing techniques—let alone our current model based on a genetic algorithm, achieving MSE
in the order of 10−9.
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Figure 3. MSE achieved by a benchmark work for three ANN architectures. Reprinted from [10]
with permission.

3. Problem Statement

Let Ω ⊂ Rν, where ν = 2; ν → { R′ × D′ }|R′ > D′, be an experimental values. Let the selected
feature set, φ = φ(i)|i ∈ Ω where φ1(i), ..., φn(i) ⊂ φ are associated with the ANN training process to
predict output vector φ̃pred. The set of features φ are mapped to φ̃pred: φ → φ̃pred. The output vector
φ̃pred is calculated as:

{φ̃pred
∆
= (δk

WB, popt, δR, δs) ∈ {−1 : 1}, (δk
E, δ′WB, X′o f s, φ

y
pred) ∈ R2},

where the set of variables δk
WB, popt, δR, δs, δk

E, X′o f s and φ
y
pred have been described in the list of symbols.

The objective function in case of ANN is selected to be MSE given in the following relation:

Γ(w̃) = Ψ
Q

∑
q=1

(Γtar − Γact)
T(Γtar − Γact) = Ψ

Q

∑
q=1

e2
q. (2)

4. Proposed Optimization of ANN’s Coefficients

4.1. Genetic Algorithms

Genetic Algorithm (GA) is an evolutionary technique belonging to a class of stochastic search
algorithms, which finds an optimal solution from a pool of solutions based on the principle of survival
of the fittest [18]. In GA framework, each individual is represented by a string called a chromosome,
whereas a group of chromosomes generate a population. For this architecture, weights and biases
vector (chromosome) is generated, which is replicated multiple times to generate a population of some
pre-defined size.

Binary representation of a GA is commonly used where each chromosome is a vector c,
constituting a set of m genes from the set 0, 1:

Ck
i = {Gk

1, Gk
2, ..., Gk

m} Gk
m ∈ {0, 1},

where m is the length of a chromosome.
However, in practical optimization, it is more natural to represent a gene in real numbers for

an optimized solution [19]. The continuous domain provides larger space and more convergence
possibilities. Data range is normalized to the range of 0 −→ 1 prior to binary encoding, and, for this
specific application, the chromosome is a floating point vector. In what follows, we present a few GA
operators, called crossover and mutation, implemented for a thorough technical analysis.



Electronics 2018, 7, 138 6 of 13

4.1.1. Crossover Operators

Selecting a pair of chromosome C1
i = (G1

1 , G1
2 , ..., G1

m) and C2
i = (G2

1 , G2
2 , ..., G2

m) for a multiple
crossover description.

1. Flat Crossover

An offspring Oi is generated where Ok
i = (gk

1, gk
2, ..., gk

m) is a uniformly chosen random value from
the interval [min(G1

i , G2
i ), max(G1

i , G2
i )],

where m is the index for the number of genes and k is the index for the number of chromosomes.

2. Linear Breeder Genetic Algorithm (BGA) Crossover

Under the same consideration as above, let Oi = G1
1 ± rangi.γ.Λ, where Λ = (G2

i −G1
i )/||G1 −G2||

and γ = ∑15
l=0 αl2−l . An α ∈ {0, 1} is generated randomly with the probability of p(αi = 1) = 1/12.

Usually, rangi = 0.5(κi − τi) and − sign is chosen with the probability of 0.8 [20].

3. Arithmetic Crossover

In arithmetic crossover, two Offsprings are generated, Ok = (gk
1, gk

2, ..., gk
m), k = 1, 2 where:

g1
i = λG1

i + (1− λ)G2
i and g2

i = λG2
i + (1− λ)G1

i . Here, λ is a constant and user-defined value,
which can vary with the number of generations.

4.1.2. Mutation Operator

Let the maximum number of generations be represented by Rmax and Rt denotes the generation
on which mutation operator is applied. As per mutation rule:

G′i =

{
Gi + δ(t, κi − Gi), if γ = 0,

Gi + δ(t, Gi − τi), if γ = 1.

4.1.3. Selection

Selection is a process of selecting chromosomes with the smallest value of the cost function.
The selection rate ςrate defines the survivors eligible for mating in the next generation. Generally,
the ςrate = 50%, and the population selection is defined as:

ηrem = ςrate × ηpop, (3)

ηkeep = ηpop − ηrem. (4)

The selection probability depends on the cost weight, calculated as:

Pk =
Ck

∑
ηkeep
j=1 Cj

. (5)

The chromosome with the lowest cost in terms of mean squared error has the highest selection
probability. The other selection methods include roulette wheel, rank selection and tournament [21].
Roulette wheel is a probability based method, whereas the tournament selection is a winner-takes-all
based technique [22].

4.1.4. Operation of a GA

The operation of a GA is summarized as follows:

1. Create an initial population from a randomly generated weights and biases vector.
2. Repeat until the best individuals are selected:
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• Evaluate the fitness using MSE,
• Select the parents with best fitness level,
• Apply the selected crossover and mutation operators.

3. Terminate upon convergence.

Optimization is a process of finding the best possible solution from a given search space. In this
work, an evolutionary strategy is utilized to fine-tune the parameters so as to minimize the cost
function. Considering the GA’s exquisite performance on various platforms, and their ability to handle
larger space problems even for stochastic objective functions, another domain is exploited, which is
to optimize the solutions of artificial neural networks. The procedure has two possible directions:
(1) optimize the weights and biases; and (2) optimize the architecture of ANN. In this work, the former
method is used to improve the prediction accuracy.

4.2. Entropy Based GA for Optimization

For a set of discrete random variables Ck
i = {Gk

1, Gk
2, ..., Gk

m}, the Shannon entropy is defined as
the following:

δE = −
m−1

∑
k=0

(G0
i /δG) log2(G0

i /δG), (6)

δG =
m−1

∑
k=0

Gi
0, (7)

where Gj
i is a vector of weights and biases called a chromosome.

The proposed cascaded design is the conjunction of three separate modules comprising an
entropy calculator, GA optimizer, and ANN’s approximator. Here, the entropy calculator controls
the uncertainty with the constraint of minimum randomness. The resulting vector, which is then
forwarded to the GA module for optimization, comprises weights and biases with either minimum
entropy or maximum repetition. Finally, the third module uses the optimized weights and biases to
train the ANN for final approximation. Figure 4 summarizes the proposed methodology, and therefore
the major contribution of this work, in a flow chart, and the proposed curve approximation with the
optimized coefficients approach is given in Algorithm 1.

Training set

Fitness evaluation

max
generation?

Entropy based  weights & 
biases initialization

Validation set Testing set

Chromosomes selection

Selection

Selected chromosome with
minimum entropy

best fitness
Chromosome with 

Training ANN
approximator

Calculate test
accuracy

criteria

Genetic

No Yes

operators

IV−curves
dataset

Figure 4. Flow chart depicting the proposed methodology.
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Algorithm 1: Entropy based GA for weights and biases optimization

Result: Curve Approximation
1 Begin:
2 Initialize step size (δS), learning rate (δr), k, ε and weights and biases vector δWB.
3 Calculate Entropy δk

E of vector δk
WB using Equation (1), k times.

4 Calculate Fmaxrep and Vmin from δk
E.

5 if ∃ (F(mode(δk
E))) then

6 δ′WB = [Vmaxrep]

7 end
8 else
9 δ′WB = [Vmin]

10 end
11 Return (Weights and biases vector with entropy δ

′
WB)

12 tGA ← 0
13 pop0 ← Initialize from δ

′
WB with (popsize)

14 Evaluate pop0

15 while tGA < Genmax do
16 Parents (χpar) ← Select χpar from popt

17 Offspring (χo f s)← crossover (χo f s, Cprob)
18 mutation (χo f s, Mprob)
19 Evaluate χo f s

20 popt+1 ← actual population through replacement
21 popt & χ′o f s

22 tGA ← tGA + 1
23 end
24 Return (Optimized chromosome (a vector of weights and biases), χ′o f s)

25 tANN ← 0
26 while tANN < (Maxepochs || ε) do
27 Initiate the training process using selected algorithm to compute φ̃pred

28 Update weights and biases (∆W & ∆B)
29 Calculate difference between predicted output and actual output
30 if (φ̃pred ≤ ε) then
31 Exit
32 end
33 tANN ← tANN + 1
34 end
35 Return (Trained network with updated weights and biases)

5. Simulation Results

5.1. Design Parameters

The number of hidden layers is fixed at three, where each has 27, 17, and 8 neurons in order;
this is generally represented by network’s configuration {27 17 8}. The mutation rate is defined to be 0.2
and entropy count variable κ is selected to be 200 for the optimal solution. Maximum generations of
GA and maximum epochs of ANN are fixed to be 1000, while GA tolerance value ε is selected to be
1× 10−8. Learning rate δr and initial step size δs are selected to be 0.9 and 0.8, respectively.
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5.2. Results and Discussion

Table 1 explains the numerical comparisons of five different training algorithms which include
Levenberg–Marquardt (LM), three variants of Conjugate Gradient (CG), and Bayesian, utilizing three
crossover techniques for GA over four different geometries. It can be clearly observed, linear-BGA
crossover technique in conjunction with Bayesian regularization framework outperforms other
methods in terms of minimum epochs and MSE for all geometries. For the mentioned sequence
(Linear-BGA + Bayesian Regularization), epochs are in the range of (36–47), whilst minimum MSE
achieved is in the range of (6.89× 10−9–8.87× 10−9). The worst performance with linear-BGA is
of CGP backpropagation having epochs in the range of 164–394. Similarly, with other crossover
techinques, still Bayesian backpropagation acheives minimum MSE and also minimum epochs.

Figure 5 presents the MSE comparison of selected crossover techinques on all four geometries. It is
clear from the given plots that the proposed algorithm works efficiently when the selected crossover
method is linear-BGA. In order to carry out a fair comparison, the prediction for the same geometries
and algorithms is also performed with conventional ANN techniques, as proposed by the benchmark
solutions, as tabulated in Table 2. It may be noted that the epochs and MSE obtained by the proposed
method are significantly improved, which justifies the effectiveness of our novel design in terms
of prediction accuracy and consistency. In Figure 6, we have presented a comparison between the
predicted and the physically measured IV curves. Note that the curve given here was not included
in the training process of ANN, and was measured at 8.65 K temperature, and 41 Oe magnetic field,
which are identical to the one used by the benchmark works for cross-checking the obtained result.

Table 1. Comparison of ANN’s training algorithms with multiple GA operators.

Algo. Crossover Epochs MSE Crossover Epochs MSE Crossover Epochs MSE

LM

Flat

89 5.87 × 10−7

Linear-BGA

17 3.55 × 10−8

Arithmetic

136 5.87 × 10−7

CGF 205 4.41 × 10−7 292 3.16 × 10−8 181 3.42 × 10−7

CGB 784 2.12 × 10−7 210 4.79 × 10−8 331 9.80 × 10−7

CGP 93 2.60 × 10−7 394 6.08 × 10−8 139 4.41 × 10−7

Bayesian 49 5.84 × 10−8 42 7.50 × 10−9 107 6.24 × 10−8

(a) Square Lattice

LM

Flat

79 4.11 × 10−7

Linear-BGA

39 2.67 × 10−8

Arithmetic

101 3.24 × 10−7

CGF 190 4.20 × 10−7 179 4.66 × 10−8 199 2.79 × 10−7

CGB 650 3.47 × 10−7 265 5.61 × 10−8 387 6.91 × 10−7

CGP 110 1.97 × 10−7 164 7.21 × 10−8 170 5.76 × 10−7

Bayesian 59 4.37 × 10−8 47 6.89 × 10−9 83 1.90 × 10−8

(b) Rectangular Lattice

LM

Flat

94 4.74 × 10−7

Linear-BGA

25 3.21 × 10−8

Arithmetic

121 4.33 × 10−7

CGF 220 4.78 × 10−7 193 4.61 × 10−8 174 2.90 × 10−7

CGB 694 2.76 × 10−7 235 4.71 × 10−8 357 7.21 × 10−7

CGP 101 1.34 × 10−7 271 6.37 × 10−8 157 4.99 × 10−7

Bayesian 62 4.76 × 10−8 41 7.10 × 10−9 91 3.56 × 10−8

(c) Honeycomb Lattice

LM

Flat

87 5.11 × 10−7

Linear-BGA

31 3.66 × 10−8

Arithmetic

132 5.81 × 10−7

CGF 187 4.36 × 10−7 216 4.12 × 10−8 177 3.66 × 10−7

CGB 733 3.08 × 10−7 213 4.53 × 10−8 358 6.54 × 10−7

CGP 113 2.11 × 10−7 308 6.88 × 10−8 151 4.61 × 10−7

Bayesian 54 4.89 × 10−8 36 8.87 × 10−8 83 3.11 × 10−8

(d) Kagome Lattice
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Figure 5. MSE comparison of various cross-over techniques on the selected geometries.

Figure 6. Predicted vs. measured IV characteristics.
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Table 2. Comparison of various ANN’s training algorithms as used in benchmark works.

Geometry Training Algorithm Epochs MSE
LM CGF CGB CGP BR

Square

30 5.73× 10−7

591 9.41× 10−7

252 2.33× 10−6

322 6.21× 10−7

55 2.08× 10−7

Rectangular

39 6.37× 10−7

478 8.33× 10−6

767 4.67× 10−6

388 4.56× 10−7

69 9.22× 10−8

HoneyComb

54 4.33× 10−7

634 3.56× 10−7

276 5.82× 10−7

376 2.76× 10−7

67 8.67× 10−8

Kagome

43 6.77× 10−7

476 4.59× 10−7

291 3.54× 10−7

463 9.34× 10−7

79 8.56× 10−8

6. Conclusions

Being predominantly dependent upon random initial conditions, the generated network’s
coefficients mostly force the artificial neural networks to converge to a different local minima on every
execution. This generally leads to an inconsistent prediction accuracy, even for identical experimental
setup and tunable parameters. In this work, we have proposed an entropy based genetic algorithm,
and used it to control the randomness in coefficient generation. This technique forces the network to
converge (close) to the global minima on every execution, which constrains the prediction accuracy,
measured in mean-squared error, to a certain acceptable level. We have applied our technique to
approximate the current–voltage curves for four different lattices on a superconducting film, and
compared our results with three recent works, which made use of artificial neural networks to achieve
the same. Our results have shown that the proposed methodology yields better consistence and greater
prediction accuracy.
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Abbreviations

The following is a list of abbreviations and symbols used throughout the paper.

Rl Set of real numbers
Ω Subset of features within Rl

φ Selected set of features
φ̃

y
pred Vector of predicted values

δR Learning rate
δs Step size
δk

WB Vector of weights and biases
Ψ MSE constant
δk

E Vector of entropy values
δ′WB Vector of optimized weights and biases
Jwe Jacobian matrix
I Identity matrix
ε Error threshold
$ Direction set variable
rk Input vector
eq Generated error
Γ(w̃) Cost function based on mse
Γtar Target vector
Γact Actual output vector
δo Output layer transfer function
δH Hidden layer transfer function
popt Population size
X′o f s Offspring with maximum fitness

Ck kth chromosome
Gk kth gene
ηrate Population selection rate
δkeep Selected number of individuals in population popt
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