
electronics

Article

A Pipelined FFT Processor Using an Optimal Hybrid
Rotation Scheme for Complex Multiplication: Design,
FPGA Implementation and Analysis

Hung Ngoc Nguyen 1, Sheraz Ali Khan 1 ID , Cheol-Hong Kim 2 and Jong-Myon Kim 1,*
1 School of Computer Engineering and Information Technology, University of Ulsan, Ulsan 680-749, Korea;

hungnguyenvldt@gmail.com (H.N.N.); sherazalik@gmail.com (S.A.K.)
2 School of Electronics and Computer Engineering, Chonnam National University, Gwangju 501-757, Korea;

chkim22@chonnam.ac.kr
* Correspondence: jmkim07@ulsan.ac.kr; Tel.: +82-52-259-2217

Received: 7 July 2018; Accepted: 1 August 2018; Published: 2 August 2018
����������
�������

Abstract: The fast Fourier transform (FFT) is the most prevalent algorithm for the spectral analysis of
acoustic emission signals acquired at ultra-high sampling rates to monitor the condition of rotary
machines. The complexity and cost of the associated hardware limit the use of FFT in real-time
applications. In this paper, an efficient hardware architecture for FFT implementation is proposed
based on the radix-2 decimation in frequency algorithm (R2DIF) and a feedback pipelined technique
(FB) that allows effective sharing of storage between the input and output data at each stage of the
FFT process via shift registers. The proposed design uses an optimal hybrid rotation scheme by
combining the modified coordinate rotation digital computer (m-CORDIC) algorithm and a binary
encoding technique based on canonical signed digit (CSD) for replacing the complex multipliers
in FFT. The m-CORDIC algorithm, with an adaptive iterative monitoring process, improves the
convergence of computation, whereas the CSD algorithm optimizes the multiplication of constants
using a simple shift-add method. Therefore, the proposed design does not require the large memory
typically entailed by existing designs to carry out twiddle factor multiplication in large-point FFT
implementations, thereby reducing its area on the chip. Moreover, the proposed pipelined FFT
processor uses only distributed logic resources and does not require expensive dedicated functional
blocks. Experimental results show that the proposed design outperforms existing state-of-the-art
approaches in speed by about 49% and in resource utilization by around 51%, while delivering the
same accuracy and utilizing less chip area.

Keywords: radix-2 decimation in frequency; fast Fourier transform; feedback; pipelined; modified
coordinate rotation digital computer; field programmable gate arrays

1. Introduction

State-of-the-art methods for the intelligent maintenance of rotary machines rely on the timely
and accurate analysis of condition monitoring signals, such as acoustic emissions (AE) [1–4] and
vibration acceleration signals [5,6]. AE signals are sampled at very high frequencies, typically 1 MHz,
to capture ultrasonic sounds released during the initiation and propagation of cracks in machine
components. Maintenance decisions are made by detecting those faults through spectral analysis
of the envelope signal. The envelope signal is obtained by demodulating the raw AE signal using
the Hilbert transform, and its spectral analysis is carried out using the fast Fourier transform (FFT)
algorithm. Spectral analysis of the AE envelope signals reveals useful information about underlying
bearing faults that is of significant importance in the field of machinery fault diagnosis.

Electronics 2018, 7, 137; doi:10.3390/electronics7080137 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-9594-1457
http://dx.doi.org/10.3390/electronics7080137
http://www.mdpi.com/journal/electronics
http://www.mdpi.com/2079-9292/7/8/137?type=check_update&version=2

Electronics 2018, 7, 137 2 of 18

The FFT is one of the most popular transform algorithms in digital applications, used to
calculate the discrete Fourier transform (DFT), quickly and accurately. Ever since its introduction,
the computational advantages of the FFT have made it an essential algorithm with widespread
applications in science and engineering, such as communication, signal processing, image processing,
bio-robotics, and intelligent maintenance [1,2,4,7–10]. The high-speed requirements of smart
maintenance systems, such as fault diagnosis in rotary machines using the spectral analysis of AE
signals, necessitate a high-performance FFT processor. Thus, design of an efficient FFT processor is of
great significance in meeting the requirements of real-time applications in terms of speed, accuracy,
low cost, and a smaller chip area. The FFT algorithm is mainly implemented on field-programmable
gate arrays (FPGAs) [10–12], which offer advantages such as higher performance, less design time,
and lower costs than digital signal processor–based systems (DSPs) [13–15]. Moreover, the increasing
gate density of FPGAs in recent years has enabled designers to implement data-parallel signal
processing algorithms by using massively parallel architectures that can meet high-speed processing
requirements; this has resulted in implementations on FPGA that deliver outstanding performance in
many applications.

With pervasive applications in signal processing, FFT is the most widely used block in DSP
systems and often occupies most of the chip area in hardware implementations. Conventional FFT
processors are usually implemented using the radix-2 decimation in frequency (R2DIF) algorithm,
which reduces the complexity of computing DFT from O(N2) to O(Nlog2N) [16–18]. To increase a
system’s speed and throughput performance, and make it suitable for real-time signal processing,
a pipelined architecture has commonly been applied to the hardware implementation of FFT
processors [19–21]. However, the increasing complexity and cost of existing designs inhibits their
use for large-point FFT architecture. Likewise, the butterfly operation uses complex adders and
multipliers for twiddle factors (TF) in the FFT processor. These complex multipliers are the primary
speed bottlenecks in the architecture. In addition, TF values are usually pre-computed and stored in
memory. Therefore, a large-point FFT implementation requires a large amount of memory, making
the design even more complex and hence, costly [18,22]. Coordinate rotation for digital computers
(CORDIC) is an effective method for overcoming the memory problem of FFT computation [23]; it can
significantly reduce the resources required to implement TF multiplication. In [24], a memoryless
architecture for FFT computation was presented using CORDIC to minimize the memory requirements,
but its hardware structure is quite complex. Another CORDIC-based FFT processor was proposed
in [25], with a reduced memory footprint and relatively low power consumption. However, it was
primarily a memory-based design and offered comparatively slower processing speed due to the high
latency in its architecture.

In this paper, an efficient FFT processor is implemented using a feedback pipelined technique (FB),
which yields a relatively simple architecture that uses fewer resources and occupies a comparatively
smaller area on the chip than existing systems, while delivering high-speed performance. The most
important feature of the FB architecture is a feedback loop that allows the outputs of the butterfly units
to be fed back to the same memory that is used to store the inputs. This storage sharing at each stage
of the FFT processor reduces the hardware complexity. This proposed R2DIF, FB pipelined-based FFT
processor (R2FB) employs an optimal hybrid rotation scheme based on a modified CORDIC algorithm
(m-CORDIC) and a binary encoding technique based on a canonical signed digit (CSD) to entirely
replace the complex multipliers, reducing the memory required to store the TFs and improving system
speed and resource utilization. The proposed m-CORDIC algorithm uses a controllable iterative
mechanism to enhance the system response time, which is an efficient way to realize the butterfly
operation without requiring any dedicated complex multipliers. As an alternative approach for storing
the complex TF values, the proposed m-CORDIC and CSD–based hybrid rotation scheme stores only
the real TF angles for the butterfly operations, making the hardware design very flexible and efficient
by requiring only adders and shifters in FFT computation, thereby saving resources and chip area.
Furthermore, the proposed R2FB pipelined FFT processor is implemented using only the distributed

Electronics 2018, 7, 137 3 of 18

logic resources in the architecture, thereby saving significant resources by eliminating the dedicated
functional blocks that are widely used by existing implementations. The proposed R2FB pipelined FFT
processor is synthesized in its entirety on the Xilinx Virtex-7 FPGA kit for testing and evaluation.

The main contributions of this paper are listed as follows:

• The design of an efficient FFT processor, in terms of speed, accuracy, and resource utilization that
is suitable for real-time signal processing and requires less area on a chip, remains a challenging
problem. The proposed R2FB design exploits the FB technique and reduces the memory required
at each stage of the pipeline by sharing registers between the input and output at each stage,
thereby improving both the utilization of hardware resources and execution time. The proposed
pipelined architecture offers a more flexible and less complex hardware implementation of FFT
than current designs.

• The m-CORDIC and CSD–based optimal hybrid rotation scheme is proposed to replace the
complex TF multipliers in FFT, which reduces the memory requirements, optimizes the area
on the chip, and improves the processing speed. The proposed m-CORDIC uses a conditional
iterative mechanism via a predefined threshold to determine the number of effective iterations,
which improves the convergence of the algorithm. The proposed optimal hybrid rotation scheme
uses the shift-add method and does not require the dedicated functional blocks in the architecture,
which are available in limited numbers on a target FPGA chip, while still guaranteeing high
performance in terms of speed and precision. With these novel improvements, the proposed
design uses only the distributed logic resources, yielding a highly efficient FFT processor, as
demonstrated by the experimental results.

• Furthermore, the proposed pipelined design uses shift registers replacing the slower memory
blocks to store both the input data and the outputs. This memory-sharing mechanism improves
the speed of the FFT processor and saves more registers and memory in the architecture. The data
paths for the proposed architecture are designed as signed fixed-points and use the number of
variable fractional bits at each computational stage in a pipelined architecture to enhance the
precision of the final results.

The remainder of this paper is organized into the following sections. An overview of the R2DIF
algorithm for FFT computation is given in Section 2. Section 3 briefly describes the m-CORDIC and
CSD–based optimal hybrid rotation scheme and its hardware implementation on FPGA. The hardware
implementation of the proposed R2FB pipelined processor for the FFT computation is presented in
Section 4, and Section 5 analyzes the experimental results and compares them with those of existing
designs. Finally, this work is concluded in Section 6.

2. The Radix-2 Decimation in Frequency (R2DIF) Algorithm for Fast Fourier Transform

The N-point DFT transforms an input signal x(n) into its equivalent representation in frequency
domain X(k) using the following relation:

X(k) = ∑N−1
n=0 x(n)Wkn

N ; 0 ≤ k ≤ N− 1 (1)

where Wkn
N is the twiddle factor (TF) for rotation, which is given as follows:

Wkn
N = e(− j2πkn/N) = cos(

2πkn
N

)− jsin(
2πkn

N
) (2)

The FFT is mostly used to compute the DFT quickly by reducing the number of operations from
O(N2) to O(N log2 N). An efficient radix-2 decimation in frequency (R2DIF) algorithm for FFT is
applied to decompose the N-point input X(k) into even samples X(2k), and odd samples X(2k + 1),
as given in Equations (3) and (4), respectively.

Electronics 2018, 7, 137 4 of 18

X(2k) = ∑
N
2 −1

n=0

(
x(n) + x

(
n +

N
2

))
Wkn

N
2

(3)

X(2k + 1) = ∑
N
2 −1

n=0

(
x(n)− x

(
n +

N
2

))
Wkn

N
2

Wn
N (4)

Here, 0 ≤ k ≤ N/2 − 1. A radix-2 butterfly unit for FFT computation is shown in Figure 1;
it involves an adder and a subtractor followed by a TF multiplier. Because the R2DIF yields the
smallest butterfly unit in the architecture, it makes the design space more flexible relative to other
algorithms. Calculating N-point FFT requires log2 N stages, and each stage includes N/2 butterfly units,
i.e., a sum of (N/2) log2 N butterfly units for N-point FFT. The signal flow graph of a 16-point FFT
using R2DIF algorithm, wshich consists of 32 butterfly operation units in the entire structure, is shown
in Figure 2.

Electronics 2018, 7, x FOR PEER REVIEW 4 of 18

kn n
nk x n x n−

−

 N
2

N 1
2

N=0

N
X(2 +1) = () + W W

2
 (4)

Here, k≤ ≤ −N0 12 . A radix-2 butterfly unit for FFT computation is shown in Figure 1; it involves

an adder and a subtractor followed by a TF multiplier. Because the R2DIF yields the smallest
butterfly unit in the architecture, it makes the design space more flexible relative to other algorithms.

Calculating N-point FFT requires 2log N stages, and each stage includes N
2 butterfly units, i.e.,

a sum of () 2
N log N2 butterfly units for N-point FFT. The signal flow graph of a 16-point FFT

using R2DIF algorithm, which consists of 32 butterfly operation units in the entire structure, is
shown in Figure 2.

Figure 1. A radix-2 butterfly unit of the radix-2 decimation in frequency (R2DIF) algorithm.

Figure 2. The signal flow graph of a 16-point fast Fourier transform (FFT) on the radix-2 decimation
in frequency (R2DIF) algorithm.

Figure 1. A radix-2 butterfly unit of the radix-2 decimation in frequency (R2DIF) algorithm.

Electronics 2018, 7, x FOR PEER REVIEW 4 of 18

kn n
nk x n x n−

−

 N
2

N 1
2

N=0

N
X(2 +1) = () + W W

2
 (4)

Here, k≤ ≤ −N0 12 . A radix-2 butterfly unit for FFT computation is shown in Figure 1; it involves

an adder and a subtractor followed by a TF multiplier. Because the R2DIF yields the smallest
butterfly unit in the architecture, it makes the design space more flexible relative to other algorithms.

Calculating N-point FFT requires 2log N stages, and each stage includes N
2 butterfly units, i.e.,

a sum of () 2
N log N2 butterfly units for N-point FFT. The signal flow graph of a 16-point FFT

using R2DIF algorithm, which consists of 32 butterfly operation units in the entire structure, is
shown in Figure 2.

Figure 1. A radix-2 butterfly unit of the radix-2 decimation in frequency (R2DIF) algorithm.

Figure 2. The signal flow graph of a 16-point fast Fourier transform (FFT) on the radix-2 decimation
in frequency (R2DIF) algorithm.

Figure 2. The signal flow graph of a 16-point fast Fourier transform (FFT) on the radix-2 decimation in
frequency (R2DIF) algorithm.

Electronics 2018, 7, 137 5 of 18

3. The Proposed Modified Coordinate Rotation Digital Computer (m-CORDIC) and Canonical
Signed Digit (CSD)-Based Rotation Scheme

The CORDIC is an effective alternative approach that can be utilized to compute complex
arithmetic functions, including logarithmic, hyperbolic, and trigonometric, only using basic operations
such as shifting and adding [23]. It can be applied to multiply the complex twiddle coefficients
for butterfly operation units in an FFT processor, without requiring any dedicated multiplier blocks,
thereby reducing the area required on the chip and hence its cost and power consumption. The CORDIC
also saves memory resources that would otherwise be required to store the complex TF values.
These savings in time and memory resources make the proposed design faster and more resource
efficient than existing systems. Furthermore, the CSD technique is used to optimize resources of the
constant coefficient multipliers on hardware [26]. The proposed m-CORDIC and CSD–based optimal
hybrid rotation methodology implemented in this study is explained below.

3.1. CORDIC-Based Complex Multipliers

In this paper, the multiplication of the input data x(n) by the complex TF values wn
N, i.e., x(n).wn

N
is equivalent to the rotation of an input vector by the angle θ = 2πn/N, such that wn

N = e−jθ, as shown
in Figure 3a. Assuming rotation of a vector at the coordinates (xi, yi) is performed by an angle θ in the
x-y plane to the new coordinates (xi+1, yi+1) , its equation is given in matrix form as follows:[

xi+1
yi+1

]
=

[
cos θ
sin θ

− sin θ

cos θ

][
xi
yi

]
(5)

Equation (5) can be modified to obtain the following form:[
xi+1
yi+1

]
= cos θ

[
1

tan θ

− tan θ

1

][
xi
yi

]
(6)

The presence of trigonometric functions makes the implementation of Equation (5) and
Equation (6) complex. Therefore, a practical approach is proposed to break the arbitrary angle θ

into a series of smaller angles αi such that θ = ∑n−1
i=0 kiαi, with ki = [−1;+1] representing the direction

of rotation for each iterative step (i = 0, 1, . . . , n− 1), as presented in Figure 3b. By using the arithmetic
property of the tangent function, i.e., tanαi = 2−i, the complexity of the tangent function is reduced
into a series of simple shift operations corresponding to each step i. Thus, the desired angular rotation
is performed using an iterative series of rotation steps via the smaller angles αi. The equation for the
rotation can be rewritten as follows:[

xi+1
yi+1

]
= mi

[
1

ki2−i
−ki2−i

1

][
xi
yi

]
(7)

where mi is the scale coefficient for each iteration step:

mi = cos θ = cos(arctan(2−i)) =
1√

1 + tan2 θ
=

1√
1 + 2−2i

(8)

Equation (8) is derived from the trigonometric identities. After n iterative steps, the scaling
coefficient M is obtained as follows:

M =
n−1

∏
i=0

mi =
n−1

∏
i=0

1√
1 + 2−2i

(9)

Electronics 2018, 7, 137 6 of 18

To compute the R2DIF algorithm, M ≈ 0.6072523 when the number of iterations is sufficiently
large. The rotating direction ki is chosen appropriately depending on the accumulated angle zi.
The value of zi shows the angle difference between the expected rotation and the iterative rotation:

ki = sign(zi) =

{
−1, zi < 0
+1, zi ≥ 0

(10)

zi is determined as follows:
zi+1 = zi − kiarctan

(
2−i
)

(11)

In a more general form, the rotation equations of the CORDIC for computing complex numbers
are given in Equation (12), after dropping the scale coefficient M for hardware simplicity. Because this
scale factor contains only magnitude information and is independent of the rotation angle, the final
scaling coefficient M reaches a certain constant value after n iterative steps. The magnitude of the final
output is thus scaled by M at the end, instead of scaling it for each rotation step.[

xi+1
yi+1

]
=

[
1

ki2−i
−ki2−i

1

][
xi
yi

]
(12)

In addition, zi+1 = zi − kiαi, with αi = arctan
(
2−i).

Electronics 2018, 7, x FOR PEER REVIEW 6 of 18

Equation Error! Reference source not found. is derived from the trigonometric identities. After
n iterative steps, the scaling coefficient M is obtained as follows:

n n

i i
i i

− −

−∏ ∏
1 1

2
=0 =0

1
M = m =

1 + 2
 (9)

To compute the R2DIF algorithm, ≈M 0.6072523 when the number of iterations is sufficiently
large. The rotating direction ik is chosen appropriately depending on the accumulated angle iz .

The value of iz shows the angle difference between the expected rotation and the iterative rotation:

() i
i i

i

z
k z

z

−
 ≥

1, < 0
= sign =

+1, 0
 (10)

iz is determined as follows:

()ii i iz z k −−+1 = arctan 2 (11)

In a more general form, the rotation equations of the CORDIC for computing complex numbers
are given in Equation Error! Reference source not found., after dropping the scale coefficient M
for hardware simplicity. Because this scale factor contains only magnitude information and is
independent of the rotation angle, the final scaling coefficient M reaches a certain constant value
after n iterative steps. The magnitude of the final output is thus scaled by M at the end, instead of
scaling it for each rotation step.

i
i ii

i
i ii

k
k

x x
y y

−

−

−

+1

+1

1 2
=

2 1
 (12)

In addition, i i i iz z k−+1 = α , with ()ii
−α arctan 2= .

(a)

Rotation of a vector)(i ix y, by angleθ

(b)

Rotation through smaller angles iα

Figure 3. Rotation of a vector at the coordinates)(i ix y, in the x-y plane.

Figure 3. Rotation of a vector at the coordinates (xi, yi) in the x-y plane.

Instead of performing the rotation directly through an angle θ, CORDIC performs it using a
number of rotations via the smaller angles αi Assuming that we would like to perform n = 20
iterations with number of angle constants αi, as presented in Table 1, the CORDIC algorithm exploits
all these angle values and their direction ki to compute the desired result, as described in Equation (7).
It means that the rotating angle θ = π

6 is computed in 20 iterations: i.e., θ = π
6 = α0 − α1 + α2 − α3 +

α4 + α5 − α6 + α7 − α8 − α9 + α10 + α11−α14 − α15 − α16 + α17 + α18 − α19. The rotations around
the desired angle corresponding to clockwise or anticlockwise via the sequential values of the αi angle
are efficiently computed using only shift and add operations.

Electronics 2018, 7, 137 7 of 18

Table 1. The pre-computed αi angle values set for rotation.

i tanαi = 2−i αi = arctan(2−i) (Degree) αi (Radian)

0 1.000000000 45.000000000 0.785398163
1 0.500000000 26.565051177 0.463647609
2 0.250000000 14.036243468 0.244978663
3 0.125000000 7.125016349 0.124354995
4 0.062500000 3.576334375 0.062418810
5 0.031250000 1.789910608 0.031239833
6 0.015625000 0.895173710 0.015623729
7 0.007812500 0.447614171 0.007812341
8 0.003906250 0.223810500 0.003906230
9 0.001953125 0.111905677 0.001953123
10 0.000976563 0.055952892 0.000976562
11 0.000488281 0.027976453 0.000488281
12 0.000244141 0.013988227 0.000244141
13 0.000122070 0.006994114 0.000122070
14 0.000061035 0.003497057 0.000061035
15 0.000030518 0.001748528 0.000030518
16 0.000015259 0.000874264 0.000015259
17 0.000007629 0.000437132 0.000007629
18 0.000003815 0.000218566 0.000003815
19 0.000001907 0.000109283 0.000001907

3.2. Implementation of the Pipelined-Based Modified CORDIC Algorithm

There is no general consensus on the number of iterations that the CORDIC algorithm requires
for convergence. Thus, the conventional CORDIC usually has a slow response time because of the
indeterminate nature of the number of iterations that it requires to converge. This paper proposes a
modified CORDIC algorithm (m-CORDIC) in which the iterations are investigated automatically to
improve its convergence and save computational time. The proposed m-CORDIC algorithm overcomes
the disadvantage of the conventional algorithm using an integrated comparator block to compare the
angle accumulator zi to a hard threshold value T after each iteration i such that zi converges to zero.
In this paper, the threshold value is set appropriately at a very small variance of the rotation angle
constants around the desired angle, which ensures high accuracy of the computation. The iteration
stops when zi approaches a value smaller than the predefined threshold. For the rotation angle
values in Table 1, the threshold value is chosen to achieve the desired convergence, as illustrated in
Figure 4. The proposed algorithm is given below. When the input angle is π/6, as mentioned above,
the conventional CORDIC requires almost 20 iterations to achieve the desired angle. The proposed
method takes only nine iterations to converge to a very small residual value of 7.16 × 10−4.Electronics 2018, 7, x FOR PEER REVIEW 9 of 18

Figure 4. Evaluating the change of rotation angle by the number of iterations.

Figure 5. The hardware architecture of the pipelined modified coordinate rotation digital computer
(m-CORDIC) algorithm with n-stage.

For a sufficient number of iterations n , the accumulated scaling coefficient is ≈M 0.6072523 .
The final results need to be multiplied by this scaling coefficient. Because M is a constant value, an
improvement of its multiplication can be performed by the optimal hybrid rotation scheme for the
m-CORDIC architecture using the CSD technique. This scheme further reduces chip area
requirements while saving processing time.

3.3. CSD Representation in Optimizing the Constant Multipliers

In general, multipliers often take a lot of area on the chip. However, the constant coefficient
multipliers can be realized using adders and shifters only. The shifters and adders depend on the
number of non-zero bits in the binary constant. In this study, CSD is used as an efficient solution for
the binary representation of a constant because it has the least number of non-zero bits that are
non-consecutive; therefore, it requires the fewest shifters and adders to determine the product. The
CSD is presented in Algorithm 2.

Algorithm 2 The CSD for a constant representation
1: d = count of the number of consecutive “1” bits in a binary series
2: if ≥d 2 , replacing them by a new sequence 10…01, where 1: +1 and 1: – 1

e.g.,11 101→ ; 111 1001→ ; 1101111 10 1 1000 1→
3: continue checking and replacing the value pairs: 1 1 01→ ; 11 01→ ; 1 1 1 01→

e.g., 10110001 10010001→

Figure 4. Evaluating the change of rotation angle by the number of iterations.

Electronics 2018, 7, 137 8 of 18

Algorithm 1 The m-CORDIC using the controllable iterative mechanism

Start with the input values: xin, yin, zin
With i from 0 to n − 1, calculation: αi = arctan(2−i)
Definition of the initial z0 angle accumulator
Select the threshold value: T = α10

The initial iteration: i = 0 and i ≤ n− 1
Consideration of the conditions:

while zi > T and select = 1 do
update the data values
if zi ≥ αi

xi+1 = xi −yi·2−i

yi+1 = yi + xi·2−i

zi+1 = zi − αi
else

xi+1 = xi +yi·2−i

yi+1 = yi - xi·2−i

zi+1 = zi + αi
end if condition
i = i + 1

end while condition

Hardware implementation of the m-CORDIC is performed using the pipelined technique,
as presented in Figure 5, where each pipelined stage mainly includes shifters, adders, and comparators
for conditional multiplication; whereas, the registers for storing data are located between stages.
The iterative operations in Equation (12) are performed in parallel in an unrolled manner such that
each processing element in the architecture always executes in the same iteration. This iterative
structure is easily pipelined by inserting registers between different stages to store the intermediate
data for further computation. Therefore, the m-CORDIC computes directly using the input data,
which allows for a substantial reduction in buffer memory blocks and the complete removal of the
complex multipliers in FFT rotation. The controller correctly determines the amount of shift and the
kind of calculation to execute at each clock cycle. The rotated directions of the original vector for the
next iteration are determined from the signed bit of the previous accumulated angle zi. Through these
rotated directions, the types of arithmetic operations

(
+
−
)

are defined at each pipelined stage in the
architecture. The initial angle z0 = zin equals the desired angle value; after n iterations are completed
using the aforementioned approach, the achieved angle zn−1 is equal to or smaller than the specified
threshold, which is also the convergence condition of the algorithm. The computational precision of
the algorithm is accumulated via each stage in the architecture, such that a pipelined stage corresponds
to an iterative step of the algorithm.

For a sufficient number of iterations n, the accumulated scaling coefficient is M ≈ 0.6072523.
The final results need to be multiplied by this scaling coefficient. Because M is a constant value,
an improvement of its multiplication can be performed by the optimal hybrid rotation scheme for the
m-CORDIC architecture using the CSD technique. This scheme further reduces chip area requirements
while saving processing time.

Electronics 2018, 7, 137 9 of 18

Electronics 2018, 7, x FOR PEER REVIEW 9 of 18

Figure 4. Evaluating the change of rotation angle by the number of iterations.

Figure 5. The hardware architecture of the pipelined modified coordinate rotation digital computer
(m-CORDIC) algorithm with n-stage.

For a sufficient number of iterations n , the accumulated scaling coefficient is ≈M 0.6072523 .
The final results need to be multiplied by this scaling coefficient. Because M is a constant value, an
improvement of its multiplication can be performed by the optimal hybrid rotation scheme for the
m-CORDIC architecture using the CSD technique. This scheme further reduces chip area
requirements while saving processing time.

3.3. CSD Representation in Optimizing the Constant Multipliers

In general, multipliers often take a lot of area on the chip. However, the constant coefficient
multipliers can be realized using adders and shifters only. The shifters and adders depend on the
number of non-zero bits in the binary constant. In this study, CSD is used as an efficient solution for
the binary representation of a constant because it has the least number of non-zero bits that are
non-consecutive; therefore, it requires the fewest shifters and adders to determine the product. The
CSD is presented in Algorithm 2.

Algorithm 2 The CSD for a constant representation
1: d = count of the number of consecutive “1” bits in a binary series
2: if ≥d 2 , replacing them by a new sequence 10…01, where 1: +1 and 1: – 1

e.g.,11 101→ ; 111 1001→ ; 1101111 10 1 1000 1→
3: continue checking and replacing the value pairs: 1 1 01→ ; 11 01→ ; 1 1 1 01→

e.g., 10110001 10010001→

Figure 5. The hardware architecture of the pipelined modified coordinate rotation digital computer
(m-CORDIC) algorithm with n-stage.

3.3. CSD Representation in Optimizing the Constant Multipliers

In general, multipliers often take a lot of area on the chip. However, the constant coefficient
multipliers can be realized using adders and shifters only. The shifters and adders depend on the
number of non-zero bits in the binary constant. In this study, CSD is used as an efficient solution
for the binary representation of a constant because it has the least number of non-zero bits that
are non-consecutive; therefore, it requires the fewest shifters and adders to determine the product.
The CSD is presented in Algorithm 2.

Algorithm 2 The CSD for a constant representation

1: d = count of the number of consecutive “1” bits in a binary series
2: if d ≥ 2, replacing them by a new sequence 10 . . . 01, where 1: +1 and 1: – 1

e.g., 11→ 101 ; 111→ 1001 ; 1101111→ 10110001
3: continue checking and replacing the value pairs: 11→ 01 ; 11→ 01 ; 11→ 101

e.g., 10110001→ 10010001

The CSD can significantly reduce the number of shifters and adders required for the multiplication
of a constant, thereby reducing its area and power consumption and enhancing its performance.
This study uses CSD to optimize the multiplication of the final results by the constant scaling factor M
after determining the number of iterations n of the m-CORDIC. The 16-bit conventional binary and
CSD-based representations for M are given in Table 2, along with a comparison of resource utilization
for the multiplier in each case, as shown in Figure 6. The results show that implementation of constant
multipliers using the proposed approach needs about 37.5% fewer hardware resources.

Table 2. Binary representation of the constant multiplier in conventional way and canonical signed
digit (CSD).

Conventional Binary CSD

Constant scaling factor M = 0.607253 M = 0.607253
Binary expression 0100110110111010 0101001001001010

of shifters 8 5
of adders 8 5

Electronics 2018, 7, 137 10 of 18

Electronics 2018, 7, x FOR PEER REVIEW 10 of 18

The CSD can significantly reduce the number of shifters and adders required for the
multiplication of a constant, thereby reducing its area and power consumption and enhancing its
performance. This study uses CSD to optimize the multiplication of the final results by the constant
scaling factor M after determining the number of iterations n of the m-CORDIC. The 16-bit
conventional binary and CSD-based representations for M are given in Table 2, along with a
comparison of resource utilization for the multiplier in each case, as shown in Figure 6. The results
show that implementation of constant multipliers using the proposed approach needs about 37.5%
fewer hardware resources.

Table 2. Binary representation of the constant multiplier in conventional way and canonical signed digit (CSD).

 Conventional Binary CSD
Constant scaling factor M = 0.607253 M = 0.607253

Binary expression 0100110110111010 0101001001001010
of shifters 8 5
of adders 8 5

Figure 6. Hardware implementation of the constant multiplier in conventional way and canonical
signed digit (CSD).

4. Hardware Implementations of Pipelined Fast Fourier Transform (FFT) Processor

In this paper, an effective FB pipelined design is proposed for the implementation of an FFT
processor on hardware with minimal requirement for multipliers and memory. The control logic of
the proposed design is also rather simple, making the proposed R2FB pipelined design highly
flexible and with low complexity for system implementation on FPGAs. Using the proposed
m-CORDIC and CSD–based optimal hybrid rotation method, the performance of the FFT processor
is improved in terms of execution time and resource consumption, thus making this design more
suitable for applications requiring real-time signal processing.

4.1. Implementation of R2DIF Feedback (FB) Pipelined FFT Architecture

To realize a high performance FFT processor on hardware, an R2DIF butterfly unit is designed
based on the FB pipelined technique. Instead of using a large number of memory blocks, leading to
lower efficiency of the resultant hardware implementation, the FB pipelined architecture uses only
shift registers (data buffers) to store the immediate data at each pipelined stage. The shift registers
are designed in a feedback manner using FB to share the storage between input and output data at
each stage. A block diagram of the proposed R2FB butterfly unit for FFT computation, shown in
Figure 7, implements the complex multipliers using the m-CORDIC and CSD–based optimal hybrid
rotation approach instead of the conventional complex multipliers used in typical FFT
implementations.

Figure 6. Hardware implementation of the constant multiplier in conventional way and canonical
signed digit (CSD).

4. Hardware Implementations of Pipelined Fast Fourier Transform (FFT) Processor

In this paper, an effective FB pipelined design is proposed for the implementation of an FFT
processor on hardware with minimal requirement for multipliers and memory. The control logic of
the proposed design is also rather simple, making the proposed R2FB pipelined design highly flexible
and with low complexity for system implementation on FPGAs. Using the proposed m-CORDIC
and CSD–based optimal hybrid rotation method, the performance of the FFT processor is improved
in terms of execution time and resource consumption, thus making this design more suitable for
applications requiring real-time signal processing.

4.1. Implementation of R2DIF Feedback (FB) Pipelined FFT Architecture

To realize a high performance FFT processor on hardware, an R2DIF butterfly unit is designed
based on the FB pipelined technique. Instead of using a large number of memory blocks, leading to
lower efficiency of the resultant hardware implementation, the FB pipelined architecture uses only
shift registers (data buffers) to store the immediate data at each pipelined stage. The shift registers are
designed in a feedback manner using FB to share the storage between input and output data at each
stage. A block diagram of the proposed R2FB butterfly unit for FFT computation, shown in Figure 7,
implements the complex multipliers using the m-CORDIC and CSD–based optimal hybrid rotation
approach instead of the conventional complex multipliers used in typical FFT implementations.Electronics 2018, 7, x FOR PEER REVIEW 11 of 18

Figure 7. Block diagram of the R2DIF, FB FFT processor (R2FB) pipelined stage with two different
implementation approaches.

In a conventional R2FB butterfly unit based on the FB pipelined architecture, as presented in
Figure 8, the multiplication of TF values involves calculating four real products, two real sums, and
one imaginary sum. On an FPGA, the complex multiplication is done either by using a specialized
DSP block or by using real multipliers and adders. The proposed R2FB design works on a single data
stream that is sequentially forwarded and directly computed through the butterfly unit at each
stage. The dimensions of the FB shift register banks for storage decreases by half in the architecture

when the number of stages increases by one. If N is the number of required FFT points, s
N

2
 is

the size of the data buffer for storage at the s-th pipelined stage of the FFT processor S(s = 1, 2, ...,)
. Each pipelined stage is an effective R2FB module for quickly calculating the DFT using various
memory capacities. The pipelined architecture for N points has a similar R2FB module, which is
repeated for 2S = log N stages. This design is flexible and scalable to any number of FFT points.

Figure 8. The hardware architecture of a conventional R2FB pipelined stage.

The function of each stage in the R2FB pipeline is illustrated in Figure 8, and we refer to it as the
processing element. The processing element contains butterfly units for the addition and subtraction
of the input data stream at each stage, a block of the data buffer to store intermediate data, and a
complex multiplier for the rotation computation in FFT, as shown in Figure 8. The controller block
plays a vital role in generating and scheduling the control signal in accordance with the system. A
read-only memory (ROM) is used to store and provide the TF values for rotation, which can be
designed using distributed logic resources such as slice registers, configurable logic blocks (CLBs),
lookup tables (LUTs), or the available memory blocks. In conventional approaches, implementation
of a large-point FFT processor thus requires a large amount of memory, which occupies many
hardware resources. In addition, an addressing controller is needed to prevent memory conflicts in

Figure 7. Block diagram of the R2DIF, FB FFT processor (R2FB) pipelined stage with two different
implementation approaches.

In a conventional R2FB butterfly unit based on the FB pipelined architecture, as presented in
Figure 8, the multiplication of TF values involves calculating four real products, two real sums, and one
imaginary sum. On an FPGA, the complex multiplication is done either by using a specialized DSP

Electronics 2018, 7, 137 11 of 18

block or by using real multipliers and adders. The proposed R2FB design works on a single data
stream that is sequentially forwarded and directly computed through the butterfly unit at each stage.
The dimensions of the FB shift register banks for storage decreases by half in the architecture when
the number of stages increases by one. If N is the number of required FFT points, N

2s is the size of the
data buffer for storage at the s-th pipelined stage of the FFT processor (s = 1, 2, . . . , S). Each pipelined
stage is an effective R2FB module for quickly calculating the DFT using various memory capacities.
The pipelined architecture for N points has a similar R2FB module, which is repeated for S = log2 N
stages. This design is flexible and scalable to any number of FFT points.

Electronics 2018, 7, x FOR PEER REVIEW 11 of 18

Figure 7. Block diagram of the R2DIF, FB FFT processor (R2FB) pipelined stage with two different
implementation approaches.

In a conventional R2FB butterfly unit based on the FB pipelined architecture, as presented in
Figure 8, the multiplication of TF values involves calculating four real products, two real sums, and
one imaginary sum. On an FPGA, the complex multiplication is done either by using a specialized
DSP block or by using real multipliers and adders. The proposed R2FB design works on a single data
stream that is sequentially forwarded and directly computed through the butterfly unit at each
stage. The dimensions of the FB shift register banks for storage decreases by half in the architecture

when the number of stages increases by one. If N is the number of required FFT points, s
N

2
 is

the size of the data buffer for storage at the s-th pipelined stage of the FFT processor S(s = 1, 2, ...,)
. Each pipelined stage is an effective R2FB module for quickly calculating the DFT using various
memory capacities. The pipelined architecture for N points has a similar R2FB module, which is
repeated for 2S = log N stages. This design is flexible and scalable to any number of FFT points.

Figure 8. The hardware architecture of a conventional R2FB pipelined stage.

The function of each stage in the R2FB pipeline is illustrated in Figure 8, and we refer to it as the
processing element. The processing element contains butterfly units for the addition and subtraction
of the input data stream at each stage, a block of the data buffer to store intermediate data, and a
complex multiplier for the rotation computation in FFT, as shown in Figure 8. The controller block
plays a vital role in generating and scheduling the control signal in accordance with the system. A
read-only memory (ROM) is used to store and provide the TF values for rotation, which can be
designed using distributed logic resources such as slice registers, configurable logic blocks (CLBs),
lookup tables (LUTs), or the available memory blocks. In conventional approaches, implementation
of a large-point FFT processor thus requires a large amount of memory, which occupies many
hardware resources. In addition, an addressing controller is needed to prevent memory conflicts in

Figure 8. The hardware architecture of a conventional R2FB pipelined stage.

The function of each stage in the R2FB pipeline is illustrated in Figure 8, and we refer to it as the
processing element. The processing element contains butterfly units for the addition and subtraction
of the input data stream at each stage, a block of the data buffer to store intermediate data, and a
complex multiplier for the rotation computation in FFT, as shown in Figure 8. The controller block
plays a vital role in generating and scheduling the control signal in accordance with the system.
A read-only memory (ROM) is used to store and provide the TF values for rotation, which can be
designed using distributed logic resources such as slice registers, configurable logic blocks (CLBs),
lookup tables (LUTs), or the available memory blocks. In conventional approaches, implementation of
a large-point FFT processor thus requires a large amount of memory, which occupies many hardware
resources. In addition, an addressing controller is needed to prevent memory conflicts in data access
for the butterfly unit. Thus, designs that require huge memories can be inefficient for the pipelined
implementation of FFT on FPGAs.

4.2. The Proposed R2FB Pipelined FFT Processor Using m-CORDIC and CSD-Based Hybrid Rotation Scheme

The FFT processors designed in a conventional way offer poor performance in execution time and
resource utilization. To correct this issue, the m-CORDIC algorithm is the most appropriate candidate
for implementation of rotation in the FFT computation on an FPGA to achieve efficiency in terms of
execution time, accuracy, and resource utilization on the hardware. For the computation of N = 1024
points FFT, the proposed R2FB FFT processor would be too large to clearly illustrate its implementation
on a FPGA; therefore, the proposed R2FB design for 16-point FFT is given in Figure 9 to highlight its
salient features and advantages. It has four stages, each of which consists of a butterfly unit, a CORDIC
multiplier, a shift register bank for holding data, a ROM for storing angle values, and a switching
logic to control the data streams for computation. The switching module contains mostly multiplexers
that select and rearrange the processed data streams on the previous stage in the correct order before
transferring them to the next processing stage.

The proposed m-CORDIC, with improvements in controlling the number of effective iterations
required for convergence, optimizes the use of hardware resources and the area needed on a chip.
Instead of holding the complex TF values, it stores only the real rotation angle values, which reduces
the memory requirements and enhances the processing speed. The proposed algorithm is further

Electronics 2018, 7, 137 12 of 18

improved by using CSD to optimize the constant coefficient multipliers, as presented in Section 3.3.
The m-CORDIC and CSD-based optimal hybrid rotation method effectively and completely replaces
the conventional multipliers at each processing stage of the log2 N pipelined stages in the proposed
R2FB design, as shown in Figure 10. The implementation of m-CORDIC in pipelined architecture is
discussed particularly in Section 3.2. At each R2FB stage, the multiplier’s input (Input_Mul) and the
adder’s input (Input_Add) to the butterfly unit of the next stage are outputs from the previous stage.
The switching arbitrates the data streams between pipelined stages in the architecture. Sharing the
feedback shift registers for storage saves significant memory for the system. Moreover, as given in
Section 3.3, optimizing the constant multipliers using CSD can reduce the design complexity by 37.5%.
Additionally, the data samples consist of only real values at the first stage; thus the m-CORDIC is also
optimized effectively for those real values. Furthermore, the rotation of the coefficient WN/2

N = −j in
FFT can be computed by merely interchanging the value of the real part and the imaginary part in a
product using only the multiplexers and inverters, which saves more resources and further improves
the processing speed.

Electronics 2018, 7, x FOR PEER REVIEW 12 of 18

data access for the butterfly unit. Thus, designs that require huge memories can be inefficient for the
pipelined implementation of FFT on FPGAs.

4.2. The Proposed R2FB Pipelined FFT Processor Using m-CORDIC and CSD-Based Hybrid Rotation Scheme

The FFT processors designed in a conventional way offer poor performance in execution time
and resource utilization. To correct this issue, the m-CORDIC algorithm is the most appropriate
candidate for implementation of rotation in the FFT computation on an FPGA to achieve efficiency
in terms of execution time, accuracy, and resource utilization on the hardware. For the computation
of N = 1024 points FFT, the proposed R2FB FFT processor would be too large to clearly illustrate its
implementation on a FPGA; therefore, the proposed R2FB design for 16-point FFT is given in Figure
9 to highlight its salient features and advantages. It has four stages, each of which consists of a
butterfly unit, a CORDIC multiplier, a shift register bank for holding data, a ROM for storing angle
values, and a switching logic to control the data streams for computation. The switching module
contains mostly multiplexers that select and rearrange the processed data streams on the previous
stage in the correct order before transferring them to the next processing stage.

Figure 9. The proposed R2FB pipelined FFT processor for 16 points on field-programmable gate
array (FPGA) hardware.

The proposed m-CORDIC, with improvements in controlling the number of effective iterations
required for convergence, optimizes the use of hardware resources and the area needed on a chip.
Instead of holding the complex TF values, it stores only the real rotation angle values, which reduces
the memory requirements and enhances the processing speed. The proposed algorithm is further
improved by using CSD to optimize the constant coefficient multipliers, as presented in Section 3.3.
The m-CORDIC and CSD-based optimal hybrid rotation method effectively and completely replaces
the conventional multipliers at each processing stage of the 2log N pipelined stages in the proposed
R2FB design, as shown in Figure 10. The implementation of m-CORDIC in pipelined architecture is
discussed particularly in Section 3.2. At each R2FB stage, the multiplier’s input (Input_Mul) and the
adder’s input (Input_Add) to the butterfly unit of the next stage are outputs from the previous stage.
The switching arbitrates the data streams between pipelined stages in the architecture. Sharing the
feedback shift registers for storage saves significant memory for the system. Moreover, as given in
Section 3.3., optimizing the constant multipliers using CSD can reduce the design complexity by
37.5%. Additionally, the data samples consist of only real values at the first stage; thus the
m-CORDIC is also optimized effectively for those real values. Furthermore, the rotation of the

coefficient −N/2
NW = j in FFT can be computed by merely interchanging the value of the real part

and the imaginary part in a product using only the multiplexers and inverters, which saves more
resources and further improves the processing speed.

Figure 9. The proposed R2FB pipelined FFT processor for 16 points on field-programmable gate array
(FPGA) hardware.Electronics 2018, 7, x FOR PEER REVIEW 13 of 18

Figure 10. The hardware architecture of a proposed R2FB pipelined stage using m-CORDIC and
CSD-based hybrid rotation scheme.

Efficiency of the proposed R2FB design is validated by evaluating its performance and
comparing it with that of the conventional architecture, which mainly uses the memory blocks to
hold the complex TF values pre-computed for FFT, and a modified design of the conventional
architecture that uses distributed logic resources instead of expensive dedicated functional blocks.
The efficiency of the aforementioned FFT processors is evaluated while computing FFT for different
points or signals of different lengths in the experimental results. Furthermore, the proposed R2FB
processor is also compared with state-of-the-art FFT implementation.

5. Experimental Results

The proposed R2FB pipelined FFT processor and the other aforementioned designs for
comparison were implemented on a Virtex 7 XC7VX485T FPGA using the Verilog hardware
description language. The functional verification, timing simulation, and synthesis were performed
using the specialized Xilinx Vivado Design Suite tool. The data paths are designed in a signed
fixed-point format with 16-bit word length and 10-bit precision for the fractional part. The output is
formatted dynamically such that the number of fractional bits is variable at each computational stage
to improve the system precision.

The conventional R2FB design (A) was implemented using mainly the memory blocks for
storing the complex TF coefficients that were pre-computed for FFT. The register slices and LUTs
were utilized to compute and store the generated intermediate data during the operation process,
whereas the complex multiplications were realized using DSP blocks embedded in the FPGAs. The
modified R2FB design (B) was implemented using the distributed logic of CLBs and LUTs for
computation instead of a large number of embedded dedicated blocks on the FPGAs. In this case, the
slice registers and LUTs effectively replaced the memory blocks, storing both the complex TF
coefficients and the intermediate data. In hardware implementations, multiplications by the
complex TF values in FFT are commonly processed by the DSP blocks, which usually occupy a
significant area space on FPGAs. Thus, a hardware implementation of the complex multipliers must
be carefully considered to optimize chip resources and enhance processing speed. For this system
(B), using the radix-2 algorithm and the number of FFT points defined for a system to determine the
TF values as constants using Equation (2), and those values are then stored as a lookup table. Hence,
the FFT rotation becomes a series of complex constant multiplications that can be calculated using
the shift-add method instead of embedded DSP blocks. This way, this approach saves 100% of the
dedicated functional blocks on FPGAs, but it consumes many of the distributed logic resources. In
contrast to those conventional approaches, the proposed R2FB pipelined FFT processor (C) also uses
only the slices of distributed logic on a chip without requiring any complex multiplication blocks or

Figure 10. The hardware architecture of a proposed R2FB pipelined stage using m-CORDIC and
CSD-based hybrid rotation scheme.

Efficiency of the proposed R2FB design is validated by evaluating its performance and comparing
it with that of the conventional architecture, which mainly uses the memory blocks to hold the complex
TF values pre-computed for FFT, and a modified design of the conventional architecture that uses
distributed logic resources instead of expensive dedicated functional blocks. The efficiency of the
aforementioned FFT processors is evaluated while computing FFT for different points or signals

Electronics 2018, 7, 137 13 of 18

of different lengths in the experimental results. Furthermore, the proposed R2FB processor is also
compared with state-of-the-art FFT implementation.

5. Experimental Results

The proposed R2FB pipelined FFT processor and the other aforementioned designs for comparison
were implemented on a Virtex 7 XC7VX485T FPGA using the Verilog hardware description language.
The functional verification, timing simulation, and synthesis were performed using the specialized
Xilinx Vivado Design Suite tool. The data paths are designed in a signed fixed-point format with 16-bit
word length and 10-bit precision for the fractional part. The output is formatted dynamically such that
the number of fractional bits is variable at each computational stage to improve the system precision.

The conventional R2FB design (A) was implemented using mainly the memory blocks for storing
the complex TF coefficients that were pre-computed for FFT. The register slices and LUTs were utilized
to compute and store the generated intermediate data during the operation process, whereas the
complex multiplications were realized using DSP blocks embedded in the FPGAs. The modified
R2FB design (B) was implemented using the distributed logic of CLBs and LUTs for computation
instead of a large number of embedded dedicated blocks on the FPGAs. In this case, the slice registers
and LUTs effectively replaced the memory blocks, storing both the complex TF coefficients and the
intermediate data. In hardware implementations, multiplications by the complex TF values in FFT
are commonly processed by the DSP blocks, which usually occupy a significant area space on FPGAs.
Thus, a hardware implementation of the complex multipliers must be carefully considered to optimize
chip resources and enhance processing speed. For this system (B), using the radix-2 algorithm and the
number of FFT points defined for a system to determine the TF values as constants using Equation (2),
and those values are then stored as a lookup table. Hence, the FFT rotation becomes a series of complex
constant multiplications that can be calculated using the shift-add method instead of embedded
DSP blocks. This way, this approach saves 100% of the dedicated functional blocks on FPGAs, but
it consumes many of the distributed logic resources. In contrast to those conventional approaches,
the proposed R2FB pipelined FFT processor (C) also uses only the slices of distributed logic on a chip
without requiring any complex multiplication blocks or memory blocks for storage in architecture.
The m-CORDIC and CSD–based optimal hybrid rotation method for this design improves resource
utilization, reduces hardware complexity, and lowers costs, resulting in higher efficiency both in terms
of resources and speed compared to the other designs. An evaluation of the hardware complexity and
performance of the three approaches for a 1024-point FFT processor is provided in Table 3.

Table 3. The achieved hardware results of an FFT implementation with the different approaches.

Methods
Usage # of Slice

Registers
of Slice

LUTs
of

IOBs
of

BRAMs
of

DSP48Es
of Clocking

Buffers
Total # of

Clock Cycles
Execution
Time (µS)

(A) 2076 3159 92 4 30 1 2066 10.332
(B) 1611 16,336 92 0 0 1 2024 10.118
(C) 1393 11,865 92 0 0 1 1034 5.168

The proposed R2FB pipelined FFT processor uses the input data directly for computation, enabling
it to process faster and at less power than the conventional designs leaning more on memory based
architecture, which use the slower and more power intensive load instructions to fetch the TFs.
As shown in Table 3, the proposed architecture (C) for computing 1024-point FFT can save the
distributed logic resources about 13.53% in slice registers and 27.37% in slice LUTs and improve the
processing speed by about 49% compared to the modified approach (B).

In this paper, all three designs used the distributed logic resources of slice registers and LUTs
to implement their logic functions, which is a general measure of the area on FPGAs. However,
the conventional memory-based designs also use dedicated block random-access memory (BRAM)
and 48-bit DSP element (DSP48E) functional blocks. The area of design is usually measured through

Electronics 2018, 7, 137 14 of 18

the number of slice registers, LUTs, BRAMs, DSP48Es in the architecture. It is essential to estimate
the area of all designs precisely using an effective common metric. In this paper, we measured the
area required by all designs using the number of slices, the primary element in all FPGAs, as the main
metric. In the Virtex-7 family, each DSP48E block consists of an adder, a 25 × 18 multiplier, and an
accumulator, whereas each BRAM block is fundamentally 36 Kb in size and can be used for storing
data. With those capacity values, we obtained the equivalent area of the DSP and BRAM blocks in
terms of slices [27], as given in Table 4. The experimental results for computing 1024-point FFT by the
aforementioned designs for FFT processors and a comparison of their efficiencies in area and execution
time are shown in Table 4. The proposed R2FB pipelined FFT processor uses about 51% fewer slices
than the conventional design and does not require any dedicated functional blocks in the architecture.
The m-CORDIC and CSD–based optimal hybrid rotation scheme reduces the necessary chip area and
improves the performance of the proposed design.

Table 4. An evaluation the slice area of a 1024-point FFT implementation with the various architectures.

Methods

Resources
of

Slices

DSP48Es BRAMs
Total # of

Slices
Frequency

(MHz)
Execution
Time (µS)# of

Blocks
Equivalent

Slices
of

Blocks
Equivalent

Slices

(A) 5235 30 15,000 4 6800 27,035 200 10.332
(B) 17,947 0 0 0 0 17,947 200 10.118
(C) 13,258 0 0 0 0 13,258 200 5.168

The precision of the proposed R2FB pipelined FFT processor was evaluated by measuring the
average relative percentage error value across 1024 points, as shown in Equation (13). The results
obtained via the standard functions of Matlab were used as a baseline for comparison with the results
on hardware. The average relative percentage error value of the conventional memory-based design
was 0.52%, whereas the proposed design yielded an error of 0.72%. The advantages in performance and
savings in chip area and hardware resources of the proposed design outweigh its rather insignificant
disadvantage in accuracy. The achieved results show the high precision of the proposed FFT processor:
less than a 1% error rate with better design than the systems in [16] (more than 1%) and [17] (3.22%).

N
∑

i=1

|A(i) − B(i)|
B(i)

Npoints
× 100(%) (13)

A comparison of the results achieved on hardware between the proposed design and existing
state-of-the-art designs is given Table 5. In any hardware implementation of an FFT processor,
the balance struck between the amount of resources consumed and the processing speed depends on
the complexity of the architecture. The larger the number of FFT points, the higher the complexity.
The extended results for the FFT processor with a various number of points are shown in Table 6.
An evaluation of the area on the chip, in terms of the number of slices, required by each of the
aforementioned approaches for FFTs of various lengths on the same FPGAs is presented in Figure 11.
The proposed R2FB pipelined design requires the fewest number of slices for all cases of FFT
computation in this study, and the resource utilization of the proposed design is also more optimized
as the number of FFT points increases greatly. In the case of 4096-point calculation, the proposed R2FB
pipelined FFT processor consumes about 59.56% less slices than the conventional design, which uses
mainly the dedicated functional blocks in the architecture. The experimental results obviously show
that the proposed FFT processor requires the fewest clock cycles, has faster execution time, and requires
fewer hardware resources than the other systems for FFT computation. Compared to the other
approaches, the proposed design reaches the goal of high speed, accuracy, and efficiency in resource
utilization and area, and eliminates the need for a significant number of memory and DSP blocks on
the chip.

Electronics 2018, 7, 137 15 of 18

Table 5. Comparison of the hardware resources needed by the various architectures for an N-point FFT implementation.

Hardware Architecture Shift
Registers

Adders Multipliers Overall
Storage

of
Clock CyclesDesigns Schemes Complex Constant Complex Constant

[20] Feedforward and feedback 3
2 N + 3

2 (log2 N− 1) log2 N + 1 N/A 1
2 log2 N− 1

2 N/A 2N + 3
2 (log2 N− 1) 2N + log2 N− 1

[28] Feedforward for radix-22 N− 2 2 log2 N N/A log2 N− 2 N/A 3N− 2 3N
2 − 1

[29] Pipelined and parallel 3N
2 − 2 2 log2 N N/A log2 N− 2 N/A 17N

8 − 5 11N
8 − 4

[30] Dual-path delay 3N
2 log2 N + 1 N/A log2 N− 1 N/A 2N 2N− 1

Proposed Feedback and m-CORDIC N− 1 2 log2 N 3 log2 N 0 2 log2 N− 2 N + log2 N N + log2 N− 2

Table 6. Evaluation of the performance of the R2FB pipelined FFT processor with various points.

FFT Points
Hardware Resource Utilization

Execution Time (µS)
Slice Registers Slice LUTs BRAMs DSP48Es Total # of Slices

A conventional architecture

512 1826 2314 3 26 22,240 5.202
1024 2076 3159 4 30 27,035 10.332
2048 2306 4525 6 34 34,031 20.582
4096 2639 7163 14 38 52,602 41.072

A modified architecture only using distributed logic of slice registers and lookup tables (LUTs)

512 1386 11,920 0 0 13,306 5.091
1024 1611 16,336 0 0 17,947 10.118
2048 1840 19,806 0 0 21,646 20.163
4096 2282 27,229 0 0 29,511 40.243

The proposed pipelined architecture

512 1226 9352 0 0 10,578 2.602
1024 1393 11,865 0 0 13,258 5.168
2048 1594 14,576 0 0 16,170 10.292
4096 1959 19,312 0 0 21,271 20.537

Electronics 2018, 7, 137 16 of 18

Electronics 2018, 7, x FOR PEER REVIEW 16 of 18

2048 1840 19,806 0 0 21,646 20.163
4096 2282 27,229 0 0 29,511 40.243

The proposed pipelined architecture

512 1226 9352 0 0 10,578 2.602
1024 1393 11,865 0 0 13,258 5.168
2048 1594 14,576 0 0 16,170 10.292
4096 1959 19,312 0 0 21,271 20.537

Figure 11. Slice area consumption of different approaches by the number of various FFT points.

6. Conclusions

In this paper, a R2FB pipelined architecture for the computation of FFT was proposed and its
implementation on the Xilinx Virtex-7 FPGA kit was presented. The proposed design was verified
and compared to existing approaches in terms of speed, the requisite hardware resources, area on
the chip occupied by each design, and the hardware complexity. The feedback pipelined technique
was successfully exploited for FFT implementation. The sharing of shift registers for storage
between the inputs and outputs in a feedback architecture reduces the memory footprint of the
proposed architecture and saves essential hardware resources. The m-CORDIC and CSD–based
optimal hybrid rotation scheme was proposed to replace complex TF multipliers in the butterfly
unit, resulting in faster convergence and fewer resource requirements with low hardware
complexity. The improvements of the proposed design resulted in an FFT processor that requires
only distributed logic resources on the FPGA instead of expensive dedicated functional blocks on a
chip, making the proposed design flexible, fast, simple, low cost, and with reduced area on the chip.
The achieved experimental results proved that the proposed R2FB pipelined FFT processor is better
than existing FPGA-based designs in terms of speed by around 49% and in terms of resource
utilization by about 51%, while delivering the same accuracy and using less area on the chip. The
proposed design for the computation of FFT delivers significantly better processing speed and
requires fewer hardware resources. However, since this design is based on the feedback pipelined
technique and works on a single data-path stream that only allows sequential data processing at a
rate of one sample per clock cycle, its computation throughput needs further improvement. To
enhance the throughput of this design, multiple data-path, parallel processing approaches will be
investigated in our future work.

Figure 11. Slice area consumption of different approaches by the number of various FFT points.

6. Conclusions

In this paper, a R2FB pipelined architecture for the computation of FFT was proposed and its
implementation on the Xilinx Virtex-7 FPGA kit was presented. The proposed design was verified
and compared to existing approaches in terms of speed, the requisite hardware resources, area on
the chip occupied by each design, and the hardware complexity. The feedback pipelined technique
was successfully exploited for FFT implementation. The sharing of shift registers for storage between
the inputs and outputs in a feedback architecture reduces the memory footprint of the proposed
architecture and saves essential hardware resources. The m-CORDIC and CSD–based optimal hybrid
rotation scheme was proposed to replace complex TF multipliers in the butterfly unit, resulting in faster
convergence and fewer resource requirements with low hardware complexity. The improvements of
the proposed design resulted in an FFT processor that requires only distributed logic resources on the
FPGA instead of expensive dedicated functional blocks on a chip, making the proposed design flexible,
fast, simple, low cost, and with reduced area on the chip. The achieved experimental results proved
that the proposed R2FB pipelined FFT processor is better than existing FPGA-based designs in terms
of speed by around 49% and in terms of resource utilization by about 51%, while delivering the same
accuracy and using less area on the chip. The proposed design for the computation of FFT delivers
significantly better processing speed and requires fewer hardware resources. However, since this
design is based on the feedback pipelined technique and works on a single data-path stream that only
allows sequential data processing at a rate of one sample per clock cycle, its computation throughput
needs further improvement. To enhance the throughput of this design, multiple data-path, parallel
processing approaches will be investigated in our future work.

Author Contributions: All the authors contributed equally to the conception of the idea, the implementation of the
processor, setting up simulations, generating experimental results, and the writing and revision of this manuscript.

Funding: This work was supported by the Korea Institute of Energy Technology Evaluation and Planning
(KETEP) and the Ministry of Trade, Industry and Energy (MOTIE) of the Republic of Korea (No. 20181510102160,
No. 20162220100050, No. 20161120100350, and No. 20172510102130). It was also funded in part by the Leading
Human Resource Training Program of Regional Neo Industry through the National Research Foundation of Korea
(NRF) funded by the Ministry of Science, ICT and future Planning (NRF-2016H1D5A1910564), in part by the Basic
Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of
Education (2016R1D1A3B03931927), and in part by the “Leaders in INdustry-university Cooperation +” Project,
supported by the Ministry of Education and National Research Foundation of Korea.

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2018, 7, 137 17 of 18

References

1. Kang, M.; Kim, J.; Wills, L.M.; Kim, J.-M. Time-Varying and Multiresolution Envelope Analysis and
Discriminative Feature Analysis for Bearing Fault Diagnosis. IEEE Trans. Ind. Electron. 2015, 62, 7749–7761.
[CrossRef]

2. Islam, R.; Khan, S.A.; Kim, J.-M. Discriminant Feature Distribution Analysis-Based Hybrid Feature Selection
for Online Bearing Fault Diagnosis in Induction Motors. J. Sens. 2016, 2016, 1–16. [CrossRef]

3. Tra, V.; Kim, J.; Khan, S.A.; Kim, J.-M. Incipient fault diagnosis in bearings under variable speed conditions
using multiresolution analysis and a weighted committee machine. J. Acoust. Soc. Am. 2017, 142, EL35–EL41.
[CrossRef] [PubMed]

4. Nguyen, N.H.; Kim, J.; Kim, J.-M. Optimal Sub-Band Analysis Based on the Envelope Power Spectrum
for Effective Fault Detection in Bearing under Variable, Low Speeds. Sensors 2018, 18, 1389. [CrossRef]
[PubMed]

5. Khan, S.A.; Kim, J.-M. Rotational speed invariant fault diagnosis in bearings using vibration signal imaging
and local binary patterns. J. Acoust. Soc. Am. 2016, 139, EL100–EL104. [CrossRef] [PubMed]

6. Khan, S.A.; Kim, J.-M. Automated Bearing Fault Diagnosis Using 2D Analysis of Vibration Acceleration
Signals under Variable Speed Conditions. Shock Vib. 2016, 2016, 8729572. [CrossRef]

7. Zhang, W.; Su, T. Reference Beam Pattern Design for Frequency Invariant Beamforming Based on Fast
Fourier Transform. Sensors 2016, 16, 1554. [CrossRef] [PubMed]

8. Ganjikunta, G.K.; Sahoo, S.K. An area-efficient and low-power 64-point pipeline Fast Fourier Transform for
OFDM applications. Integr. VLSI J. 2017, 57, 125–131. [CrossRef]

9. Sundararajan, M.; Govindaswamy, U. Multicarrier Spread Spectrum Modulation Schemes and Efficient FFT
Algorithms for Cognitive Radio Systems. Electronics 2014, 3, 419–443. [CrossRef]

10. Sanchez, M.A.; Garrido, M.; Lopez-Vallejo, M.; Grajal, J. Implementing FFT-based digital channelized
receivers on FPGA platforms. IEEE Trans. Aerosp. Electron. Syst. 2008, 44, 1567–1585. [CrossRef]

11. Iglesias, V.; Grajal, J.; Sanchez, M.A.; López-Vallejo, M. Implementation of a real-time spectrum analyzer on
FPGA platforms. IEEE Trans. Instrum. Meas. 2015, 64, 338–355. [CrossRef]

12. Nguyen, N.H.; Khan, S.A.; Kim, C.-H.; Kim, J.-M. A high-performance, resource-efficient, reconfigurable
parallel-pipelined FFT processor for FPGA platforms. Microprocess. Microsyst. 2018, 60, 96–106. [CrossRef]

13. Wang, Y.; Tang, Y.; Jiang, Y.; Chung, J.-G.; Song, S.-S.; Lim, M.-S. Novel memory reference reduction methods
for FFT implementations on DSP processors. IEEE Trans. Signal Process. 2007, 55, 2338–2349. [CrossRef]

14. Sun, T.-Y.; Yu, Y.-H. Memory usage reduction method for FFT implementations on DSP based embedded
system. In Proceedings of the 2009 IEEE 13th International Symposium on Consumer Electronics, Kyoto,
Japan, 25–28 May 2009; pp. 812–815.

15. Pitkänen, T.O.; Takala, J. Low-power application-specific processor for FFT computations. J. Signal
Process. Syst. 2011, 63, 165–176. [CrossRef]

16. Derafshi, Z.H.; Frounchi, J.; Taghipour, H. A high speed FPGA implementation of a 1024-point complex FFT
processor. In Proceedings of the Computer and Network Technology, International Conference on(ICCNT),
Bangkok, Thailand, 23–25 April 2010; pp. 312–315.

17. Kumar, M.; Selvakumar, A.; Sobha, P. Area and frequency optimized 1024 point Radix-2 FFT processor on
FPGA. In Proceedings of the 2015 International Conference on VLSI Systems, Architecture, Technology and
Applications, Bangalore, India, 8–10 January 2015; pp. 1–6.

18. Ma, Z.-G.; Yin, X.-B.; Yu, F. A Novel Memory-Based FFT Architecture for Real-Valued Signals Based on
a Radix-2 Decimation-In-Frequency Algorithm. IEEE Trans. Circuits Syst. Express Briefs 2015, 62, 876–880.
[CrossRef]

19. Garrido, M.; Parhi, K.K.; Grajal, J. A pipelined FFT architecture for real-valued signals. IEEE Trans. Circuits
Syst. Regul. Pap. 2009, 56, 2634–2643. [CrossRef]

20. Wang, Z.; Liu, X.; He, B.; Yu, F. A combined SDC-SDF architecture for normal I/O pipelined radix-2 FFT.
IEEE Trans. Very Large Scale Integr. VLSI Syst. 2015, 23, 973–977. [CrossRef]

21. Liu, J.; Xing, Q.; Yin, X.; Mao, X.; Yu, F. Pipelined Architecture for a Radix-2 Fast Walsh–Hadamard–Fourier
Transform Algorithm. IEEE Trans. Circuits Syst. Express Briefs 2015, 62, 1083–1087. [CrossRef]

22. Luo, H.-F.; Liu, Y.-J.; Shieh, M.-D. Efficient memory-addressing algorithms for FFT processor design.
IEEE Trans. Very Large Scale Integr. VLSI Syst. 2015, 23, 2162–2172. [CrossRef]

http://dx.doi.org/10.1109/TIE.2015.2460242
http://dx.doi.org/10.1155/2016/7145715
http://dx.doi.org/10.1121/1.4991329
http://www.ncbi.nlm.nih.gov/pubmed/28764477
http://dx.doi.org/10.3390/s18051389
http://www.ncbi.nlm.nih.gov/pubmed/29723996
http://dx.doi.org/10.1121/1.4945818
http://www.ncbi.nlm.nih.gov/pubmed/27106344
http://dx.doi.org/10.1155/2016/8729572
http://dx.doi.org/10.3390/s16101554
http://www.ncbi.nlm.nih.gov/pubmed/27669242
http://dx.doi.org/10.1016/j.vlsi.2016.12.002
http://dx.doi.org/10.3390/electronics3030419
http://dx.doi.org/10.1109/TAES.2008.4667732
http://dx.doi.org/10.1109/TIM.2014.2344411
http://dx.doi.org/10.1016/j.micpro.2018.04.003
http://dx.doi.org/10.1109/TSP.2007.892722
http://dx.doi.org/10.1007/s11265-010-0528-z
http://dx.doi.org/10.1109/TCSII.2015.2435522
http://dx.doi.org/10.1109/TCSI.2009.2017125
http://dx.doi.org/10.1109/TVLSI.2014.2319335
http://dx.doi.org/10.1109/TCSII.2015.2456371
http://dx.doi.org/10.1109/TVLSI.2014.2361209

Electronics 2018, 7, 137 18 of 18

23. Meher, P.K.; Valls, J.; Juang, T.-B.; Sridharan, K.; Maharatna, K. 50 years of CORDIC: Algorithms, architectures,
and applications. IEEE Trans. Circuits Syst. Regul. Pap. 2009, 56, 1893–1907. [CrossRef]

24. Garrido, M.; Grajal, J. Efficient Memoryless Cordic for FFT Computation. In Proceedings of the 2007
International Conference on Acoustics, Speech and Signal Processing, Honolulu, HI, USA, 15–20 April 2007;
pp. 113–116.

25. Oruklu, E.; Xiao, X.; Saniie, J. Reduced memory and low power architectures for CORDIC-based FFT
processors. J. Signal Process. Syst. 2012, 66, 129–134. [CrossRef]

26. Pan, S.-T. A canonic-signed-digit coded genetic algorithm for designing finite impulse response digital filter.
Digital Signal Process. 2010, 20, 314–327. [CrossRef]

27. Nguyen, N.-H.; Khan, S.A.; Kim, C.-H.; Kim, J.-M. An FPGA-Based Implementation of a Pipelined
FFT Processor for High-Speed Signal Processing Applications. In Proceedings of the 13th International
Symposium on Applied Reconfigurable Computing, Delft, The Netherlands, 3–7 April 2017; pp. 81–89.

28. Garrido, M.; Grajal, J.; Sánchez, M.; Gustafsson, O. Pipelined radix-2k feedforward FFT architectures.
IEEE Trans. Very Large Scale Integr. VLSI Syst. 2013, 21, 23–32. [CrossRef]

29. Ayinala, M.; Brown, M.; Parhi, K.K. Pipelined parallel FFT architectures via folding transformation.
IEEE Trans. Very Large Scale Integr. VLSI Syst. 2012, 20, 1068–1081. [CrossRef]

30. Chang, Y.-N. An efficient VLSI architecture for normal I/O order pipeline FFT design. IEEE Trans. Circuits
Syst. Express Briefs 2008, 55, 1234–1238. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TCSI.2009.2025803
http://dx.doi.org/10.1007/s11265-011-0586-x
http://dx.doi.org/10.1016/j.dsp.2009.06.024
http://dx.doi.org/10.1109/TVLSI.2011.2178275
http://dx.doi.org/10.1109/TVLSI.2011.2147338
http://dx.doi.org/10.1109/TCSII.2008.2008074
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Radix-2 Decimation in Frequency (R2DIF) Algorithm for Fast Fourier Transform
	The Proposed Modified Coordinate Rotation Digital Computer (m-CORDIC) and Canonical Signed Digit (CSD)-Based Rotation Scheme
	CORDIC-Based Complex Multipliers
	Implementation of the Pipelined-Based Modified CORDIC Algorithm
	CSD Representation in Optimizing the Constant Multipliers

	Hardware Implementations of Pipelined Fast Fourier Transform (FFT) Processor
	Implementation of R2DIF Feedback (FB) Pipelined FFT Architecture
	The Proposed R2FB Pipelined FFT Processor Using m-CORDIC and CSD-Based Hybrid Rotation Scheme

	Experimental Results
	Conclusions
	References

