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Abstract: A new class of fast Fourier transform (FFT) architecture, based on the use of distributed
memories, is proposed for field-programmable gate arrays (FPGAs). Prominent features are high
clock speeds, programmability, reduced look-up-table (LUT) and register usage, simplicity of design,
and a capability to do both power-of-two and non-power-of-two FFTs. Higher clock speeds are
a consequence of new algorithms and a more fine-grained structure compared to traditional pipelined
FFTs, so clock speeds are typically >500 MHz in 65 nm FPGA technology. The programmability
derives from the memory-based architecture, which is also scalable. Reduced LUT and register usage
arises from a unique methodology to control word growth during computation that achieves high
dynamic range, along with inherent systolic circuit characteristics: simple, regular, uniform arrays of
processing elements, connected in nearest-neighbor fashion to minimize wiring lengths. The circuit
goal was to maximize throughput and minimize the use of the FPGA LUT and register logic fabric.
Comparison results from seven different designs, covering a spectrum of functionality (fixed-size,
variable, floating-point and variable non-power-of-two FFTs), different FPGA vendors (Intel and
Xilinx) and different FPGA types, showed increases in throughput per logic cell up to 181% with
an average improvement of 94%.

Keywords: FFT; FPGA; memory-based FFT; systolic array; pipelined FFT; fast Fourier transform;
FFT circuit; FFT implementation; variable FFT; Long Term Evolution

1. Introduction

The discrete Fourier transform (DFT) is one of the most prominent signal processing algorithms and
is used in a variety of applications within engineering, computer science, physics, and mathematics [1,2].
Since many of these applications are real-time or involve computations on large data sets, special purpose
parallel circuitry coupled with fast Fourier transform (FFT) algorithms for reducing DFT computation
times, is essential. For example, real-time demands are illustrated by the variety of today’s wireless
transmission protocols:

• Run-time choice of DFT sizes: scalable orthogonal frequency division multiplexing (OFDM) in Long
Term Evolution (LTE) [3] and 802.11ax [4].

• Large transform sizes: LTE, 802.11ax with 2048-points; Digital Video Broadcasting-Second
Generation Terrestrial (DVD-T2) [5], 32,768-points.

• High throughputs from multiple-input–multiple-output (MIMO) data streams and carrier aggregation:
8 × 8 MIMO in both uplink and downlink plus 160 MHz bandwidths in 802.11ax [4].

• Non-power-of-two DFTs: LTE single carrier frequency division multiplexing (SC-FDMA) with 35
transform sizes [3]; Digital Television Terrestrial Multimedia Broadcasting [6], 3780 points.

Additionally, many applications such as imaging radar [7], medical imaging [8], molecular
dynamics [9], and scientific computing [10] inherently require a high dynamic range, so floating-point
support may also be a necessity.
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In support of this range of applications, we introduce an FFT architecture that can be easily
programmed to meet different requirements. For example, it can naturally perform any transform size,
including non-power-of-two, that can be expressed as powers of different radices. As a demonstration
of this capability, we have implemented four very different types of FFT circuits (fixed-size, variable,
floating-point with and without embedded hardware support, and variable non-power-of-two) all
using the same architecture.

Additionally, given the growing usage of field programmable gate array (FPGA) technology [11–13],
our algorithm/architecture has been designed to make very efficient usage of FPGA features and offers very
high-performance options. In seven different FFT implementations, involving different FPGA types and
vendors, we show here an average increase in our design metric, throughput per FPGA logic cell, of 94%
compared to commercial designs and other reported implementations.

Therefore, the unique feature of our architecture is that it offers a very wide range of functionality and
at the same time can provide the best throughput per FPGA logic cell. Other architectures support either
functionality or performance, but not both. Our circuits are also compact, simple, regular, scalable, uniform,
and are based on nearest neighbor communications which minimizes wiring lengths, so circuits can run
near the intrinsic FPGA clocking speed limits, features not found in other architectures.

In Section 2.1, the rationale for focusing on FPGA technology is discussed, followed by a review of
related work in Section 2.2. Included here as well is a summary explaining how this work builds on our
earlier FFT realizations. Sections 3–5 describe the architecture at three different levels of abstraction.
Section 3.1 discusses how a re-indexing of the standard mathematical expression for a DFT becomes the
algorithmic basis for our circuit. An example of data movement within the array structure follows in
Section 3.2. Section 4 presents an overall circuit architecture and reviews the reachable transform sizes
that are possible. Section 5 analyzes the circuit implementation and examines how programmability
is achieved and dynamic range enhanced. Section 6 offers seven FFT circuit examples: fixed-size
power-of-two circuits in Section 6.2 (256- and 1024-point), a variable power-of-two circuit in Section 6.3
(128/256/512/1024/2048-points), floating-point circuits in Section 6.4 (256- and 1024-point) with and
without FPGA IEEE 754 embedded hardware support, and in Section 6.5 a variable non-power-of-two
circuit that can compute 35 different DFT sizes. Most design examples were chosen with wireless
applications in mind, in particular LTE and 802.11ax. Section 7 provides a high-level summary of our
comparative architectural advantages, that codifies our success in meeting the implementation goal of
higher throughputs per logic cell.

2. Background

2.1. FPGA Implementations

The implementation focus here is on the use of FPGAs as the primary hardware platform.
These devices have evolved rapidly since they first appeared in 1985 for use as “glue” logic within
complex heterogeneous circuit boards. Now, they are being used across a wide spectrum of applications
such as cloud processors, robotics, automotive systems, unmanned vehicles, hardware simulation,
search engines, mobile devices, industrial controls, and high-performance computing [11]. Possibilities
for in situ reconfigurability should expand this list [12].

Unique FPGA characteristics can have a significant impact on circuit design strategies. For example,
modern FPGAs as an implementation platform offer large numbers of embedded elements, such as
multipliers and memories, leading to very different design tradeoffs compared to ASIC implementations [13].
The number of such embedded elements continues to grow (up to ~4000 multipliers and ~12,000 20 K-bit
memories on Intel 14 nm FPGAs are now available [14]), further increasing the possibilities for FPGAs to
displace their ASIC equivalents. The same FPGA type can also have many different mixes of embedded
elements and logic cells that support the requirements of different applications. There is more concern over
whether a design fits into an FPGA rather than leaving unused embedded elements [13].
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The relevance to FFT architectures is that, while most of the past design focus has been on
reducing memory and the required number of multipliers in support of ASIC designs, this is no
longer always a vital issue in the context of FPGA target hardware. A corollary is that our architecture
would not be efficacious in an ASIC hardware context because multiplier usage was not minimized.
Thus, our design strategy is to produce circuits that minimize the FPGA look-up-table (LUT) and
register fabric usage rather than embedded element usage, since this is the essential programmable
or more computationally expensive part of the FPGA. Given that all FPGAs have a fixed number of
embedded elements available, it makes sense to utilize them to the greatest extent possible by exploring
new circuit optimization strategies, rather than allowing them to be potentially wasted. An additional
motivation is that the fabric is the source of most of the FPGA dynamic power consumption, as opposed
to the embedded elements, which is an important consideration since FPGAs are increasingly being
used in mobile devices.

2.2. Related Work

Most high performance FFT designs have appeared in the form of direct or modified decimation-in-time
or frequency flow graphs, implemented as either delay feedback or delay commutator circuits (good reviews
are available in [15,16]). These “pipelined” FFTs are computationally efficient and make effective use of
hardware. However, the circuit architectures are typically coarser grained, irregular in structure, difficult to
scale, best suited for power-of-two transforms, and lack programmability.

There are also “memory-based” FFT designs (for reviews see [17,18]) which are usually more
flexible and use fewer hardware resources than their pipelined counterpart, although high throughput
is difficult to achieve and they are not inherently scalable.

A substantial number of systolic array (SA) designs have been proposed for DFT computations and
are attractive because of their simplicity, regularity, uniformity, scalability, locality of interconnections,
and suitability for non-power-of-two transforms [19–23]. However, they require substantial hardware,
typically N/2 to 4N real multipliers (where N is the transform size), yet do not provide a corresponding
performance improvement. The FFT circuit architecture described here relies additionally on a systolic
flow, but is far smaller in array size than other systolic designs.

Our architectural model is also memory-based, but is very different compared to traditional
memory-based approaches, as can be seen in Figure 1. Here, a traditional memory-based design (Figure 1a)
contains a plurality of large arithmetic units for butterfly computations, connected to a similar plurality of
memories. The difficulty in such designs is to sequence data to and from the memories using the data
control unit shown in Figure 1a such that available bandwidth is maximized, butterfly units are fully
utilized, and in-place computations are carried out. Alternatively, our architecture does the same thing,
but at a finer level of granularity. From Figure 1b, the array can be seen to consist of many very small
processing elements (PEs), each containing a few registers and a multiplier or adder, or both. Each PE
reads and writes to a typically small memory (M in Figure 1b) and aggregate bandwidth is limited
only by the number of PEs, hence its description as a distributed-memory-based architecture (DMBA).
The well-known scalability of systolic algorithms [19] means that high bandwidths, and thus performance,
are achieved by simply increasing the array size. It is much more difficult to increase the number of
butterfly and memory units for traditional memory-based designs.

As shown in Figure 1b, each PE is locally connected to its neighbors, which keeps interconnections
short—an important feature because programmable interconnects can account for 50–90% of the total
FPGA area, 70–80% of the total delay, and 60–85% of the total power consumption [24]. The systolic
DMBA proposed here was designed using a true space–time mapping tool that generates latency optimal
solutions [25], so that implementations are fundamentally localized. Therefore, because of the fine PE
granularity and localized wiring, with good place-and-route compilers, higher clock speeds are obtainable
compared to traditional pipelined designs. For example, the power-of-two circuits presented here all run
with worst-case clock speeds of over 500 MHz using 65 nm FPGA technology, speeds which are higher
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than any other similar FPGA FFT circuits of which we are aware and approach the clock speed limits of the
FPGA fabric (Section 6). Additionally, lower power is possible due to reduced interconnection usage.

Figure 1. (a) Traditional memory-based FFT architecture and (b) fine-grained DMBA equivalent.

The implementation goal for our FPGA designs is to improve circuit efficiencies, defined by
throughput per logic cell. Throughput improvement results from the higher clock speeds mentioned
above, as well as the reduced number of clock cycles needed per DFT, as outlined in Section 6.3.
Reduction in use of LUTs and registers derives from the simplicity and regularity of the DMBA,
as well as the algorithmic mappings used. The combined benefit for a large variety of circuit types is
summarized in the conclusion (Section 7).

Although this paper is based to some extent on [26], new implementations of floating-point FFTs
are described as well as new results for LTE wireless SC-FDMA DFTs. Additionally, the variable
FFT results have been updated to reflect newer FPGA hardware and design software. There are also
some earlier concept demonstrations of fixed-size FFT circuits in older FPGA technology [25,27,28],
although the circuit architecture described here is much improved. In particular, these earlier designs
(1) did not employ the simple PE-memory processing flow shown in Figure 1b; (2) required an entirely
separate processing step and support hardware to perform the twiddle operations, which has been
eliminated here; (3) used inefficient PE memory management schemes, replaced here by “in-place”
RAM read/write operations and agglomeration of output buffers, reducing the number of embedded
PE RAMs by more than a factor of 2; (4) utilized some fixed scaling, whereas here there is no fixed
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scaling; and (5) were constrained to the fixed, non-programmable base-b processing described in [25].
Here, additional architectural support for programmability has been added so that any transform
length is reachable (Section 4.4). As an example, for a 1024-point FFT [27], these improvements reduced
the number of embedded memories by roughly a factor of two and reduced the number of LUTs and
registers by ~58%.

3. Algorithm

If a DFT can be factored into a product of small numbers, the basic idea is for the DMBA to
sequentially perform an appropriate series of transforms on these to produce the DFT output. To do
this, the DMBA performs a series of butterfly computations that are distributed across the entire array.
The DMBA has a uniform hardware pipeline in that all PEs are identical and they all perform the
same computations. In contrast, a traditional pipelined architecture, which is also deeply pipelined,
typically uses different, coarser-grained hardware at each stage.

In the remainder of this section, the algorithmic foundation for the DMBA is briefly described
and an example design is provided. The fact that the DMBA is a uniform array of PEs allows it to be
programmed to exhibit different functionalities. For example, in Section 3.3 it is shown that the DMBA
can do other important kernel operations such as matrix–matrix and matrix–vector multiplication.

3.1. Base-b Algorithm

The DFT is defined as:

Z(k) =
M−1

∑
n=0

Wnk
M X(n) (1)

where M is the transform length, X(n) are the time domain input values, Z(k) are the frequency domain
outputs and WM = e−j(2π/M). In matrix terms, (1) may be represented as

Z = CX (2)

where C is a coefficient matrix containing elements Wnk
M . If M can be factored as M = N1N2,

then applying the reindexings n = n1 + N1n2 and k = k1 + N1k2 with n1 = 0, 1, . . . , N1 − 1,
k1 = 0, 1, . . . , N1 − 1, n2 = 0, 1, . . . , N2 − 1, k2 = 0, 1, . . . , N2 − 1, it can be shown that if N1/N2 is
an integer value and N2 = b, where b is the “base”, (1) becomes

Yb = Wb•CM1Xb
Zb = CM2Yt

b
(3)

where Wb is an N1 × N1 matrix with elements Wb[k1, n1] = Wn1k1
M , CM1 is a N1 × b coefficient matrix

with elements CM1[k1, n2] = Wn2k1
N2

, Xb is a b × N1 matrix with elements Xb[n2, n1] = X(n1 + N1n2),
Yb is a N1xN1 matrix with elements Yb[k1,n1] = Y(k1,n1) from [25], CM2 is an b × N1 coefficient
matrix with elements CM2[k2, n1] = Wn1k2

N2
, Zb is an b × N1 matrix containing the transform outputs

Zb[k2, k1] = Z(k1 + k2N1), “•” indicates element-by-element multiplication and t denotes matrix
transposition [25]. (Note that in this section, N2 is used for the value b when there might be confusion
about the use of “b” as a number or as a symbol to imply base-b processing). CM1 and CM2 contain
M/b2 sub-matrices Cb =

[
c1

∣∣c2

∣∣. . .
∣∣c

N2

]
with the form CM1 =

[
Ct

b

∣∣Ct
b

∣∣. . .
]

and CM2 = [Cb|Cb|. . .] due
to the periodicity of WN2 , and ci are constant vectors.

The computation (3) can be carried out virtually as shown in Figure 2. Here, there are two N1 × b
arrays of PEs that do the matrix–matrix computations CM1Xb and CM2Yt

b using systolic algorithms [19]
with the multiplication by Wb occurring in between the two arrays.

Two processing flows that achieve the same result are indicated in Figure 2: either Xb, containing
the input data, is stored in an input buffer and CM1 values are stored in PE registers in the left-hand
side (LHS) PE array, or vice-versa. The systolic multiplication symmetry allows this option [19].



Electronics 2018, 7, 116 6 of 29

Then on the right-hand side (RHS), there is another input buffer for CM2 containing all the radix-b
butterfly coefficients that will be used (all preloaded before processing begins). During processing,
data flows in groups of b and their movement is pipelined through the arrays of PEs. At the end of
processing, the result Zb is stored in registers associated with each of the RHS N1 × b PEs.

Figure 2. Processing architecture associated with (3). Input buffers are the non-colored boxes on the
bottom. Data transfers are in groups of b words between blocks as indicated by the arrows.

3.2. Base b = 4 Systolic Array

The choice for power-or-two circuits, N2 = b = 4 (“base-4”), represents a good tradeoff between
circuit performance and circuit complexity. This selection results in

c1 =


1
1
1
1

, c2 =


1
−j
−1

j

, c3 =


1
−1
1
−1

, c4 =


1
j
−1
−j

 and Cb =


1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j


where Cb above is the coefficient matrix for a four-point DFT, describing a radix-4 decimation in time
butterfly and j is an imaginary number. Consequently, in (3) the matrix multiplications by CM1 and
CM2 represent repeated use of a radix-4 butterfly.

The computational flow is illustrated for N1 = 4 with the architecture shown in Figure 3,
corresponding to a transform size M = 16. The matrix multiplication CM1Xb is performed on the
LHS. It is obtained from the 4 × 4 input stream Xb that is clocked into the PE array at time steps as
shown and multiplied by the values of CM1 stored internally in the LHS array PEs. The multiplier PEs
contain coefficients Wri for row i of Wb and produce Yb

t = Wb • CM1Xb. Finally, the RHS array of PEs
accumulates in place (one matrix element per PE) the result Zb, from Yb

t and the streaming input CM2.
Note that the matrix products CM1Xb and CM2Yb

t involve only exchanges of real and imaginary
parts plus additions, because the elements of CM1 and CM2 contain only ±1 or ±j, whereas the product
in (2) requires complex multiplications. The distribution of the elements in CM2 does not impose
significant bandwidth requirements because full complex numbers are not used.

The computational advantages of the matrix algorithm form (3) is evident when compared to the
traditional direct form (2), in that the size of the coefficient matrix Wb in (3) is M/4×M/4 vs. the M×M
size of C in (2). Consequently, the matrix–vector multiply (2) requires M2 multiplications, whereas the
element-by-element multiply of (3) requires only M2/16.
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Figure 3. Basic architecture for b = 4 and N1 = 4 showing calculation of a 16-point DFT. Inputs Xb

(LHS array) and CM2 (RHS array) are shown at the bottom at clock cycle time t. (Subscript b for matrix
elements x and z are not shown).

3.3. Matrix–Matrix Systolic Array

While the array shown in Figure 3 performs a 16-point transform (M = N1N2, N1 = 4, N2

= 4), the basic structure can be used to perform other transform sizes in conceptually the same
way. For example, a 15-point transform could be performed as a five-point transform followed by
a three-point transform using the structure shown in Figure 4. Here, the LHS SA reads a 3 × 5 array of
input data, Xb, and performs three five-point transforms. Next, the multiplier PEs perform the twiddle
multiplications with Wnm

15 , n = 0, 1, 2, 3, 4, m = 0, 1, 2, stored in a small ROM, and finally the RHS
performs five three-point transforms.

In Section 6.5, it is shown how an array with b = 6 can be used to do a set of 35 different
non-power-of-two computations for the LTE wireless protocol.

Figure 4. SA used for a 15-point transform. Cb are radix-5 and three butterfly matrices. Here, Xb can be
stored in LHS internal PE RAMs with Cb flowing upward from the LHS input buffer or vice-versa.
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4. Architecture

4.1. Introduction

While the DMBA described in Section 3 is efficient for small transforms, large transforms would
require an excessive number of PEs. For example, to do a 1024-point DFT, choosing a base-4 approach
would require N1 = 1024/4 = 256, meaning the DMBA would require 256 PE rows (a “PE row” contains
all LHS, multiplier, and RHS PEs along a single horizontal data flow path in Figure 4). This inefficiency
can be seen in the first equation of (3), which is rewritten as

Yb= Wb•


Cb
Cb
...

Cb

Xb (4)

(Notation in this section follows that in [25] to maintain consistency.) Equation (4) shows that Cb is
applied multiple times to Xb, computing the same result each time. Clearly, it would be best to keep the
size of Xb small to avoid the repeated computations. A natural way to do this is to factor the transform
size as N = N3N4. Here, the N3 × N4 DFT matrix X contains input samples xi that are arranged x1, x2,
..., xN4 on row 1, xN4+1, xN4+2, ..., x2*N4, on row 2, etc. Using the “row/column” factorization, which is
the traditional method to simplify and reduce DFT computations, this requires computation of two sets
of smaller DFTs using (3), N4 transforms of length N3 (referred to as column DFTs) and N3 transforms
of length N4 (referred to as row DFTs). In between column and row transforms, it is necessary to
multiply each of the N points by the twiddle factor,

Wi,k
N = e−j( 2πik

N ), i = 0, 1, . . . , N3 − 1, k = 0, 1, . . . , N4 − 1. (5)

To summarize, the DFT is computed using two levels of factorization. The first is the row/column
factorization described above, N = N3N4, followed by a second factorization, M = N1N2, where M
applies to either the row or column DFTs. The second factorization leads to the base-b FFT processing
flow described in the remainder of this section and in more detail in Section 5.

4.2. Row/Column Factorization

4.2.1. Architecture

An illustration of the row/column data flow is shown in Figure 5 and is essentially the same as in
Figure 2, with different labeling. It shows two (N3/b) × b PE arrays connected by a (N3/b) × 1 array
of complex multipliers. Each PE on the LHS and RHS contains the PE logic shown in Figure 6 with the
addition of a small dual-port RAM to store results. RHS PEs write to the RAM and LHS PEs read from
it (Figure 7). The column and row DFTs based on (3) are described below and again M refers to the
transform size of either the column or row DFTs.

In the RHS PE, M is a RAM memory, connected as shown in Figures 7 and 8. The LUTs are
responsible for multiplying incoming data x by real and imaginary unity values stored in register c
and arriving from the bottom in the RHS PEs (the output buffer RAM is not shown).
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Figure 5. Systolic processing flow for column and row DFTs. Subscripts c and r refer to column and row
DFT transform data. Data transfers are in groups of b words between blocks as indicated by the arrows.

Figure 6. PE structures used in base-4 DMBA for column processing with M = 16.

Figure 7. Physical architecture created by folding the LHS and RHS arrays from Figure 5 on top of
each other.

4.2.2. Column DFTs

An input buffer feeds the LHS with column data Xbci, i = 1, ..., N4, from the N3 × N4 DFT matrix,
with each array of column elements organized as an M = N3 = N1ci × b matrix where c refers to column
data. Also, each PE in the (N3/b) × b LHS contains an element of the N1ci × b matrix CM1. The systolic
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matrix–matrix multiplication result CM1 Xbci then flows out of the LHS through the multiplier array
shown in Figure 5, where the coefficient multiplication by Wb = WM = WN3—stored in ROM—produces
Yt

bci. A second systolic matrix–matrix multiplication is then performed by the RHS with inputs Yt
bci

from the left and CM2 from the bottom, producing the results Zbci, which are stored in a distributed
fashion in RHS PE RAMs and become the Xbri for row DFTs after the twiddle multiplication by WN .

4.2.3. Row DFTs

The processing in this step, based on (3) with M = N4 = N1ri × b, is identical to that for the column
DFTs with two exceptions. First, there is a juxtaposition of the CM1 values with the Xbri row inputs.
In this case, the row Xbri values are retrieved from the PE internal RAMs, while the CM1 values now
flow into the LHS SA from the bottom. Second, the Zbri FFT outputs are stored in a separate RAM
output buffer, one per PE row, if normal order data output is desired.

One very important difference in the row DFT processing arises from situations where N3 6= N4.
In this case, the structure of the base-b DMBA will be different for the column processing vs. row
processing stages, e.g., one stage could have more PE rows than the other, so that a direct topological
PE array match between the Zb outputs of the column DFT stage and row DFT Xb inputs would not
follow. For example, if N3 = 32 and N4 = 16, a base b = 4 DMBA during the column DFTs would require
a RHS array of 8 × 4 PEs, since M = 32, and each PE RAM would store one element of each of the
8 × 4 Zb column DFT outputs. However, row DFT processing would require a 4 × 4 input from PE
RAMs to a 4 × 4 LHS array, since for this stage M = 16. This is not possible given the 8 × 4 Zb PE
array size.

A simple solution to this issue is to do the column processing but, using the example above
(N3 = 32, N4 = 16), after the 16 32-point column DFTs, have data for each row DFT written to a single
physical PE row. That means that with an 8 × 4 RHS physical array, at the end of column DFT
processing the four RAMs in each physical PE row would contain data associated with four of the
32 DFT matrix rows. Note that after column processing, there are always b DFTs contained in the RAMs
of a physical PE row because the array length is N3/b and the number of DFT rows is always N3.

Finally, for the row DFT processing, each physical PE row emulates a virtual SA with 4 × 4 LHS
and RHS PE arrays corresponding to M = 16. The flow of coefficients and data is essentially unchanged
from that in Figure 5, except that all inputs Xb for a row DFT transform come from a single physical PE
row and the Zb outputs are saved within the same single physical PE row in a single output buffer
RAM. More details on the rationale for this approach and the virtual processing associated with it are
provided in [25].

4.3. Control, PE Structure and Memory

Systolic data flow is naturally best served by a similar flow of control. Therefore, for each clock
cycle a control word is supplied by an external array controller to each column of PEs in Figure 6 and
this flows upward in systolic registers, providing values for addresses, read/write enables, etc.

A PE structure is provided as shown in Figure 6 for a base-4 DMBA with M = 16. Note that
multiplications in the LHS and RHS PEs are additions, as discussed in Section 3.2. For non-base-4 SAs,
all LHS and RHS PEs would additionally contain a complex multiplier.

Total DMBA PE RAM “internal” memory needs to be N words. If input data to the DMBA is
only available in natural order, a reordering RAM buffer of size ~N words is required. Similarly,
an output RAM buffer of size ~N words is necessary if a natural output order is desired. All these
RAM memories are simple dual port memories (one read and one write port).

4.4. Reachable Transform Sizes

As noted in Section 3.1, the derivation leading to (3) restricted N1/b to integer values, so N1 = bn,
where n is an integer. Therefore, in the column/row factorization using (3) it follows that both N3 and
N4 must be multiples of b2 because M = N1N2 = (bn)b = nb2. Then, since N = N3N4, transform lengths
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are restricted to integer multiples of b4 when using (3). In [25], the value b = 4 was used, so the circuits
reported there were limited to transform sizes that were a multiple of 256. However, other values of b
lead to different transform length constraints. For example, if the base b is chosen to be two, then the
same analysis would show that a base-2 circuit design could perform any transform that is an integer
multiple of 16. Additionally, it is possible that column processing might use one value of b and row
processing another.

Finally, while the data flow described in Section 4.2 assumes that (3) is applied to both rows and
columns, this is not a necessary requirement. As shown in Section 3.3, the DMBA can be used to do
any transform size that can be performed as a matrix–vector or matrix–matrix operation. With this
option, any transform size can be performed that can be expressed as multiples of powers of small
numbers. Prime numbers are not excluded. For example, Section 6.5 describes a circuit that reaches
any transform size N where N = 2a3b5c6d and a, b, c, d are integers.

4.5. Physical Array

The architecture shown in Figure 5 is a virtual representation of the array structure; however,
the physical implementation is different. Since the LHS PEs and RHS PEs share a RAM, it is natural
to move them to the same physical location to keep the interconnections short. This can be done by
simply folding the RHS array on top of the LHS array as shown in Figure 7. The correspondence with
the structure of the memory-based model described by Figure 1b is then clear.

5. Implementation

5.1. Introduction

The implementation goal was to minimize use of the LUT/register fabric and maximize clock
speeds along with the circuit signal-to-quantization-noise-ratio (SQNR). Whereas our early DMBA
designs were pure systolic, in that only nearest neighbor connections between PEs were allowed [25],
there was some relaxation of this requirement here so that some connections were allowed over
distances of a few PEs. FPGA programmable hardware fabrics include a rich interconnection mesh
supporting a variety of wiring speeds. Consequently, this allowed several circuit changes to simplify
the implementation at no cost in speed. Additionally, much effort was employed in optimizing the PE
circuitry, as small improvements here are multiplied by the number of PEs.

No efforts were made to take advantage of unique FPGA architectural features to improve circuit
efficiency, as done in [16], except for the Intel Arria 10 devices, where use was made of hardwired
floating-point circuitry in the DSP blocks. In this way, the circuits have a generic applicability to any
FPGA with DSP blocks and embedded memory.

In Section 5.2, the circuit details associated with the basic row and column DFT flows are described,
followed by a short discussion on how the circuit is programmed. Finally, an analysis of the circuit’s
SQNR attributes is covered in Section 5.3.

5.2. Row/Column Processing Details

The basic hardware used can be seen from Figure 8, which shows the flow of Xb and CM1 in the
first PE row, i.e., that connected directly to the input RAM and ROM buffers. Since the operations in
all PE rows are identical, it is only necessary to describe data flow in one of the N3/b PE rows.



Electronics 2018, 7, 116 12 of 29

Figure 8. Systolic processing flow for column (a) and row (b) DFTs. For both column and row DFTs, CM2

inputs to RHS PEs, that come from the bottom of the array (Figure 5), are not shown. In (a) the CM1 data
flow paths are not shown and in (b) the Xbci data flow paths are not shown.

The input buffer in Figure 8a contains addressing logic (not shown) that takes a continuous (normal
order) serial stream of FFT input data, converts each FFT block into N4 column sets Xbci, and then distributes
these column sets to the b RAMs labeled “B”, so that each contains N4N3/b = N4N1ci values prior to the
start of FFT processing. More input buffer detail is provided in [25].

With reference to Figures 3 and 8, the column and row DFTs are described again in more detail below.

5.2.1. Column DFTs

For this stage, the multiplexors—mux in Figure 8a—supplying data to LHS PEs, is set to select its
input from registers labeled “R”, which are present to permit systolic flow of Xbci from input buffer
RAMs up through the LHS array. The LHS PEs in row 1 use preloaded cM1 values, also selected by
multiplexors, to perform vector–matrix products as a linear systolic array, producing the first row of
CM1Xbci. Successively produced elements are multiplied by appropriate elements of Wb = WM = WN3

(stored in a ROM) and become the first row of Yt
bci, i = 1, 2, . . . , N4. As the RHS PE row 1 receives

elements of Yt
bci, it performs similar matrix–vector multiplications, producing the first column of

Zbci, i = 1, 2, . . . , N4. Here, the elements CM2 (not shown in Figure 8a or 8b) flow up through registers
in the RHS SA from a small ROM (not shown) at the array bottom edge into RHS PEs.

After each column element of Zbci is computed in the RHS PEs, a multiplexor selects it and sends
it sequentially to a normalizer. Here, the growth in the word length at that point from the original
n-bit input length is determined and a shift occurs so that the word is restored to n-bits with the shift
amount saved as an exponent.

The final operation in the column DFT systolic flow is the twiddle multiplication by values of WN (5)
stored in a ROM. The output of the multiplier feeds a bus that connects that PE row’s b PE internal simple
dual-port RAM memories “M”. Each memory receives enable signals so that the elements of Zbci flow to the
correct memory.
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5.2.2. Row DFTs

Conceptually, the processing during this step (Figure 8b) with M = N4 based on (1) closely follows
that for the column DFTs, with two minor differences. First, the LHS PE input multiplexors are set
to take the Xbri inputs from the internal PE memories “M” and CM1 values from the bottom ROM in
Figure 8b, so CM1 Xbri is computed using a systolic flow of CM1 values into the LHS SA. Second, the Zbri
outputs (normalized n-bit values plus exponents) are stored in the simple dual-port output buffer “B”
instead of the internal memories (equivalent to twiddle multiplication by 1).

5.2.3. Programmability

The notion of DMBA programmability means providing a capability for cycling various small
groups of data appropriately from input buffers or internal RAMs through the array and back, so that
the desired butterfly operations can be performed efficiently and quickly. Thus, the goal has been to
provide an array architecture and implementation sufficiently general that this abstract programming
model can aptly be applied to any type of DFT computation.

Additionally, it should be noted that other non-FFT, application-specific operations can be realized
as well, such as cyclic prefix insertion in LTE and other OFDM protocols. A cyclic prefix is a copy of
the end of the IFFT output, which is prepended to the transmitted signal and acts as a guard against
multi-path signals [3].

As a programming example, a 100-point transform could be factored as (5 × 5) × 4. In this case,
it would be necessary to perform four 25-point column transforms followed by 25 four-point row
transforms with a twiddle multiplication in between. Each 25-point transform would most naturally
be done using (3) and LHS/RHS b × b arrays with b = 5. The four-point row transforms are done in
the four PEs of each LHS PE row as values are read in from memory; the RHS then only stores these
results in the output buffer.

The control structure used to implement the desired level of programmability can vary. For simple
transforms, such as the power-of-two examples (Sections 6.2 and 6.3), finite state machines can be
used. For more complex examples, such as the LTE example (Section 6.5), more general loop-based
Verilog code could be used with loop parameter values specified in a small ROM memory. In either
case, different transform sizes are performed on the same array by simply adjusting the various loop
parameters used to control flow of data in and out of the DMBA.

A major benefit of a programmable circuit is that the computational hardware can be highly
optimized, since it can be reused for different applications. In the case of the DMBA, even small
optimizations are useful because they are replicated in all the PEs.

5.3. Dynamic Range

SQNR is another important circuit attribute which should be maximized, while at the same time
minimizing fixed-point word lengths, because longer words necessitate bigger memories/multipliers
and increase critical path lengths. The SQNR is obtained from the expression

SQNR = 10 log10
∑N−1

i=0 (abs(zi))
2

∑N−1
i=0

(
abs(zi − zref

i
)2 (6)

where the summation is over complex outputs zi and the superscript “ref” refers to the value of zi
obtained using Matlab’s double precision floating-point FFT routine. Here, SQNR is always computed
using complex inputs comprised of random real and imaginary numbers.

A variety of scaling methodologies have been proposed to deal with word length growth during
an FFT computation. One common scheme is to scale arithmetic results so that a fixed word length is
used throughout the computation. This leads to simplified hardware, but lower SQNR because the
scaling occurs even if there is no overflow. A second popular scheme is to use block floating point
(BFP) arithmetic, an adaptive approach that scales all data at a particular processing stage if there
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is register overflow. In this case, an exponent register associated with the entire transform block is
incremented each time this occurs to keep track of total scaling. Use of BFP arithmetic provides better
SQNR than fixed scaling because scaling only occurs upon overflow; however, extra circuit overhead
is necessary and its use can limit implementation options. Both these methods are well-suited to
memory-based architectures, where there is not always an implementation option to increase register
size as the computation proceeds. SQNR example results using these two approaches are provided in
Table 1. The Intel results were obtained from Matlab simulations based on the provided bit-accurate
FFT model for streaming (continuous I/O) fixed size FFTs.

Table 1. SQNR values for different FFT scaling methodologies (16-bit input data and 1024-point transform).

Method SQNR (db)
[29] Scaling 49
[30] 53
[31]

BFP
56

Intel [32] 57
DMBA BFP/Floating Point 83

For the DMBA, control of word-length growth is performed in the normalizer circuit in Figure 8,
which scales fixed-point data back to the n-bit length of the input data. The scaling is done separately
on each row of the N3 × N4 DFT matrix and the maximum scaling amount for that row of the DFT
matrix results in an exponent value. Therefore, at the end of the column processing, there are N3

different exponents stored. Normally, for an N-point FFT using BFP scaling, a single exponent applies
to all N data values; however, since there are N3 different exponent values here, the SQNR values can
be higher than for BFP scaling.

To support this method of scaling, a BFP control block has been added, as shown in the expanded
level of detail in Figure 9. This control unit contains 2 × N3 registers to keep track of maximum
exponents. The factor of 2 required is because row/column processing stages overlap, and it can be
necessary to simultaneously keep track of the scaling exponent values from each stage. A comparator is
included in the BFP control block to test for the maximum exponent in each of the N3 DFT matrix rows.

Figure 9. Additional details of the BFP/FP systolic data flow not shown in Figure 8.

During the row DFT processing, when Xbri mantissa and exponent values are read from the
RAMs (“M” in Figure 9), the exponent values are subtracted from the corresponding maximum
exponent value for that DFT matrix row and the difference is supplied to a shifter. The shifter then
normalizes the mantissa value so that all Xbri input values have the same exponent. When an FFT
block is being computed, the N3 maximum exponent values stored in the BFP control block are added
to the corresponding output exponents as data is streamed out of the output buffer “B” in Figure 9.
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Each output value then has a real and imaginary mantissa and a single exponent. A simple output
converter has been tested that will convert each to a standard BFP format (single exponent per FFT
block); however, it reduces dynamic range.

To summarize, DMBA word growth control is based on an enhanced BFP and floating-point
methodology that achieves SQNR values typically 20 to 30 db higher than other circuits with the same
fixed-point input word length, as shown in Table 1. This is important because FPGA architectures from Intel
and Xilinx have a word length “boundary” of 18-bits due to their 18-bit multiplier and memory designs.
Consequently, circuits that allow word growth would encounter significantly increased resource usage
when word lengths are increased beyond 18-bits to achieve SQNR >80 db. Finally, it should be noted
that minimizing word lengths for a given SQNR also reduces LUT and register fabric usage in FPGAs.
The hardware cost of using this scheme represents approximately a 15% hardware overhead penalty.

6. Results

6.1. Introduction

In this section, seven different FPGA FFT implementations are described, with the purpose of
demonstrating how the same architecture can be used for a range of applications. The first two designs
(Section 6.2) are fixed-size power-of-two FFTs (256-points and 1024-points) that take computational
advantage of the radix-4 butterfly matrix in which case the LHS/RHS PE multipliers are replaced
by adders because CM1/2 contains only {±1, ±j} (see Figure 3). The third design (Section 6.3) is
like the first, but adds a requirement for run-time choice of FFT size. The last three power-of-two
FFT circuits (Section 6.4) use single-precision floating-point formats (IEEE 754), one of which targets
the latest in FPGA embedded floating-point hardware support. Finally, in Section 6.5, a complex,
non-power-of-two design is presented that uses mixed-radices and offers run-time FFT choice, yet has
the a very simple programming model for performing any size of FFT.

Additionally, comparisons to other FPGA implementations are included. This is often difficult
because circuit properties can vary considerably, due to the different CMOS technologies/speed-grades,
embedded circuit types, LUT/register fabric architecture, FFT functionality, word growth control,
circuit architectures, and the FPGA tools and tool settings used. Consequently, the goal was to
provide more accurate comparisons by using close to identical circuit functionality, SQNR, target
FPGA hardware, tools, and settings as possible. A range of different FPGA types and technologies
were chosen to add variety to the comparisons.

Although it is common to compare FFT architectures based on a table with entries representing
resources used and transform times as a function of transform size N, this only works well when there
is a direct correspondence between N and hardware, as in the case of pipelined FFTs. Memory-based
architectures do not share this one-to-one correspondence, so a useful table would be difficult to
construct. Additionally, there are many design issues impacting resource usage and speed that cannot
be addressed in such tables. Therefore, the focus in this section is on circuitry that has been successfully
compiled with the same tool settings, and then simulated and tested using complex random input
data followed by comparisons of output data to Matlab generated values. In some cases where noted
testing has also been done using FPGA development hardware boards. In this way the comparisons
are comprehensive and thus more useful.

In the comparisons with Intel FPGAs, Intel’s Quartus synthesizer, and place-and-route design tools
were used, and the Timequest static timing analyzer determined worst-case maximum clock frequencies
(Fmax) at 85 C. For Xilinx FPGAs, ISE 14.7 tools for synthesis and place-and-route were used. All Fmax or
clock rate values are the same as the complex data sample rate, except where noted, and were obtained by
choosing the highest values from at least three different compiler seeds. All SQNR values were calculated
using at least 500 blocks of random FFT complex input data. For 16-bit word length input circuits, all twiddle
factors were 18-bits, except where noted. Real multipliers were 18-bits, except for the floating-point circuits.
All designs support forward and inverse transforms except where noted.
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All results include a measure of circuit efficiency, our primary metric of design success, defined
by the throughput obtained per logic cell, given terms of registers and LUTs, as follows:

Efficiency = 100, 000 × throughput/
LUTs + registers

2
(7)

where throughput is expressed in transforms/µs. Another logic cell choice would have been to use
slices for Xilinx devices and adaptive logic modules (ALMs) for Altera devices, but this information
was not available in many of the circuits used in the comparisons.

6.2. 256-Point and 1024-Point Streaming (Normal Order In and Out) Fixed-Size FFTs

For these two transform sizes, the FFT circuits targeted the same hardware, Stratix III EP3SE50F484C2
FPGAs (65 nm technology) and comparisons are made to Intel [32], Gird [33] and Spiral [34] circuits.

The Intel circuit is based on a mixed radix-4/2 20-bit pipelined FFT that uses BFP (single exponent
per FFT block) to achieve a similar SQNR as the DMBA FFT circuits [32]. The SQNR results for the
Intel circuits were obtained from a bit-accurate Matlab model created along with the circuit by the Intel
FFT generators (IPv13.1). Here, the ALM is the basic unit of a Stratix III FPGA (two variable size LUTs,
two registers, plus other logic). An M9K is a 9216-bit memory with a word length up to 36-bits.

Compared to the Intel circuits, Table 2 shows that the DMBA FFTs use fewer registers, ALMs,
and M9Ks, with throughput rates that are 46%/40% higher for 256/1024-points, leading to better values
of throughput per logic cell (7) by 44%/36%. Note that there are significant improvements in power
dissipation as well (results obtained from Quartus Power Play Power Analyzer tool). For 256-points,
it is possible to use LUTs for the DMBA circuit’s internal memory, so that only 15 M9Ks are necessary.
In this case, the number of ALMs would be approximately the same as for the Intel version.

As part of a larger project to automate the development of signal processing algorithms, the Spiral
designs come from a parameterized tool that generates Verilog code for fixed-point and floating-point
fixed-size power-of-two FFTs. Here, forward, streaming designs with scaling to prevent errors were
chosen. Bi-directional transforms were not an option. Like the Intel circuit a higher word length
was required for comparable SQNR, obtained from Verilog simulations. Unlike the other designs
considered here, the Spiral circuits process two complex words per cycle, so transforms complete in
N/2 cycles. The Spiral circuits use fewer LUTs, but more registers, M9Ks and multipliers. So while
these circuits achieve marginally better throughputs per logic cell, memory (M9K) and multiplier
usage are significantly higher by 42%/245% and ×3.4/×4.4 for the 256/1024-point designs.

In Table 2, the commercial Gird Systems IP core is a 16-bit, streaming, decimation-in-frequency,
radix-4 core and results are shown for an Intel Stratix IV FPGA (EP4SE230C4). The Stratix III and IV
FPGAs use different fabrication technologies (65 nm and 40 nm), but their architectures are the same,
so the comparisons, except for speed (C4 is a lower speed grade), are somewhat useful. It is important
to note that the circuit uses scaling of results in intermediate stages to control word growth, so that
likely the SQNR for this circuit is much less than all the other designs in the table. Like the Intel and
Spiral designs, if a 20-bit circuit were used, all the Gird resource numbers would increase significantly.

Table 2. Comparisons of commercial (Intel, DMBA, Gird) and Spiral fixed-size FFT circuits.

Intel DMBA Spiral Intel DMBA Spiral Gird
Circuit 20-Bits 16-Bits 20-Bits 20-Bits 16-Bits 20-Bits 16-Bits

Transform Size 256 1024
ALMs 4261 3982 3632 4394 4357 5237 n.a.
LUTs 4416 6046 3934 4632 6426 3517 5649

Registers 7841 6437 7413 8206 6718 9411 6190
Memory (M9Ks) 38 31 44 38 31 79 52
Memory(K-bits) 49 41 85 195 145 362 n.a.
Real Multipliers 24 33 112 24 33 144 96
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Table 2. Cont.

Intel DMBA Spiral Intel DMBA Spiral Gird
Circuit 20-Bits 16-Bits 20-Bits 20-Bits 16-Bits 20-Bits 16-Bits

Transform Size 256 1024
Fmax (MHz) 387 566 292 382 533 293 263

SQNR 88 87 86 81 83 80 n.a.
µj/FFT 1.3 1.1 n.a. 6.4 4.3 n.a. n.a.

(µsec) per FFT 0.66 0.45 0.44 2.7 1.9 1.7 3.9
Thrpt/logic cell 25 35 40 5.8 7.9 8.9 4.3

6.3. Variable FFT Streaming (Normal Order In and Out)

In this section, a variable streaming FFT circuit is described that provides a run-time choice of
128/256/512/1024/2048 transform sizes as required for 802.11ax [4] and LTE protocols [3]. For this circuit
with b = 4, it was natural to choose a factorization with N3 = 16 for all transform sizes. This choice leads to
simple 4× 4 SAs, as in Figures 3 and 6, for the 16-point column transforms with processing based on (3).
All the desired twiddle factors WN can be conveniently found among the elements of W2048.

After the column DFTs, it would be possible to perform each of the N4-point row transforms
using (3) exclusively; however, better efficiency is achieved by factoring some of the row DFTs again
(N4 = N5N6) and differently for each transform size, so row DFTs are broken into two steps. The rows
in Table 3 show how each DFT transform of the 16 DFT matrix rows of length N4 is performed in the
SAs. For 128/512/2048-points, the factorization “4 × 2” means that an 8-point transform is done as
a four-point transform in the LHS SA followed by a 2-point transform in the RHS SA. For 1024 and
512-points, “4 × 1” means the LHS SA only does the four-point transforms. In Table 3, all 16-point
transforms are factored as “4 × 4” and follow the base-4 processing defined by (3) and shown in
Figure 3. For example, to do a 2048-point transform, each row of length N4 = 128 is factored with
N5 = 8 and N6 = 16. Therefore, for these row transforms, 16 8-point transforms are computed using
both LHS and RHS SAs (“4 × 2”), followed by eight 16-point DFTs (“4 × 4”) using (3). The linear
multiplier array in Figure 3 is used to perform all associated twiddle multiplications.

The motivation for factoring the row transforms or column transforms is that, like other FFT
circuits, it reduces the overall cycle counts. In our case, it is necessary to ensure that a transform can
be completed in <N cycles, so that with pipelining overhead, the high-speed clock (Fmax in all the
tables) can run at the highest speed permitted by the FPGA technology, architecture and compilation
technology. In all cases in Table 3, these factorizations allowed the computation to complete in less
than N clock cycles. Of course, total computation cycles or latency for a transform is longer than this
due to the deep pipelining used to maintain the clock speed.

Table 3. Values of N4, N5 and N6 used for five transform sizes, N, and factorizations, F.

N N4 F N5 F N6 F
128 8 (4 × 2) - - - -
256 16 (4 × 4) - - - -
512 32 - 8 (4 × 2) 4 (4 × 1)
1024 64 - 4 (4 × 1) 16 (4 × 4)
2048 128 - 8 (4 × 2) 16 (4 × 4)

The variable FFT circuit uses the same PE array circuit as that for the fixed-point designs
in Section 6.2, with the addition of more RAM memory and different finite-state machine control.
The 2048-word twiddle memory is encoded so that it does not use more M9Ks than the fixed size
1024-point circuit in Section 6.2 [35].

In Table 4, the DMBA is compared with three other FFT circuits, spanning a range of architectural
possibilities. At one end of the spectrum is a memory-based FFT [36] (Figure 1a), where small
circuit size is typically a priority, and as a result the number of clock cycles required to complete
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an FFT is much greater than N. Next is a traditional pipelined FFT based on a single-path radix-22

delay-feedback (SDF) architecture from Intel [37]. Like most pipelined FFTs, N clock cycles are required
to perform an N-point transform. Finally, at the other end of the spectrum, by adding parallelism
based on multi-path delay commutator (MDC) and SDF stages, a circuit architecture that computes
the FFT in much less than N [4] clock cycles is included. All the circuits allow run-time choice of
128/256/512/1024/2048-point transform sizes, except for [36] which also offers 16/32/64-points
and [4] which does all but 128-points, but does offer a multi-mode capability for processing some
transform sizes in parallel.

Table 4. Comparisons of commercial (Intel, DMGA) and other streaming variable FFT circuits (16-bit,
run-time choice of sizes).

Circuit Intel DMBA [36] [4]
ALMs 6089 4785 n.a. n.a.
LUTs 5453 7020 1143 80,088

Registers 9752 7044 1754 47,129
Memory (K-bits) 203 290 n.a. 117
Memory (M9Ks) 28 42 n.a. n.a.
Real Multipliers 68 33 4 n.a.

Fmax (MHz) 283 490 200 111
SQNR (average) 90 84 n.a. n.a.
FFT 2048pts (us) 7.2 4.2 57 2.3
Thrpt/logic cell 1.8 3.4 1.2 0.68

In Table 4, three of the designs (DMBA, Intel, [4]) used the same Stratix IV EP4SGX530KH40C3 FPGA
(−3 speed grade). The other design used a 5SGSMD5K2F40C2 Stratix V FPGA (28 nm technology). Since the
Stratix V FPGA uses a more advanced architecture, is based on better CMOS technology, and is the fastest
−2 speed-grade, the results for [36] in Table 4 could potentially yield better results.

It is important to note in Table 4 that the DMBA Fmax of 490 MHz is limited not by the FPGA
fabric, but is a result of the maximum operating speed of the simple dual port embedded RAMs used.
The TimeQuest generated DMBA Fmax associated with the LUT/register fabric is >500 MHz. Note that the
DMBA FFT circuit operation at 500 MHz was verified using a development board based on an Intel Stratix
III EP3SL150F1152C2 FPGA.

The memory-based design [36] is a 16-bit radix-2 FFT with two butterfly units and uses a 16-bit
twiddle factor. The tradeoffs show that although this memory-based design uses 6.1/4.0 times fewer
LUTs/registers than the DMBA, it runs 13.6 times slower, even using a faster FPGA speed grade
and technology.

For the Intel 16-bit pipelined FFT (IPv17.1), the values in Table 4 show that the Intel circuit uses
27%/38% more ALMs/registers, but the DMBA uses 29% more LUTs; however, the higher DMBA
throughput leads to a better throughput per logic cell by 87% (2048-points), even with the RAM speed
restriction. This Intel FFT is slower than Intel’s fixed-point FFT (Section 6.2) because the 16-bit input
word length grows to 28-bits at the output, which was done to keep SQNR high. Processing these
longer word lengths and likely larger multipliers slows down the Intel SDF speed. It should be noted
as well that for the Intel circuit any post-processing, such as that needed for common operations such
as convolutions, would require 28-bit circuitry rather than the 16-bit DMBA word-length, thus nearly
doubling the resource usage. Finally, the DMBA FFT has been successfully programmed and tested to
support cyclic prefix generation and insertion needed for the targeted LTE protocols, whereas the Intel
circuit would require a separate 28-bit circuit to perform this function.

The last circuit in Table 4 [4] is a parallel pipelined FFT circuit based on radix-2 MDC and radix-24

SDF stages, all of which have 8 I/O ports. Data output is not in natural order, so a reordering circuit
would be necessary to make this design closely comparable. The parallel operation provides processing
of eight complex samples per clock and reduces overall latency, but the added circuit complexity
results in 11.4/6.7 times more LUTs/registers, yet achieves an FFT throughput time that is only 83%
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faster than the DMBA. Although the latency (first point in to first point out) in clock cycles (299 for
2048-points) is 11.7 times less than that of the DMBA (3507 clock cycles for 2048-points), the latency in
time is 2.69 µs vs. 7.16 µs for the DMBA, an improvement of only 2.7-fold. With a reordering output
buffer, the improvement would be reduced by approximately two-fold [4].

6.4. Floating Point FFT

6.4.1. Introduction

Ideally, floating-point FFT implementations in custom embedded applications should be used
because they offer a much higher dynamic range and, as a byproduct, bypass the design hassle
of analyzing fixed-point word lengths, including how to properly scale operations to minimize
word growth and avoid overflow. In Section 6.4.2, two such floating-point designs that generate
IEEE 754 single-precision outputs are presented. These target FPGAs with traditional fixed-point
embedded multipliers, where a substantial amount of LUT/register overhead is required to facilitate
the floating-point operations. A third implementation is presented in Section 6.4.3 based on a new
class of FPGAs that provide embedded hardware support for IEEE 754 single-precision. With all
the difficult arithmetic moved into embedded hardware, these FPGAs achieve a long-sought goal of
simultaneously offering high dynamic range with substantially reduced need for LUTs and registers.

6.4.2. Floating-Point without FPGA Embedded Hardware Support

Here, 256-point and 1024-point streaming floating-point FFT circuits (normal order in and out),
which provide an IEEE 754 32-bit single-precision formatted complex outputs, are presented and
compared. The Intel versions (IPv16.1) [37] are based on a mixed radix-4/2 pipeline and only
available as variable streaming FFTs. The DMBA circuits are fixed-size but contain control support
for other sizes. The DMBA takes 24-bit fixed-point input data, whereas the Intel equivalent accepts
32-bit single-precision inputs. The Intel circuit provides streaming operation, but only does forward
transforms, whereas the DBMA is bi-directional. An input converter added to the DMBA to provide
an IEEE 754 input format would add little overhead. The Spiral circuits use same parameters as the
fixed-size designs of Section 6.2, except that floating-point precision is selected.

As noted in Section 5.3 for the DMBA, during the row DFTs, all DMBA computations use
a floating-point scaling scheme, so to achieve an IEEE 754 single-precision format only a small output
conversion circuit is necessary. To achieve the desired precision, the fixed-point circuits on which it is
based (Section 6.2) have a substantially larger 28-bit internal word length.

Example performance and resource usage data are provided in Table 5 for a Stratix IV
EP4SE360H29C2 FPGA target (−2 speed grade). For the 256-point DMBA circuit in Table 5, there are
two different design versions: v1 uses M9K RAMs for all internal memory and v2 uses the Stratix IV
memory logic array block (MLAB) that allows LUTs to function as internal memories. As can be seen
in Table 5, using MLABs reduces the number of M9K memory blocks to 30 from 62.

For the important LUT/register fabric, the Intel designs use far more resources, e.g., almost 100%
more LUTs for the 1024-point transform. This also implies more power dissipation, as our experience
shows that the FPGA LUT, register and wiring fabric is the primary source of power dissipation.
Intel memory usage in terms of M9Ks is also greater—80%/40% for 256(v2)/1024-point designs.
Similarly, the Spiral designs use far more LUTs and especially registers, up to ×3.2/×4.0 more for
the 256/1024-point designs. For the two transform sizes the DMBA shows ×2.3/×2.5 and ×2.0/×2.2
higher throughputs per logic cell than the Intel and Spiral circuits, largely due to the reduced usage of
LUTs and registers. The reduction in DMBA hardware used is important as it can move the tradeoffs
between fixed and floating-point attractively in the direction of the floating-point option. The larger
word lengths in the DMBA lead to critical paths in the much larger multipliers, which limits Fmax
compared to the smaller fixed-point versions in Section 6.2.
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Table 5. Comparisons of commercial (Intel, DMBA) and Spiral single-precision floating-point FFT
circuits, when the FPGA has no embedded floating-point support.

Circuit Intel DMBA v1 DMBA v2 Spiral Intel DMBA Spiral
Transform 256-Points 1024-Points

ALMs 10,834 7137 7834 22,039 13,559 7186 27,014
LUTs 16,519 11,050 12,006 16,818 21,801 11,193 21,252

Registers 15,545 10,431 12,535 32,946 18,169 10,495 42,054
Memory (M9Ks) 54 62 30 36 87 62 90
Real Multipliers 48 129 129 96 64 129 128

Fmax (MHz) 299 456 426 260 285 386 260
Thrpt/logic cell 7.3 16.6 13.6 8.2 1.4 3.5 1.6

Since the DMBA designs are based on fixed-point implementations with shifters for normalization
of internal values, measurements of the circuit precision are provided in Table 6 for both the 256
and 1024-pt circuits. Input data was Matlab generated random real/imaginary 24-bit fixed-point
numbers for the DMBA and the same converted to single-precision floating point for the Intel circuits
(FFT IP v17.1 Modelsim and Matlab models) and Spiral circuits. The comparison reference is double
precision Matlab.

The mean absolute error numbers were obtained by subtracting the reference output value from
each circuit output, taking the magnitude of this and then dividing by the magnitude of the reference
value for that output point. The maximum absolute error is the largest of these errors computed over
all 500 blocks of input data.

In terms of mean absolute error, the Intel and Spiral designs here are ~7 times less accurate for
both transform sizes. The standard deviation for both 256-point and 1024-point Intel designs are
also much larger values, consistent with the bigger maximum errors in the Intel designs. Similar
improvements can be seen for other data input types such as single sinusoids.

Table 6. Error comparisons for single-precision floating-point FFT circuits in Table 5.

Circuit Intel DMBA Spiral Intel DMBA Spiral
Transform 256-Point 1024-Point

Mean 2.4 × 10−7 3.1 × 10−8 3.5 × 10−7 2.9 × 10−7 4.2 × 10−8 4.4 × 10−7

Std Deviation 2.5 × 10−7 3.1 × 10−8 4.2 × 10−7 3.4 × 10−7 7.7 × 10−8 5.6 × 10−7

Maximum 2.4 × 10−5 4.3 × 10−6 3.4 × 10−5 9.1 × 10−5 2.7 × 10−5 8.2 × 10−5

6.4.3. Floating Point with Embedded Hardware Support

FPGA signal processing options have improved significantly with the introduction of hardwired
floating-point embedded hardware. For example, Arria 10 FPGAs are the industry’s first FPGAs that
natively support a single-precision floating-point DSP mode as well as standard and high-precision
fixed-point multiplications in embedded circuitry. The single-precision floating-point DSP block mode
is IEEE 754 compliant and includes an IEEE 754 single-precision floating-point adder and IEEE 754
single-precision floating-point multiplier.

To illustrate the benefits of this new FPGA technology, 1024-point streaming FFT transforms
(normal order in and out) were implemented. Table 7 presents results compiled for an Arria10
10AS066H1F34E1SG FPGA (20 nm technology) device. In choosing resources, two versions of the
DMBA circuit are shown: “v1” used M20K memories (20 K bits) for the internal FFT PE memories and
“v2” used MLABs for this. The Intel FFT (IPv16.1) uses a mixed radix-4/2 delay feedback pipeline.
In the Arria FPGA, an ALM contains two 4-input adaptive LUTs, four registers, plus other logic.
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Table 7. Commercial single-precision 1024-point floating-point FFT circuit comparisons, when the
FPGA has embedded floating-point support.

Circuit Intel DMBA v1 DMBA v2
ALMs 4852 2251 4106
LUTs 6058 3531 6795

Registers 10,844 4969 6121
Memory (M20Ks) 20 62 30

MLAB Memory Bits 4136 4776 70,312
DSP Blocks 64 96 96
Fmax (MHz) 432 585 572

Thrpt/logic cell 5.0 13.4 8.7

Several important conclusions can be drawn from the resource and performance numbers
in Table 7:

• Use of the embedded DSP floating-point hardware drastically reduces the need for LUTs and registers.
For example, the DMBA design (v1) in Table 7, compared to the Intel Stratix IV fixed-point multiplier
implementation (Table 5), used 6.2 times fewer LUTs and 3.7 times fewer registers.

• The Intel design in Table 7, compared to the DMBA (v1), used 2.2 times more ALMs, 1.7 times
more LUTs, and 2.2 times more registers, leading to throughput per logic cell numbers that were
169% better. The DMBA “v2” trades off embedded memory (M20Ks) for LUTs, but still used 15%
fewer ALMs.

• For the same Arria 10 FPGAs, the DMBA provided 35% higher throughputs.
• The DMBA design clock rates are at Fmax values very near the Arria 10 “restricted” speed limit

of 608 MHz. This example shows that DMBA circuits are better able to take advantage of all the
built-in speed provided by FPGAs.

The key to reducing the LUT/register fabric usage when designing FFTs for Intel 10 FPGAs is
to move as much of the processing into the embedded DSP blocks as possible. These DSP blocks
provide several basic floating-point primitives: multiplication, accumulation and addition. The DMBA
architecture focuses on using just these primitives, as shown in Figure 6. Here, the PEs on the LHS
perform floating-point addition, the multiplier array PEs perform floating-point multiplication, and the
RHS PEs perform floating-point accumulation with sums passed to memory M in Figures 1 and 8.

Most of the registers used in the DMBA structure (Table 7) supported the fast systolic passing
of coefficients and intermediate data between PEs, but about 17% are used to register inputs of the
floating-point multipliers and might in the future be absorbed into the DSP block.

About 25% of the 2251 ALMs in Table 7 provide the control needed to do many transform sizes.
This number can be significantly reduced for single transform sizes.

As FPGAs such as Intel Arria 10 and Stratix 10 inevitably become cheaper, the choice of
floating-point hardware will naturally become more prevalent due to the relatively small LUT and
register usage required by the DMBA.

6.5. Non-Power-of-Two Circuit (LTE)

6.5.1. Introduction

SC-FDMA is a part of the LTE protocol [3] used for up-link data transmission. It involves a DFT
pre-coding of the transmitted signal, where the DFT can be any one of 35 transform sizes from 12-points
to 1296-points, with N = 2a3b5c and a, b, c positive integers. The rationale for targeting FPGAs is due
to the rapidly growing FPGA use in communications applications, e.g., base stations and remote
radio heads at the top of cell phone towers. Here, we provide results of mapping the DMBA to Xilinx
Virtex-6 devices.
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6.5.2. Related Work

To compute high performance run-time transforms for N 6= 2n, a variety of mixed radix approaches
have been proposed [38–41]. The performance of the different designs is primarily related to the
complexity of the butterfly unit design.

Both Xilinx [41] and Intel [38] use a memory-based architecture as in Figure 1a, consisting of
a single multi-port memory that sends/receives data to/from a single arithmetic unit that performs
the required butterfly computations. For these designs, the number of clock cycles per DFT is greater
than the transform size N, so it is not possible to continuously stream data into and out of the circuit.
In the Xilinx design, the arithmetic unit can do radix 2, 3, and five-point butterflies using parallel and
pipelined hardware. It can perform two radix-2 operations per clock cycle, one radix-3 or radix-4
operation per cycle and one radix-5 operation in two clock cycles. The Intel design uses a simpler
butterfly unit which results in lower performance, but also reduced LUT/register usage.

The other designs are different from those discussed above in that they either use a higher radix
memory-based design [39] or a pipelined architecture [40] to reduce the overall number of cycles
needed to compute a DFT to less than the actual transform size N.

6.5.3. DMBA Design Approach

Although the value of N can be obtained with just radices 2, 3 and 5, the architecture chosen here
is based on a value of b = 6, so that radix-6 is an option. This value was selected because all SC-FDMA
DFT sizes include a factor of 6, since a LTE resource block (RB) or the smallest group of subcarriers
used by the SC-FDMA protocol (Figure 10) has at least 12 subcarriers. Therefore, using a radix-6 option
translates to more efficient processing for all 35 sizes. The actual structure of the architecture is then
that of Figure 5 with b = 6. This choice means that the array also contains sub-set b × b arrays with
b = 2, 3, 4 and 5, so base-2, 3, 4, and 5 processing can also be performed.

Figure 10. LTE RB composition. Each symbol (vertical column) corresponds to a DFT of size N,
where N is divided into minimum groups of 12 subcarrier coefficients to support FDMA. The minimum
transmission RB consists of 12 DFT coefficients by seven consecutive DFTs.

A physical array structure with b = 6 would result in higher throughputs than needed for
SC-FDMA applications. Consequently, the physical array consists of only one of the PE rows in
Figure 8. In other words, each virtual LHS, RHS, and multiplier PE column in the array is projected
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(collapsed vertically) onto a single PE row. Thus, there are six RAM memories associated with the six
LHS/RHS combination PEs. This linear array emulates the operations of the 2-D b × b virtual array of
Figure 5, but completes a DFT computation a factor of six times slower.

6.5.4. On-the-Fly-Twiddle Coefficient Calculation

Since the goal of this design was to provide a run-time option to compute any number of transform
sizes, the number of twiddle coefficients that would need to be stored could be unbounded. The total
number of twiddle values needed for LTE SC-FDMA itself is about 6500 words. There are schemes for
reducing twiddle factor storage to as little as N/8 based on sin/cos symmetries [35], but these are only
useful for power-of-two based FFTs.

For this reason, an approach based on a programmable on-the-fly-generation of the twiddle values
for a DFT size has been adopted. This twiddle coefficient engine uses a single complex multiplier,
a table of twiddle seed values, and a set of size parameters as a basis for doing this. The iterative
equation Wnext

twd = Wlast
twdWn, where W = e−2π j/N and Wn is a seed value, is used to generate values

for a particular DFT size given the starting seed.
It would be possible to generate the N twiddle values for a transform size with a single seed

value, however there is more circuit complexity involved in doing this because the twiddle factors
must be generated in a special order due to the algorithms used. Additionally, there are numerical
considerations that come into play as well. A better tradeoff was to use a separate seed for each column
of a twiddle matrix. For example, if a 960-point DFT is factored as 30 × 32, 32 seed values would be
needed to generate all twiddles.

In the implementation of the LTE SC-FDMA, the twiddle generation circuit required only
937 words of memory to hold all twiddle seeds needed for 35 DFT sizes. The logic needed to implement
the entire programmable twiddle circuit was only about 10% of the circuit hardware.

6.5.5. Programmability

The base-6 circuit described here was programmed at a more abstract level than the base-4 circuits
in Sections 6.2–6.4. It used a single RAM memory to hold parameters that determine the specific
factorizations and execution orderings used for loop index ranges in the Verilog coded control modules.

To illustrate the programmed data flow, consider the example N = 540 = N3 × N4. Since
our implementation consists of 6 × 6 SAs, it would be most efficient to choose the factorization
N3N4 = 36× 15 = 62 × (3× 5) because this makes best use of all the hardware. In this case, the processing
consists of 15 36-point column DFTs followed by 36 15-point row DFTs. The input Xb is stored in the input
buffers in such a way that it is accessible as a sequence of blocks Xbci, i = 1, . . . , 15 of 6 × 6 column data.
Then, the 36-point column DFTs are done using (3) with M = N3 = 36 = N1ciN2 = 6× 6, CM1 = CM2 = Cb

(b = 6) and Ci,k
b = e−j( 2πik

b ), i = 0, 1, . . . , b - 1; k = 0, 1, . . . , b− 1. Each Xbci enters the array at the
bottom of the LHS SA (Figures 5 and 8) and flows upward with systolic matrix–matrix multiplications
performed as before. As each of these 36-point column DFTs are computed, they are multiplied by elements
in the 36× 15 twiddle matrix W520 which are generated on-the-fly. During this processing, all PEs are used
with 100% efficiency.

After twiddle multiplication by W540, the multiplexor in Figure 8a is used to store data for the
15-point row DFTs in a way that they can be accessed as 3 × 5 data input blocks, Xbri, i = 1, . . . , 36,
from the internal PE RAMs. Each of the six PE virtual rows is responsible for storing six DFT matrix
rows as six 3 × 5 blocks in associated internal RAMs.

For the row DFTs, not all the LHS/RHS PEs are used. Rather, as shown in Figure 4, the LHS side SA
reads from RAMs in five of the six PE columns to do the five-point transforms by multiplication of these
data blocks by C5 values fed from the bottom of the LHS array. The multiplier array then multiplies
these transform values arriving from the LHS array by appropriate elements of a 3 × 5 twiddle matrix
stored in a small ROM. Finally, only three PE columns are used on the RHS array to perform all the
three-point transforms. Results are stored in an output buffer and are output in normal order.
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The control hardware is aware of the number of rows/columns used in the LHS and RHS arrays
during the computations, the different coefficient and twiddle matrices required, the read/write
memory addresses, the sequencing in/out of data storage and retrieval patterns, etc. All this parameter
information is saved essentially as a table in the ROM memory. The programmability arises because
when a DFT size is requested, the corresponding table is read from ROM and used to set loop values in
the Verilog control code. The number of different DFT sizes that can be supported is then only limited
by the size of this parameter memory.

It is important to note that the same architecture can be programmed to perform power-of-two
FFTs as well. This is important, as almost all wireless protocols—including LTE—require power-of-two
computations and having both options available in the same circuit could be useful for future
wireless applications.

6.5.6. DMBA LTE SC-FDMA Transform Throughput and Latency

Table 8 shows, for each SC-FDMA transform size N, the corresponding throughputs (T) and
latencies (L) in clock cycles for the design. In this context, latency is defined as the number of clock
cycles it takes to finish the first transform in a series of transforms. The DMBA FFT cycle counts
are based on Modelsim Verilog simulations. Note that for the smaller transform sizes, 12-, 24-,
and 36-points, the circuit supports constant streaming of the data into and out of the circuit.

Table 8. Throughput (T), latency (L) as a function of transform size (N) for 35 SC-FDMA DFT sizes.

N T L N T L N T L
1296 2592 5006 576 1154 2211 180 365 609
1200 3601 5798 540 1081 2096 144 289 569
1152 3458 5516 480 962 1878 120 244 424
1080 2160 4178 432 864 1694 108 221 390
972 3891 5550 384 770 1510 96 200 347
960 2881 4599 360 721 1412 72 149 283
900 1801 3464 324 651 1244 60 124 243
864 1728 3350 300 601 1168 48 102 206
768 2304 3686 288 578 1143 36 36 133
720 1440 2798 240 481 951 24 24 95
648 1296 2522 216 437 717 12 12 66
600 1201 2338 192 384 759

6.5.7. Comparison with Commercial Circuits

In this section, the proposed LTE SC-FDMA DMBA is compared to Xilinx and Intel versions
of the same circuit. To provide a more relevant metric than throughput and latency numbers,
we calculated the length of time necessary to compute an LTE RB, as shown diagrammatically in
Figure 10. For example, 1296 subcarriers would imply processing a maximum of 108 resource blocks.
This is a good performance comparison metric in that it requires both low latency and high throughput.

(a) Xilinx [41]

A Vertix-6 (XC6VLX75T-3ff7484) FPGA was used as the target hardware for both the Xilinx and
the DMBA. The Xilinx LogiCORE IP version 3.1 was used to generate a 16-bit version of their DFT
because the SQNR of 60.0 db (mean over all 35 transform sizes) was comparable to the DMBA 12-bit
circuit with mean SQNR = 63.3. Xilinx LogiCORE includes a bit accurate C model, callable as a Matlab
mex function, that was used to obtain Xilinx SQNR values.

The resource comparisons in Table 9 use a block RAM normalized to 18-kbits, so that a Xilinx
36-kbit block RAM is considered equal to two 18-kbit RAMs. Also, the “RB Avg” column provides the
average number of cycles (over all 35 DFT sizes) it takes to compute the DFT for the seven symbols
defined by a RB as a function of the transform size N. Finally, the Fmax value (here Fmax is not the
sample rate) and the number of RB cycles are combined, providing a measure of the throughput,
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which was normalized to 1 in our design (higher is better). Table 9 shows that Xilinx LUT usage
is higher by 32%, register usage by 68%, average computational cycles by 41% while normalized
throughput is 39% higher for the DMBA. Consequently, the overall combined gain is significant.

Table 9. LTE commercial circuit technology comparisons.

Circuit FPGA LUT Reg Blk
RAM

Mult
18-Bit

Fmax
(MHz)

RB
Avg

Thrpt
Norm

DMBA Virtex-6 2915 2581 19 72 401 16.6N 1.00
Xilinx Virtex-6 3851 4326 10 16 407 23.4N 0.72

DMBA Stratix III 3816 3188 29 60 417 16.6N 1.00
Intel Stratix III 2600 n.a. 17 32 260 32.9N 0.31

In terms of throughput in clock cycles, the Xilinx average over 35 DFT sizes was 3.3N, whereas
that for the DMBA was only 2.1N. If these numbers are used as a measurement basis to calculate
throughput per logic cell (7), then the DMBA efficiency is 130% higher.

The 401 MHz Fmax clock speed is lower than the other DMBA Fmax values in earlier examples
because the critical path here is in the control hardware rather than the array structure itself. Additional
control-level pipelining would be necessary to move the critical path out of the control hardware.

(b) Intel [38]

Unlike Xilinx, Intel does not offer a DFT LTE core; however, they have published results of
an example design running on a Stratix III FPGA that provides a useful basis for comparison.
This design example is different compared to the DMBA here in that it does not offer a 1296-point
transform option and the outputs are not in normal order. Adding buffer circuitry to sort the output
data would require additional logic and add ~N additional words of memory (~5 Stratix III M9K RAM
blocks) to the numbers shown in Table 9.

For comparison, the DMBA was also targeted to a Stratix III FPGA (EP3SE110F780C2). The Intel
implementation uses less logic but is far slower, both in terms of the lower values of Fmax and the
increased number of cycles to complete the RB computation. Consequently, the DMBA design had
about three times higher throughput while LUT usage was only ~47% higher (some of this could be
due to a lower speed grade used in the Intel design—this was not specified). It should be noted that
the Intel latencies would be relatively understated given that data output is not in normal order.

The DMBA FFT circuit operation at 450 MHz was demonstrated on an Intel Stratix III
EP3SL150F1152C2 FPGA using a development board.

6.5.8. Other FPGA LTE Implementations

The other two designs are different from those in Table 9 in that they use a higher radix [39] or
a pipelined FFT [40] (single-path delay feedback) architecture to reduce the overall number of cycles
needed to compute a DFT in less than the actual transform size N. This means it is possible to have
a streaming architecture, e.g., one where data flows continuously into and out of the circuit (Fmax is
the same as the sample rate).

No SQNR data was supplied to indicate the circuit precision, although the internal precision
in [39] was 18-bits and [40] used a mixed floating point (the same exponent for real and imaginary
words) and block floating point. Details regarding latency are not discussed in these papers; however,
comparison is still instructive and performance can be estimated based on throughput alone, which is
more important than latency for computing resource blocks.

The comparison results for Virtex FPGAs are shown in Table 10. For the DMBA, the average
throughput as a function of N for all 35 transform sizes is 2.1N, which is a factor of two higher than the
other implementations. However, these more complex architectures require far more LUT hardware,
2.7 times and 3.7 times for [39] and [40], respectively. Although [40] uses fewer registers, this is less
meaningful because the 10:1 ratio of LUTs:registers in FPGA hardware leads to imbalances that can
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cause many registers to be inaccessible. Additionally, using a normalized throughput like that in
Table 9, the DMBA could be correspondingly faster by perhaps 56% for [39] and 3-fold for [40]. FPGA
details would be needed for an accurate clock speed comparison.

Table 10. LTE non-commercial circuit technology comparisons with DBMA.

Circuit FPGA LUT Reg Blk RAM Mult
(18-Bit)

Fmax
(MHz)

Thrpt
(Cycles) Thrpt Norm

[39] Virtex-5 7791 n.a. 7 44 123 N 0.64
[40] Virtex-6 10,768 786 45 41 61 N 0.32

DMBA Virtex-6 2915 2581 19 72 401 2.1N 1.00

7. Conclusions

We have demonstrated a new class of FFT architecture that combines the flexibility and
programmability of memory-based designs with the high throughputs available from array-based
hardware. The architecture is particularly well suited to FPGA implementations and offers circuits
that are simple, regular, and uniform with the interconnection locality and speed of SAs, and with the
computational efficiency of pipelined FFTs.

As mentioned in the introduction, the primary goal was to improve circuit efficiency as measured
by the throughput obtained per logic cell (7) repeated below.

Efficiency = 100, 000 × throughput/
LUTs + registers

2

In Table 11, the last column provides the percentage efficiency increase for the DMBA, obtained by
taking the ratio of efficiencies of other circuits in the various comparison tables in Section 6. As can be
seen, this varies from a low of −12% to as high as 181%, with an average 94%. The efficiency increase
obtained for the Spiral fixed-point circuits are likely not statistically significant in the context of such
complex circuits, yet they require substantially increased usage of memories (M9K) and multipliers by
42%/245% and ×3.4/×4.4 for the 256/1024-point designs.

Table 11. Improvement in efficiency per the above formula, all circuits.

Function Circuit
Size

(Points) FPGA
Efficiency Increase

(%)
Fixed Intel 256 Stratix III 44
Fixed Spiral 256 Stratix III −12
Fixed Intel 1024 Stratix III 36
Fixed Spiral 1024 Stratix III −11

Variable Intel 128:2048 Stratix IV 87
Variable [36] 16:2048 Stratix V 181

Flt.Pt. Intel 256 Stratix IV 128
Flt.Pt. Spiral 256 Stratix IV 103
Flt.Pt. Intel 1024 Stratix IV 150
Flt.Pt. Spiral 1024 Stratix IV 117
Flt.Pt. Intel 1024 Arria 10 169

SC-FDMA Xilinx 12:1296 Virtex 6 130

Even though the architecture was optimized primarily to reduce register and LUT usage, memory
usage was improved in more than half the circuits. In general, more multipliers are used but, as noted
in Section 2.1, large numbers of these are available.

A more detailed list of the comparative benefits is as follows:

• Architecture suitability for a wide range of both power-of-two and non-power-of-two transform
sizes, so that all Section 6 example circuits could be based on the same architecture, whereas the
Intel designs rely on several architectures to do the equivalent.
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• Improved throughput rates resulting from high clock speeds and new algorithms (>500 MHz for
65 nm FPGA technologies).

• Reduced use of FPGA LUT and register fabric. For example, Intel’s latest IEEE 754 floating-point
FFTs using an Arria 10 FPGA target device required 2.2/1.7/2.2 times more ALMs/LUTs/registers
for a 1024-point FFT than our DMBA equivalent, which also has a 39% higher throughput (Table 7).

• A 20 to 30 db increase in SQNR derived from the combined block floating point and floating-point
scaling scheme (Table 1).

• Programmability (Tables 3 and 8) supporting mixed radices, plus non-FFT functions such as cyclic
prefix insertion.

• Throughput scalability by increasing the PE array length, N3/b, using more than one array to do
the column processing or increasing the size of b.

• Ability to do 2-D and 3-D transforms by not performing the row/column twiddle multiplications.

Finally, circuit performance and verification were confirmed in FPGA hardware as well as
behavioral Matlab and Verilog RTL simulations for both power-of-two and non-power-of-two classes
of circuits. By providing high performance, hardware efficiency, and programmability, our DMBA can
be used to meet the expanding spectrum of future applications for FFTs.
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