

Electronics 2018, 7, 88; doi:10.3390/electronics7060088 www.mdpi.com/journal/electronics

Article

Real-Time Ventricular Fibrillation Detection Using
an Embedded Microcontroller in a Pervasive
Environment
Sundeok Kwon 1, Jungyoon Kim 2,*,† and Chao-Hsien Chu 3

1 College of Engineering, Youngsan University, 288 Junam-ro, Yangsan-si 50510, Gyeongsangnam-do,
Korea; winder2000@naver.com

2 The Tilbury Research Group, College of Engineering, University of Michigan, Ann Arbor, MI 48109, USA
3 College of Information Sciences and Technology, The Pennsylvania State University, E327 Westgate

Building, University Park, PA 16802, USA; chu@ist.psu.edu

* Correspondence: bassjykim@gmail.com; Tel.: +82-10-5093-6786
† Current Address: Department of Computer Science, Kent State University, 241 Mathematics and Computer

Science Building, Kent, OH 44242-0001, USA

Received: 1 May 2018; Accepted: 30 May 2018; Published: 3 June 2018

Abstract: Many healthcare problems are life threatening and need real-time detection to improve
patient safety. Heart attack or ventricular fibrillation (VF) is a common problem worldwide. Most
previous research on VF detection has used ECG devices to capture data and sent to other higher
performance units for processing and has relied on domain experts and/or sophisticated algorithms
for detection. In this case, it delayed the response time and consumed much more energy of the ECG
module. In this study, we propose a prototype that an embedded microcontroller where an ECG
sensor is used to capture, filter and process data, run VF detection algorithms, and only transmit
the detected event to the smartphone for alert and call for services. We discuss how to adapt a
common filtering and scale process and five light-weighted algorithms from open literature to
realize the idea. We also develop an integrated prototype, which emulates the VF process from
existing data sets, to evaluate the detection capability of the framework and algorithms. Our results
show that (1) TD outperforms the other four algorithms considered with sensitivity reaching 96.56%
and specificity reaching 81.53% in the MIT-BIH dataset. Our evaluations confirm that with some
adaptation the conventional filtering process and detection algorithms can be efficiently deployed
in a microcontroller with good detection accuracy while saving battery power, shortening response
time, and conserving the network bandwidth.

Keywords: real-time detection; wearable ECG device; energy consumption; ventricular fibrillation;
VF detection algorithms

1. Introduction

Cardiovascular disease (CVD) is life threatening and there is a need for real-time detection to
improve patient safety. CVD, caused by the malfunction of heart and blood vessels, is a common
problem worldwide. The World Health Organization [1] reported that 17.7 million people died from
CVD in 2015, accounting for about 31% of all deaths globally. According to the WHO, if there is no
attempt to solve this problem, the rate of death from CVD will increase continuously. Among the
various forms of heart disease, ventricular fibrillation (VF) is one of the most severe and dangerous
abnormal heart rhythms. Indeed, VF can lead to death within a few minutes or a few days. The

Electronics 2018, 7, 88 2 of 20

survival rate for a person who has a VF outside the hospital ranges between 7% and 70%, depending
on the timing of first-aids [2].

Over the past decades, two streams of research have emerged in real-time VF detection: (1)
designing wearable devices that can be used to continuously and reliably monitor health conditions
[3,4] and (2) developing efficient algorithms that can correctly detect VF abnormality, especially in
real-time [5]. However, with limited resources available in microcontrollers and smartphones, several
research questions remain unresolved.

First, most of these wearable monitoring devices have no or only have simple detection functions
and use wireless transmission to send data to a receiving unit [5]. They lack capability for real-time
detection. In addition, the wireless transmission operations consume lots of battery power in
comparison to other operations in the microcontroller, and use more network bandwidth [6]. Thus,
how to increase diagnosis intelligence and reduce wireless data transmission to increase the battery
life of the monitoring devices without replacing or recharging batteries within reasonable time
duration is an important issue.

Secondly, previous studies on VF detection have been predominantly focused on evaluating the
relative performance of the proposed algorithms in a centrally located computer or a smartphone.
Meanwhile, most VF detection algorithms in previous studies used the “filtering.m” filtering process
(available online [7]), which consists four successive steps: (1) mean value subtraction, (2) 5th order
moving average filter, (3) drift suppression using high pass filter (1 Hz cut-off frequency), and (4)
drift high frequency suppression using low pass Butterworth filter (30 Hz cut-off frequency);
however, most studies assumed that the process to remove various noises was a preliminary step.
That means, this process was not included as part of the evaluation process. Thus, misreporting the
detection accuracy.

Thirdly, with the rapid development of mobile devices and microchip sensors, and their
increasing usage in e-health, there is also an emerging need to examine how to reduce unavoidable
noises in real time [8] in a pervasive environment, especially in a microcontroller.

Accordingly, the following issues still need to be examined: How should we include or deploy
these filtering processes and detection algorithms in mobile devices or microcontrollers to reduce
unavoidable noises? How effective are these filtering processes? What is the potential power
consumption concern? How well do these algorithms perform? Moreover, how can we properly
determine the system parameters of the algorithms such as window segmentation and threshold
value?

Traditionally, a centrally located machine, cloud or smartphone is used to receive and process
the raw ECG data from wearable sensing devices and a human expert or algorithms are then called
in to detect VF abnormality. These approaches still need to rely on a microcontroller inside the
embedded module to sample the raw digital data produced by the analog-to-digital converter (ADC)
and then transmit them to higher performance machines for processing. The data transmission
process consume a significant amount of battery power, delays the response time, and exposes the
possibility of data leakage. In this study, we propose a methodology that uses an embedded
microcontroller as a fog node to filter noise, extract signals and detect VF and only send the detected
events to smartphones to alert and request healthcare services. Once an abnormality is detected, the
complete heart signal can then be captured and transmitted to a server or cloud for in-depth analysis
and treatment. The proposed methodology would shorten the incident response time and
significantly reduce the battery consumption of the wearable ECG device, as most of the device’s
power consumption stems from the abundance of data transmitted via wireless communications [9].
Table 1 summarize the characteristics of these approaches.

Table 1. Summary of alternative VF detection approaches.

Tasks/Performance Traditional Approach Smartphone-Based Proposed Approach
Data Capture EM EM EM

Data Transmitted Raw data Raw data Detected events
Transmission Method SP SP SP

Electronics 2018, 7, 88 3 of 20

Data Filtering and Scale CCS SP EM
Data Analysis CCS SP EM

Event Detection CCS SP EM
Service Request SP SP SP

Response time (delay) Long Some Little
Energy Consumption High High Low

Accuracy Same Same Same
Network Traffic High Some Low

As a benchmark, we adapt five light-weighted algorithms from open literature and use the
complete set of MIT and Boston’s Beth Israel Hospital arrhythmia database (MIT-BIH) and Creighton
University (CU) Ventricular Tachyarrhythmia databases [10] for tests. Performance results are
measured based on common quality metrics such as sensitivity, selectivity, positive predictivity,
accuracy, computational time, power consumption and receiver operating characteristic (ROC) curve.

2. Related Studies

There have been many studies focused on evaluating VF detection algorithms for automated
external defibrillators (AEDs) [11–16] or mobile phone [17–19]. In addition, there are several studies
focusing on designing wearable ECG devices that can transmit data efficiently and securely
[5,6,9,20,21].

The most recent and seminal work that compares different algorithms are the studies by Amann
et al. [12,13,22], Ismail et al. [14], Abu et al. [15] and Arafat et al. [16]. Amann et al. [12] compared five
well-known standard QRS complex and five new VF detection algorithms with a large amount of
data that has been annotated by qualified cardiologists. They choose the three annotated databases
without pre-selection of certain ECG episodes for tests. Within the results, TCI [23], VFF [24], and
TOMP [25] are particularly noteworthy.

In a follow-up study, Amann et al. [22] developed a VF detection algorithm, called Time Delay
(TD), based on phase space reconstruction and then evaluated it against four extant algorithms, TCI,
VFF, spectral algorithm (SPEC), and complex measure (CPLX), all of which were reported in their
previous study [12]. TD, which counts the number of boxes based on the phase-space plots of random
signals, can also be easily implemented in a microcontroller [26]. Ismail et al. [14] compared five
different algorithms including CPLX, MEA, TCI, TD, and VFF and explored the impact of combining
two algorithms. They concluded that combining two algorithms might improve the performance.
Abu et al. [15] developed a sequential detection algorithm using empirical mode decomposed (EMD)
analysis that showed improved performance over six algorithms including TD and TCI. However,
EMD requires relatively high computational complexity comparing with others. Arafat et al. [16]
developed a time domain algorithm, called TCSC, adapted from TCI and compared its performance
with six algorithms including CPLX, TCI, and TD. They concluded that TCSC performed better than
TCI based on positive threshold.

The literature has shown mixed results among detection methods from different studies. This
variation could be due to the use of different threshold values for comparison and experimental
settings; unfortunately, most studies did not report the threshold parameters used in their studies.
However, one clear thing is that TCI, TCSC, TD, VFF, and TOMP are among the popular methods
used for benchmark testing. In addition, to the best of our knowledge, there is no study attempting
to perform real-time VF detection on microcontrollers, despite that doing so can reduce battery
consumption and shorten response time when life-threatening emergencies occur. That is the focus
of this study.

In terms of real-time health monitoring, Flores-Mangas and Oliver [6] examined the progress of
previous work, revealed system requirements and proposed a framework for real-time monitoring
and analyzing physiological signals. They have also used sleep apnea as an example which
demonstrated, experimented and evaluated the prototype performance. The paper did not provide
details on key information processing tasks such as data filtering and segmentation. Dagtas et al. [9]
presented a 3-tiered wireless architecture and prototype using Zigbee for heart failure monitoring

Electronics 2018, 7, 88 4 of 20

and detection. The paper provided detailed description, noise filtering, basic QRS detection and
secured data communication setting. The ideas and implementation are similar to our proposed
methodology—using microcontroller (MCU) to capture, process, and detect abnormality and then
send detailed signal after detection. However, they only used a simple algorithm to detect QRS (not
VF). Meanwhile, no detailed evaluation result has been provided. Pantelopoulos and Bourbakis [5]
conducted a state-of-the-art survey on wearable sensor-based systems for health monitoring. They
reviewed the current systems developed and identified the technological shortcoming and challenge
issues, which can provide directions for future research improvements. Choudhary et al. [20]
developed a real-time wireless system based on Zigbee technology for remote monitoring of patients’
heart rate and oxygen saturation in blood. The proposed methodology used MCU to store, convert
and send signals periodically back to PC for further analysis by users. There is no filtering and
detection capability in the MCU unit. Yadav et al. [21] designed a mobile health monitoring system
using heart beat and body temperature for potential heart disease detection. The study provided
fundamental system framework and illustrated the role of GPS in location detection but it only used
simple threshold rule for heart rate and temperature, which cannot accurately detect heart attack and
thus the proposed system is not much useful for practical real world situation. Clearly, the
development of wearable systems for real-time health monitoring is evolving; however, a well-
designed methodology that considers the integration of hardware, software and services for usability,
real-time data processing and detection for effective and fast response, lower power consumption,
and secure data communications is still expected. In this paper, we studied the integration of
hardware and software, real-time data processing and detection for effective and lower power
consumption.

3. Methodology

This paper proposes a methodology with three alternative strategies to increase the
responsiveness and accuracy of detection and reduce power consumption:

1. Adopt an interrupt service routine (ISR) to reduce power consumption.
2. Use the microcontroller of the embedded ECG module to filter, scale and process the data, and

detect VF patterns and only transmit the event via a smartphone to shorten response time and
reduce power consumption.

3. Select and adapt VF detection algorithms that have accurate and efficient workloads for the
microcontroller used.

3.1. The Proposed VF Detection Methodology

In this study, we propose a methodology that uses the embedded microcontroller as a fog node
to filter noise, extract signals and detect VF and only send the detected events to a smartphone to
alert and request healthcare services. Once an abnormality is detected, the complete heart signal can
then be captured and transmitted to a server or cloud for in-depth analysis and treatment. The
proposed methodology would shorten the incident response time and significantly reduce the battery
consumption of the wearable ECG device, as most of the device’s power consumption stems from the
abundance of data transmitted via wireless communications [3].

Figure 1 illustrates the implemented process. The process starts with a timer interrupt for
capturing ECG, filtering, and scaling at every sampling point. The captured data is stored in the
window storage of the memory. Once the window size, Ws, is filled with the captured data, VF
detection algorithm is applied to check whether VF event is occurred or not, and the result is
transmitted to the smartphone or main computer through wireless communications.

Electronics 2018, 7, 88 5 of 20

Figure 1. Flow chart of the proposed VF detection methodology.

The power consumption of related operations—signal acquisition, VF detection and data
transmission is shown in Figure 2. As can be seen, transmitting operation takes five times more
battery power voltage than signal acquisition and detections if we assume the operating duration is
the same. In Figure 2, the transmission operation sends only the result event, which is only one value
so that it takes short duration relative to acquisition. If the system transmits all the captured data, the
transmission consumes much more power than other operations. With our proposed implementation,
instead of transmitting all data captured to smartphone, we process VF detection at microcontroller
and only transmit the detected events; thus, we can save the transmitting power as in a way
proportional to the number of capturing.

Figure 2. Voltage differences in the proposed VF detection methodology.

3.2. The Filtering Process

Many earlier studies in VF detection used a filtering function, called filtering.m, implemented in
Matlab [8] and conducted offline. The function contains four sub-routines: mean value subtraction,
5th order moving average to remove high frequency noise like interspersions and muscle noise, drift
suppression using high pass filter (1 Hz cut-off frequency), and low pass Butterworth filter (30 Hz
cut-off frequency), which suppresses the high frequency noises even more.

The conventional filtering.m function, however, does have some disadvantages if the process is
implemented in real time using an embedded microprocessor that has limited computational
resources and battery energy. First, the battery life will be significantly shortened. Secondly, in real

Electronics 2018, 7, 88 6 of 20

time situations, it is hard to calculate the mean value and moving average of the whole ECG signal.
Thirdly, according to our pilot tests, the detection performance is not significantly affected by
removing the mean value subtraction and moving average filtering. Therefore, in our
implementation, we drop the first two subroutines, adapt the high-pass (1 Hz) and low-pass (30 Hz),
and introduce the Kalman filters in the testbed.

3.2.1. High and Low Pass Filter for Removing Noise

The cut off frequency of high pass filter (1 Hz) and low pass filter (30 Hz) can typically be
calculated as follows:

𝑓𝑓𝑐𝑐 =
1

2𝜋𝜋𝜋𝜋𝜋𝜋

()

(1)

We can then apply R (Resistor) and C (Capacitor) values to the transfer function of the high pass
filter as shown:

𝑉𝑉𝑜𝑜
𝑉𝑉𝑖𝑖

=
𝑗𝑗𝑗𝑗𝜋𝜋𝜋𝜋

1 + 𝑗𝑗𝑗𝑗𝜋𝜋𝜋𝜋

(2)

Using the z-transform, the transfer function can be obtained with R and C values. Although there
are several ways to transfer the z-transform, we use the Tustin method with the c2d function available
in the Matlab [8]. As a result of this process, the transfer function for the high-pass filter can be
obtained with coefficients as shown:

Y(z) = 0.9043Y(z − 1) + 0.9522U(z) − 0.9522(z − 1)

,
(3)

where Y(z − 1) is the previous output value; U(z) is the current input value; and U(z − 1) is the previous
input value. We then apply R and C values to the transfer function of the low-pass filter:

𝑉𝑉𝑜𝑜
𝑉𝑉𝑖𝑖

=
1

1 + 𝑗𝑗𝑗𝑗𝜋𝜋𝜋𝜋

.

(4)

Using the same process as the high-pass filter, the transfer function for the low-pass filter is
obtained with coefficients as follows:

 Y(z) = −0.2021Y(z − 1) + 0.6011U(z) + 0.6011U(z − 1).

(5)

3.2.2. Kalman Filter for Tracking Baseline

The threshold-based algorithms such as TCI and TCSC need to track a baseline to have
detections that are more accurate. A baseline is a reference line that indicates the trend of an ECG
signal without QRS which represents the rapid depolarization of the right and left ventricles and
other factors. Thus, we assume those factors as noises when we track the baseline. We use the linear
Kalman filter [27], which is a method that calculates a posteriori estimate using:

𝑥𝑥�𝑘𝑘 = 𝑥𝑥�𝑘𝑘−1− + 𝐾𝐾(𝑧𝑧𝑘𝑘 + 𝐻𝐻𝑥𝑥�𝑘𝑘−), (6)

where 𝑥𝑥�𝑘𝑘 is a posteriori estimate value; K is variable weight; zk is a measured value and H is a system
model parameter. Although the format of Kalman filter is similar to one-dimension low-pass filter, it
has a priori estimate, measured value, and dynamic weight K, which recalculated every time.

Electronics 2018, 7, 88 7 of 20

𝐾𝐾𝑘𝑘 = 𝑃𝑃𝑘𝑘−𝐻𝐻𝑇𝑇(𝐻𝐻𝑃𝑃𝑘𝑘−𝐻𝐻𝑇𝑇 + 𝜋𝜋)−1, (7)

where Pk is the error of the posteriori estimate value, which has a linear relationship with the estimate
error:

𝑃𝑃𝑘𝑘 = 𝑃𝑃𝑘𝑘− − 𝐾𝐾𝑘𝑘𝐻𝐻𝑃𝑃𝑘𝑘−. (8)

In addition, the following relationship is established between posteriori estimate value and error
covariance value about xk.

𝑥𝑥𝑘𝑘~𝑁𝑁(𝑥𝑥�𝑘𝑘,𝑃𝑃𝑘𝑘). (9)

The process of Kalman filter can be described in two repeated steps:
(1) Prediction. First, a target system is modeled, based upon which, the Kalman filter predicts a

priori estimate and error covariance. Where error covariance is a measure of the error of the posteriori
estimate value. The performance of the filter depends on how similar the modeled system is to the
actual system.

(2) Estimation. The filter then calculates a new posteriori estimate value based on the difference
between the measured value and the priori estimate value. In the Kalman filter, noise is an important
variable. The status variable, error covariance and system model are expressed as:

𝑥𝑥�𝑘𝑘− = 𝐴𝐴𝑥𝑥�𝑘𝑘−1− , (10)

𝑃𝑃𝑘𝑘+1− = 𝐴𝐴𝑃𝑃𝑘𝑘𝐴𝐴𝑇𝑇, (11)

𝑥𝑥𝑘𝑘+1 = 𝐴𝐴𝑥𝑥𝑘𝑘 + 𝑤𝑤𝑘𝑘, (12)

𝑧𝑧𝑘𝑘 = 𝐻𝐻𝑥𝑥𝑘𝑘 + 𝑣𝑣𝑘𝑘. (13)

In this paper, we set the parameters, based on our tests using CU database, as: A = 1, H = 1, Q =
0 and R = 4.

3.3. The Scaling Process

The amplitude of the ECG signal from a human body is normally about 1.3 mV. However, the
minute ECG signal is often amplified through the front-end device and active filters to fit the total
range of power. The voltage of the microprocessor is recently 3 V and the analog-to-digital converter
has resolutions of 8–12 bits. The larger the amplified ECG signal that is achieved, the better the
detecting accuracy will be. Thus, we can assume that the raw ECG signal (the range of 1 mV~5 mV)
is simply amplified to fit into the maximum limitation. However, there is always a short-term or long-
term drift noise. If the baseline noise is not taken into account during the amplification process, a
clipping fault in which the signal exceeds the limited range of the ADC can occur.

In VF detection, the amplitude of ECG signal is varied in the cases of sinus and VF signals.
Scaling is a process by which ECG signals of a window segment with different peak-to-peak
amplitudes are stretched into one uniform amplitude size. If there is no scaling, the parameter values
vary from the size of peak-to-peak amplitudes. In real-time detection, the variances are unpredictable,
meaning that errors may occur with the wrong thresholds. To obtain accurate thresholds, the periodic
changing of the maximum and minimum values of the scale in the segment blocks is required. If the
period is too short, the algorithm may lose the QRS complexes. On the other hand, if the period is too
long, small VF events can be detected as sinus rhythms. We apply a scaling process for every window
segment, which is 5 seconds in our implementation. Figure 3 shows the proposed scaling process.

Electronics 2018, 7, 88 8 of 20

Figure 3. An example of the scaling process.

The scaled value Vt can be calculated as:

𝑉𝑉𝑡𝑡 = 𝑆𝑆𝑡𝑡𝑉𝑉𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴, (14)

𝑉𝑉𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀−𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀
𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀−𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀

, (15)

𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴 = |𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑇𝑇𝑀𝑀𝑖𝑖𝑀𝑀|, (16)

where St is raw ECG data; VMul is the value for multiplication; and VAdd is the value for addition. The
VMul and VAdd values are calculated simply using Equations (15) and (16). LMax is the maximum
limitation and LMin is the minimum limitation. Since we use an 8-bit sampling ADC resolution, the
LMin is zero and the LMax is 255 (i.e., 28 − 1). If a 10-bit resolution was used, then the LMin is zero and the
LMax is 1023 (i.e., 210 − 1). TMax is the maximum value of signal; and TMin is the minimum value of signal.

3.4. The Revision in Detection Algorithms

Due to the memory limitation of microcontroller, every algorithm in this study uses a 5-s
window size to fit in a temporal memory. Based on the window size, we slightly revise the algorithms
and determine the threshold of VF and SR. We discuss each algorithm with the revision below.

3.4.1. The TCI algorithm

TCI [23] calculates the threshold value (T), the number of crossing signals (C) and the number
of intervals (I) in three consecutive 1-second blocks to determine the VF or non-VF decision based on
the number and the position of the crossings. TCI estimates the average interval between ECG signal
threshold crossings. The mean TCI value is calculated as:

𝑇𝑇𝜋𝜋𝑇𝑇 =
1000

(𝑁𝑁 − 1) + 𝑡𝑡2
𝑡𝑡1 + 𝑡𝑡2

+ 𝑡𝑡3
𝑡𝑡3 + 𝑡𝑡4

,

(17)

where N is the number of impulses in segment S (1 s interval) and t1~t4 are intervals between crossing
points and each end points of the S. If a prescribed threshold value, TCI0, is greater than the TCI value,
VF is declared. There is no revision applied to this algorithm.

3.4.2. The TCSC Algorithm

TCSC [16] is an improved method over the TCI algorithm, which removes the drawbacks of TCI
such as using 1-second blocks as analysis windows that causes trouble when the heartbeat is fewer
than 60 bpm and one threshold (20% of the maximum value) that causes a missing problem with
negative peak value of ECG. Three additional extensions TCSC adds over TCI are:

• A 3-second block is investigated instead of a 1-second block.
• Both positive and negative thresholds are used instead of only the positive threshold.

Electronics 2018, 7, 88 9 of 20

• Samples above the thresholds are counted instead of only the pulses.

Our proposed revision: In the original TCSC algorithm, each segment is multiplied by a cosine
window w(t) that minimizes the effect from end-to-end of each segment. We skip the multiplication
of the cosine window, which only minimize the effects of amplitudes in the beginning and ending
0.25 s of each window segment (see Figure 4), but it needs high computational math functions
compared with the performance in a microcontroller. Based on our experiment, the impact on signal
detection is minimized but on computational time is significant. For instance, the computational time
with cosine window in one window segment (5 s in our case) is 17.84 ms but it only takes 6.8 ms
without using the cosine window.

Figure 4. Effects of cosine window process in TCSC.

3.4.3. The TD Algorithm

TD [22] uses a 40 × 40 squares grid of the two-dimensional phase space diagram that refers to
different types of plotting using normal data X(t) as the x-axis and X(t + τ) as the y-axis, with τ = 0.5
s. The values are plotted in the 1600 squares and the resultant parameter is the number of visited
boxes. To distinguish QRS complex from VF cases, TD counts the density of visited boxes and
compares it with a threshold value. If the calculated density is less than a prescribed threshold density,
the ECG signal is considered as a normal QRS complex; otherwise, it will be classified as a VF case.
In general, this algorithm performs well in detecting VF. We skip the process of computing a density
value as the step is just divided by the total number of all boxes visited using a floating point
calculation, which is more computational intensive and redundant. Moreover, we assign the one box
into one single bit so that memory usage is minimized.

3.4.4. The VFF Algorithm

VFF [24] uses a narrow band elimination filter in the scope of the mean frequency of the ECG
signal for analysis. After the scaling process, Equations (18) and (19) are applied to the ECG data to
get the VF filter leakage l:

𝑁𝑁 = �𝜋𝜋 ��|𝑉𝑉𝑖𝑖|
𝑚𝑚

𝑖𝑖=1

���|𝑉𝑉𝑖𝑖 − 𝑉𝑉𝑖𝑖−1|
𝑚𝑚

𝑖𝑖=1

�
−1

+
1
2
�

,

(18)

 𝑙𝑙 = ��|𝑉𝑉𝑖𝑖 + 𝑉𝑉𝑖𝑖−𝑁𝑁|
𝑚𝑚

𝑖𝑖=1

���|𝑉𝑉𝑖𝑖| + |𝑉𝑉𝑖𝑖−𝑁𝑁|
𝑚𝑚

𝑖𝑖=1

�
−1

.

(19)

Once the VF occurs, the window segment is shifted by half a period. If the data in a segment is
similar to a periodic signal like VF, this algorithm cancels it so that the VF-filter leakage becomes
small. The signal peak of QRS complexes affects the threshold of the VFF algorithm. If the signal is
higher than the peak of QRS complex from the previous window segment, the threshold is set as
0.406. Otherwise, the threshold is set as 0.625. There is no revision applied to this algorithm.

3.4.5. The TOMP Algorithm

Electronics 2018, 7, 88 10 of 20

TOMP [25] is based on a real-time detection method of QRS complex. It applied a squaring
function and a moving-window integration to detect QRS complexes. Since the sliding integration
window with a width of 150 ms is applied, the slope γ (j) of the ECG data x(j) can be calculated as:

γ(nT) = 1
8𝑇𝑇
�−𝑥𝑥(𝑛𝑛𝑇𝑇 − 2𝑇𝑇) − 2𝑥𝑥(𝑛𝑛𝑇𝑇 − 𝑇𝑇) + 2𝑥𝑥(𝑛𝑛𝑇𝑇 + 𝑇𝑇) + 𝑥𝑥(𝑛𝑛𝑇𝑇 + 2𝑇𝑇)�, (20)

where n is the sample number and T is the sampling period of the ECG signal. The sliding integration
window moves and sums the absolute values of the difference between current data and the previous
data in a width of 150 ms. The short period of sliding window captures the high peak QRS complexes
in ECG data. Using this method, even positive or negative QRS complexes can be easily detected by
this sliding window. The TOMP algorithm sets two thresholds about the number of QRS complexes,
such as l0 = 2 and l1 = 32. If the number of QRS complexes is out of this range (l0 > l and l1 < l), it is
diagnosed as VF. Thus, it is very important to determine the offset value for deciding whether a VF
wave is detected or not.

In general, there is no clear symptom that can indicate when the VF event will happen because
the ECG signals normally have no pre-noticeable changing point from the SR (normal ECG) to the
VF (as shown in Figure 5). In addition, SR and VF obviously have different features that distinguish
QRS complexes from VF signal like a sine wave (or a cosine wave).

Figure 5. The turning point between a sinus rhythm and the VF event.

Furthermore, QRS complexes vary from signal to signal and are hard to predict, too. For instance,
Figure 6 shows different shapes of the QRS complexes in the CU database. In addition, when the VF
event occurs, there is no QRS complex in the ECG signal. Therefore, the threshold-based algorithms
have difficulty of detecting the various types of QRS complexes.

3.5. The Development of Testing Prototype

We develop an integrated sensing module as a testbed, based upon which to test the
performance and energy consumption of the VF detection methods. Figure 7 shows the conceptual
framework of the proposed testing environment.

(a) CU02

(b) CU03

(c) CU03

(d) CU04

Electronics 2018, 7, 88 11 of 20

Figure 6. Different types of sinuous rhythms from CU database (62.5 Hz).

Figure 7. Conceptual framework of the testing environment.

The proposed testing environment, or so-called artificial ECG prototype, contains three modules:
(1) virtual patients that house the available testing databases and enable the generation of an analog
ECG signal to provide ECG signal with VF events. The artificial ECG can be used to serve as a source
to evaluate the VF detection algorithms and the integrated preprocessing filters; (2) the integrated
module, which has the VF detection algorithms, hardware and software filtering logic built in. The
module receives the ECG signal, removes the noise, and judges whether VF events are occurring. The
results from the integrated module are then sent to the evaluation system through wireless
communication; and (3) the evaluation system. In the evaluation system, the results of VF detection
are compared with previous annotated information, which is then used to calculate the quality
parameters.

Figure 8 depicts more specific block diagram of the testing environment. The centralized
computer includes the virtual patients and evaluation system. The virtual patients’ digital data is
converted from analog signals using a digital-to-analog (D/A) converter. Preprocessing in this system
consists of three steps: a high pass filter, a low pass filter, and a Kalman filter. The VF detection events
are sent to the centralized computer or mobile phone through RF-communication chip, which is TI’s
CC2500 [28].

Figure 8. Block diagram of the testing environment.

4. Performance Evaluation

4.1. Experimental Design

We conduct two experiments to verify the feasibility and effectiveness of our proposed
development. In experiment 1, we deploy our virtual patients and evaluation system in a laptop
computer and evaluate the performance of our algorithms using an 8-second window length, so that

Electronics 2018, 7, 88 12 of 20

our results can be directly compared with those reported in the open literature. This comparison
helps to assess the effectiveness of the proposed filtering process and verifies the coding accuracy. In
experiment 2, we conduct evaluations using the testing prototype. The same filtering process and
algorithms are deployed in the microcontroller unit with minor modifications to meet microcontroller
memory requirements (as discussed in Sections 3.2 and 3.4). Signals are extracted every 5 s. Results
are then compared with those obtained from experiment 1. This comparison helps to assess the
effectiveness of the filtering process and algorithms performed under a microcontroller. It also helps
to estimate and justify the potential power saving of our proposed approach.

4.2. The Prototype and Real-Time Evaluation Program

VF detection algorithms need a preprocessing (scaling and filtering) step to improve their
detecting performance. We use TI’s MSP430-2500 (Texas Instruments, Dallas, TX, USA), which
consists of MSP430f2274 microcontroller (Texas Instruments, Dallas, TX, USA) with 32 KB + 256 B of
Flash Memory (ROM) and 1 KB of RAM, and CC2500 radio chip (Texas Instruments, Dallas, TX, USA)
using 2.4 GHz, to deploy our integrated module. Figure 9 shows the final optimized embedded
prototype that we developed. The size of the module is relatively small, which is slightly bigger than
a US quarter coin. It can be inserted into a watch type case or into a cloth built in case. The current
module has multiple sensors built in, including ECG sensor, temperature sensor (inside the MPU),
and accelerometer (i.e., motion detection sensor). The chip antenna and RF transceiver are used for
wireless data communication. The MPU contains ADC, memory to store filtering and detection
software and captured data, and perform timely analysis and detection. The programming port,
which can be removed later, is used to input and update the software programs such as filtering and
detection algorithms.

Figure 9. Final optimal prototype of the ECG embedded module.

The real-time evaluation system is coded in C# programming language running in a laptop with
Windows 7 operating system. We classify ECG signals into three classes: VF, SR and no VF-SR (Note:
There are several periods in the ECG signal marked as “-”, which we labeled them as no VF-SR here).
Determining the proper threshold parameter is essential but difficult to do. We use a simple
discriminant analysis to aid the estimation. According to our tests, most of the algorithms show
relatively high reparability between the decisions of SR and VF. The thresholds of each algorithm can
be decided at the boundary between the density distributions of SR and VF. Figure 10 shows the
probability histograms of the parameter NTime delay within the CU database. For example, in this case,
the best threshold value for TD is around 145. That is, NTime delay = 145. Using similar approach, we
obtain the threshold values for other algorithms as follows: NTCSC = 15, NTOMP = 10, and NVF filter = 0.5060.

Electronics 2018, 7, 88 13 of 20

Figure 10. Probability histogram for deciding the parameter of TD within CU database.

4.3. Performance Measures

Four quality performance statistics, sensitivity, specificity, positive predictivity and accuracy,
which are commonly employed in automated ECG analysis [7,12–17,29], ROC curve [30] and two
other measures related to computation and energy efficiency are also considered to assess
performance.

The detecting ability of the algorithms can be compared to the annotations on the database. The
comparing process produces four values from raw data: false positives (FP), false negatives (FN), true
positives (TP), and true negatives (TN). Using these values, various performance indexes can be
derived. These measures have been commonly used in evaluating the VF detection research. In order
to calculate these measures, four types of values from the systems are collected: false positives (FP),
false negatives (FN), true positives (TP), and true negatives (TN). Using these values, various
performance measures can be derived. The metrics (Sn, Sp, Pp, and Ac) can then be calculated as
follows:

Sn = (detected cases of VF)/(all cases of VF) = TP/(TP + FN), (21)

Sp = (detected cases of no VF)/(all cases of no VF) = TN/(TN + FP), (22)

Pp = (detected cases of VF)/(all cases classified by the algorithm as VF) =
TP/(TP + FP), (23)

Ac = (all true decisions)/(all decisions) = (TP + TN)/(TP + FP + TN + FN). (24)

In general, a good detection algorithm should produce high sensitivity as well as high specificity.
However, sometime this is hard to achieve and needs trade-off due to data imbalance issue
commonly found in medical diagnosis problem [30]. The ROC curve, which plots the values of
sensitivity and (1–specificity) together in the diagram, is used as a single quality parameter to gauge
the quality performance for VF detection.

The computational time, Ct, for different algorithms to perform the analysis is recorded in
percent rounded to 2 digits relative to the total operation time to assess computational efficiency. In
a pervasive sensing monitoring, energy consumption is another important factor for the mobile
device. To calculate the average energy consumption for the VF detection algorithms, the integral of
the power curve and execution time is needed. We calculate the power value from measured voltage
and load resistor. ET is the total energy consumption in Joule (J), which is a derived unit of energy. T
is the total executed time of the database. Vt and It are the voltage and current values at each time t,
respectively. For example, if the average power consumption (P = V × I) is 0.3 mW (10 mV × 0.03 A)
with total executed time 300-seconds, E300 is calculated as 90 mJ (0.3 mW × 300 s).

4.4. The Testing Database

Electronics 2018, 7, 88 14 of 20

To verify the proposed algorithms, it is very important that the correct annotations suggested
by cardiologists can be compared with the decisions between VF and no-VF events derived from the
algorithms. Two annotated databases, MIT-BIH (VF) and CU [9], which have been widely used in VF
studies [10–13,15,16], are used in this study. The types of rhythms included in these databases are
normal sinus rhythm, ventricular tachycardia, and ventricular fibrillation. We review the key
characteristics and revise some (mainly sampling frequency (62.5 Hz) and ADC resolution (8 bit)) to
perform our evaluation. The key features are summarized in Table 2, where the values in boldface
are those we have changed.

Table 2. Summary of performance for VF detection algorithms.

Features
MIT-BIH (VF) Database CU Database
Original Modified Original Modified

Sampling frequency 250 Hz 62.5 Hz 250 Hz 62.5 Hz
Channel 2 1 1 1

ADC Resolution 12 bits 8 bits 12 bits 8 bits
Number of patients 22 22 35 35

Record length 35 min 35 min 508 s 508 s
Gain (adu/Mv) 200 200 200 200

5. Results and Analysis

5.1. Performance of the Proposed Filtering Method

Tables 3 (a) and (b) summarize the average computational results from experiment 1 using the
CU and MIT-BIH (VF) databases, respectively. The boldface values indicate the two best results and
the values in italic style or in red color are the two worst results. We have included the corresponding
results from three open literatures for comparison. We excluded the most recent literature [14],
because they evaluate three databases (CU databae, MIT database, VF database) but used average
values for the four quality parameters. If the result is shown as average values of all databases, the
accuracy of quality parameters is hard to compare because the results from each database are quite
different, for example, as can be seen from Table 3 (a) and (b), the results between CU database is
quite different from those of MIT-BIH database.

As shown, there is no single algorithm stands out in all four measures either from literature or
from our study. However, literature and this study both indicate that VFF algorithm performs better
than other algorithms in terms of specificity, positive predictivity, and accuracy; but, it does not do
well on the sensitivity measure, which is a major deficiency of VFF. This is because that most data
sets, especially the MIT-BIH (VF) data sets, have much more SR signals than VF events. In terms of
sensitivity measure, both results show that other algorithms, especially TCI and TCSC, performed
much better than VFF.

Overall, in terms of all four quality measures, TCSC and TD performed better than other
methods and TOMP performed the worst. In terms of calculation time, early literature did not
consider this issue except Amann et al. [11]. Our study indicated that TCSC and TCI are more
computationally efficient, followed by VFF, TOMP and TD.

Please note that, in addition to reveal the above similar trend, most of the corresponding values
between literature and this study are relatively closer to each other. This assures us that the
performance of the proposed filtering process is comparable to the popular filtering.m
implementation. The results also help to verify the accuracy of our coding process for the algorithms
that we adopted. The potential variations in values between literature and this study are due to the
differences in several factors (e.g., parameters, sampling frequency, etc.) that may impact the results
and unfortunately, most references do not provide specific information about those factors; thus, it is
impossible to simulate and verify the exact values from open literature.

Table 3. Summary of performance for VF detection algorithms.

Electronics 2018, 7, 88 15 of 20

(a) CU Database
Algorithm Reference Sn (%) Sp (%) Pp (%) Ac (%) Ct (Second) *

TCI

[11] 71.00 70.50 38.90 70.60 2.1
[15] 90.15 55.12 35.70 62.71 -
[13] 67.89 75.45 - - -

This Study 69.74 62.39 38.31 64.21 22.40

VFF
[11] 30.80 99.50 94.50 85.20 1.9
[13] 71.41 79.88 - - -

This Study 36.23 99.67 97.16 84.44 42.67

TOMP
[11] 71.30 48.40 26.70 53.20 0.8

This Study 73.5 54.85 34.63 59.43 78.23

TD

[21] 70.20 89.30 65.00 85.10 1.7
[15] 75.35 91.46 70.92 87.97 -
[13] 72.51 88.08 - - -

This Study 69.6 88.26 65.48 83.73 81.79

TCSC
[15] 79.74 88.14 65.02 86.32 -

This Study 63.24 81.29 51.90 76.92 24.18
(b) MIT-BIH (VF) Database

Algorithm References Sn (%) Sp (%) Pp (%) Ac (%) Ct (Second)*

TCI
[11] 74.50 83.90 0.80 83.90 -
[15] 100 56.82 0.37 56.89 -

This Study 68.39 58.87 38.64 61.48 58.21

VFF
[11] 29.40 100.0 82.40 99.90 -

This Study 59.81 96.73 87.06 86.81 110.88

TOMP
[11] 68.50 40.60 0.20 40.60 -

This Study 88.95 84.97 69.86 86.09 203.28

TD
[21] 74.80 99.20 13.40 99.20 -
[15] 95.32 99.04 13.83 99.04 -

This Study 94.01 84.15 70.01 86.94 212.52

TCSC
[15] 97.48 99.33 18.98 99.33 -

This Study 76.51 72.91 51.77 73.90 62.83
* The comparison of Ct may not be meaningful because different computers and operating systems
are used. Also, previous studies did not include the time for the filtering process used. The boldface
values indicate the two best results and the values in italic style or in red color are the two worst
results.

5.2. Feasibility and Effectiveness

Tables 4 (a) and (b) summarize the average computational results from experiment 2 running on
a microcontroller. Where, the boldface values indicate the best results and the italic values (or in red
color) indicate their performance is worse than 50%. As shown, most of the values are slightly lower,
but not significantly lower, than the corresponding values using 8-s window size. The results give us
confidence that both the revised filtering process and the VF detection algorithms were efficiently
deployed in a microcontroller with good performance. The slightly degradation in performance can
be attributed to the shorter window size used in data extraction.

Similar to the results of experiment 1, the results indicate that VFF is performed the best in terms
of specificity, positive predictivity and accuracy for both databases, VFF did not perform well in
sensitivity measure; therefore, VFF cannot be the best method for VF detection. On the other hand,
TD algorithm is performed quite well in all quality measures (but not necessarily the best for all
measures). We need to have a more objective way of choosing proper method, which is where the
receiver operating characteristic (ROC) curve was called in. ROC curve takes into consideration of
both sensitivity and specificity.

Table 4. Summary of performance for different VF detection algorithms running in a microcontroller.

(a) CU Database (508 s/each patient data)

Electronics 2018, 7, 88 16 of 20

Algorithm Sn (%) Sp (%) Pp (%) Ac (%) Ct (%) E508-S (mJ)
TCI 71.63 61.75 48.58 63.65 0.13 109.77
VFF 38.01 99.70 80.11 84.61 0.24 111.99

TOMP 77.60 55.62 45.85 59.63 0.44 115.88
TD 70.88 88.12 72.75 84.01 0.46 116.27

TCSC 62.87 80.87 64.33 77.50 0.14 109.97
(b) MIT-BIH (VF) Database (35 s/each patient data)

Algorithm Sn (%) Sp (%) Pp (%) Ac (%) Ct (%) E35-M (mJ)
TCI 60.66 64.90 38.86 63.76 60.66 284.97
VFF 59.94 96.78 87.09 86.97 0.24 290.72

TOMP 71.66 95.61 85.70 89.17 0.44 300.82
TD 96.56 81.53 66.74 85.70 0.46 301.83

TCSC 72.76 72.47 49.41 72.55 0.14 285.47
The boldface values indicate the two best results and the values in italic style or in red color are the
two worst results.

Figure 11 shows the results of ROC curve. In general, the closer the ROC curves to the left-upper
point, the better the performance. As shown, the TD algorithm shows the best performance, followed
by the TOMP and TCSC algorithms. Both VFF and TCI show some degree of low sensitivity, which
indicates that they have difficulty of detecting QRS signals. Although TD has the best performance
according to ROC curve, it is still not that close to the left-upper point, which indicates that there are
potentials for further improvement.

5.3. Efficiency and Power Saving

To assess computational time and energy consumption, we compute the relative value (in %) as
relative to the lowest value:

Relative Value = Its Value/Lowest Value, (25)

Figure 11. ROC curves for five VF detection algorithms (rl: real-time filter).

The lower value means more computational time or a lower energy consumption rate. As shown
in Table 3, we can conclude that TCI is the most efficient method for both databases, followed by
TCSC. TOMP and TD often took a longer time to obtain results. For easy comparison, we further plot
the computational time results and energy consumption in graphs. Figures 12 and 13 show the
computational time and energy consumption plots respectively for different VF detection algorithms
running in a microcontroller. As shown, TCI consumes less time and battery power than other
methods in both databases, followed by TCSC and VF. For both databases, the TD algorithm does

Electronics 2018, 7, 88 17 of 20

consume the most time and energy as shown in the figures. This is because TD algorithm uses 1600
boxes that need to store information in the memory with loop functions for detecting a VF event.

(a) CU Database (b) MIT-BIH (VF) Database

Figure 12. Relative calculation time.

(a) CU Database (b) MIT-BIH (VF) Database

Figure 13. Relative energy consumption.

6. Discussion

Designing wearable systems for real-time health monitoring have to consider many technical,
wearable, and medical requirements. For instance, power consumption, mobility, reliability, real-
time response, multi-function integration, detection accuracy, wearability, usability, data security
and privacy, and clinical validation are important issues to be considered [5,6,9,20]. In addition, we
should also consider the resource constraints and computational capability of microcontroller as we
use microcontroller for real-time data capturing, filtering, and VF detection. We discuss some specific
issues related to microcontroller in more details below.

The first issue, which relates to signal extraction, is the window size to segment the data. In this
study, we choose the 5 s window segmentation for data extraction on a microcontroller. If we use
more than 5 s as window for segmentation, the memory of the microcontroller is not enough to
support the window size. Using 5 s window segment, processing time and detection results are faster
than 8 s. However, power consumption is increased because the VF detection algorithm is applied
more frequently. Extracting signals every 5 s means that about 312 sampling ECG data (62.5 Hz
sampling frequency) are saved in the memory for extracting the features of VF detection. If we use
high sampling frequency (250 Hz), the power and processing time for extraction are increased about
four times.

The second issue that is critical to quality performance is the determination of prescribed
threshold values for different detection algorithms. TCI uses basically a 3 s segment to detect VF
events. TOMP, TD, and TCSC count the number of detected events in the window. If accurate
thresholds for the changed window size are determined, results similar to the 8 s window can be

Electronics 2018, 7, 88 18 of 20

achieved in the 5 s window size. Although it is possible to use a microcontroller with larger memory
to increase the length of window segmentation and thus, it might (or might not) slightly increase the
detection accuracy, it will shorten the battery life significantly and result in a longer time to process
and detect a VF abnormality. Since our goal is to detect VF in real time, we need to consider the trade-
off among duration to detect, battery life, and accuracy.

Thirdly, we face the dilemma of selecting the best algorithm. Theoretically, the best algorithm is
the one that provides 100% (or near) results on all quality measures or at least for both sensitivity and
specificity measures and yet computationally efficient and less power consumption. However, due
to data imbalance problem (that is, most databases consist of a majority of SR signal and very small
portion of VF events), it is hard to find a method performed well on all measures. For instance, VFF
has good performance in Sp, Pp, and Ac, but it has the worst performance in Sn. According to our
tests, TD has good performance in all four quality measures, but it is also more computational
intensive and consumes more energy. Considering the need of accurate and robust detection for VF,
we would recommend TD for adoption consideration.

Fourthly, It is very important that the trade-off between specificity and sensitivity in safety
critical systems such as VF detection. High sensitivity is important issue because missed events will
likely lead to death whereas specificity might be also very important if the algorithm is to control the
automatic external defibrillator (AED). High specificity is able to prevent the unnecessary shocks
from the AED. Thus, selecting the right threshold to more specificity is important in VF detection.

7. Conclusions

This paper proposes an energy efficient real time VF detection methodology with the integration
of filtering processes, data extraction and VF detection algorithms in an embedded microcontroller.
The results show that real time VF detection using an embedded microcontroller is about five times
more efficient than the continuous transmission of ECG signals via wireless communications. Among
the selected VF detection algorithms, overall, the TD and TCSC have a relatively high performance
considering all the quality parameters. The proposed integrated hardware and software module
(ECG device plus microcontroller) can be implemented as an efficient and practical detection system
to correctly detect VF abnormality, especially on a real time basis.

To the best of our knowledge, this is one of the first studies that attempts to detect VF in a
microcontroller with sophisticated detection algorithms. The main advantages are to save battery
power consumption and shorten response time when an emergency occurs. We suggest a revision in
the filtering process and some detection algorithms and use a 5-s window segment to ensure that we
meet memory requirements. For future studies, first, the impact of different filtering processes needs
to be explored in order to select the best filtering method. Secondly, how to reduce window length in
a microcontroller needs to be explored. Thirdly, in order to achieve more efficient energy
consumption, the hardware implementation of the filtering processes on-chip may need to be
considered. Fourthly, to avoid the misdetection of heart activity, processing with multi-sensors such
as accelerometers and body temperature sensors need to be examined. Finally, the proposed
methodology (The embedded module and integrated testing prototype) can be extended to other
applications related to diverse physiological data analysis.

Author Contributions: J.K. and C.-H.C. designed the algorithm and the experiments. S.K. and J.K. implemented
the algorithm, analyzed the data and wrote the article. C.-H.C. reviewed the paper and contributed to analysis
of the data.

Acknowledgments: This work was supported by a 2016 research grant from Youngsan University, Republic of
Korea.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. World Health Organization. Available online:
http://www.who.int/mediacentre/factsheets/fs317/en/index.html (accessed on 1 May 2018).

Electronics 2018, 7, 88 19 of 20

2. Weaver, W.D.; Cobb, L.A.; Hallstrom, A.P.; Copass, M.K.; Ray, R.; Emery, M.; Fahrenbruch, C.
Considerations for Improving Survival from Out-of-Hospital Cardiac Arrest. Ann. Emerg. Med. 1986, 15,
1181–1186.

3. Leijdekkers, P.; Gay, V. A Self-test to Detect a Heart Attack Using a Mobile Phone and Wearable Sensors.
In Proceedings of the 2008 21st IEEE International Symposium on Computer-Based Medical Systems,
University of Jyväskylä, Jyvaskyla, Finland, 17–19 June 2008; pp. 93–98.

4. Pantelopoulos, A.; Bourbakis, N.G. A Survey on Wearable Sensor-Based Systems for Health Monitoring
and Prognosis. IEEE Trans. Syst. Man Cybern. C Appl. Rev. 2010, 40, 1–12.

5. Flores-Mangas, F.; Oliver, N. Healthgear: A Real-Time Wearable System for Monitoring and Analyzing
Physiological Signals. In Proceedings of the International Workshop on Wearable and Implantable Body
Sensor Networks (BSN’06), Cambridge, MA, USA, 3–5 April 2006.

6. Kim, J.; Chu, C.H. Analysis and Modeling of Selected Energy Consumption Factors for Embedded ECG
Devices. IEEE Sens. J. 2015, 16, 1795–1805.

7. Filtering.m. Available online: https://homepages.fhv.at/ku/karl/VF/filtering.m (accessed on 1 May 2018).
8. Dağtaş, S.; Pekhteryev, G.; Şahinoğlu, Z.; Çam, H.; Challa, N. Real-Time and Secure Wireless Health

Monitoring. Int. J. Telemed. Appl. 2008, 2008, 1–10.
9. Khan, J.M.; Katz, R.H.; Pister, K.S.J. Emerging Challenges: Mobile Networking for Smart Dust. J. Commun.

Netw. 2000, 2, 188–196.
10. Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody,

G.B.; Peng, C.K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research
Resource for Complex Physiologic Signals. Circulation 2000, 101, E215–E220.

11. Jekova, I.; Krasteva, V. Real Time Detection of Ventricular Fibrillation and Tachycardia. Physiol. Meas. 2004,
25, 1167–1178.

12. Amann, A.; Tratnig, R.; Unterkofler, K. Reliability of Old and New Ventricular Fibrillation Detection
Algorithms for Automated External Defibrillators. BioMed. Eng. OnLine 2005, 4, 60.

13. Amann, A.; Tratniq, R.; Unterkofler, K. A New Ventricular Fibrillation Detection Algorithm for Automated
External Defibrillators. In Proceedings of the Computers in Cardiology, Lyon, France, 25–28 September
2005; pp. 559–562.

14. Ismail, A.H.; Fries, M.; Rossaint, R.; Leonhardt, S. Validating the Reliability of Five Ventricular Fibrillation
Detecting Algorithms. In Proceedings of the 4th European Conference of the International Federation for
Medical and Biological Engineering, Antwerp, Belgium, 23–27 November 2008; pp. 26–29.

15. Abu, E.M.A.; Lee, S.Y.; Hasan, M.K. Sequential Algorithm for Life Threatening Cardiac Pathologies
Detection based on Mean Signal Strength and EMD Functions. BioMed. Eng. OnLine 2010, 9, 43.

16. Arafat, M.A.; Chowdhury, A.W.; Hasan, M.K. A Simple Time Domain Algorithm for the Detection of
Ventricular Fibrillation in Electrocardiogram. Signal Image Video Process. 2011, 5, 1–10.

17. Fokhenrood, S.; Leijdekkers, P.; Gay, V. Ventricular Tachycardia/Fibrillation Detection Algorithm for 24/7
Personal Wireless Heart Monitoring. In Proceedings of 5th International Conference on Smart Homes and
Health Telematics, Nara, Japan, 21–23 June 2007; pp. 110–120.

18. Zhang, Z.X.; Tian, X.W.; Lim, J.S. Real-Time Algorithms for a Mobile Cardiac Monitoring System to Detect
Life-Threatening Arrhythmias. In Proceedings of the 2nd International Conference on Computer and
Automation Engineering, Singapore, 26–28 February 2010; pp. 232–236.

19. Rospierski, M.; Segura, M.; Guzzo, M.; Zavalla, E.; Sisterna, C.; Laciar, E. Ventricular Fibrillation Detection
Algorithm Implemented in a Cell-Phone Platform. In Proceedings of the Congreso Argentino de Sistemas
Embebidos 2011, Buenos Aires, Argentina, 2–4 March 2011; pp. 168–173.

20. Choudhary, D.; Kumar, R.; Gupta, N. Real-Time Health Monitoring System on Wireless Sensor Network.
Int. J. Adv. Innov. Thoughts Ideas 2012, 1, 37–43.

21. Yadav, D.; Agrawal, M.; Bhatnagar, U.; Gupta, S. Real Time Health Monitoring Using GPRS Technology.
Int. J. Recent Innov. Trends Comput. Commun. 2013, 1, 368–372.

22. Amann, A.; Tratniq, R.; Unterkofler, K. Detecting Ventricular Fibrillation by Time-Delay Methods. IEEE
Trans. Biomed. Eng. 2007, 54, 174–177.

23. Thakor, N.V.; Pan, K. Ventricular Tachycardia and Fibrillation Detection by a Sequential Hyphesis testing
algorithm. IEEE Trans. Biomed. Eng. 1990, 37, 837–843.

24. Kuo, S.; Dillman, R. Computer Detection of Ventricular Fibrillation. In Proceedings of the Computers in
Cardiology, Los Alamitos, CA, USA, 12–14 September 1978; pp. 347–349.

Electronics 2018, 7, 88 20 of 20

25. Pan, J.; Tompkins, W. A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 1985, 32, 230–236.
26. Zhang, X.; Jiang, H.; Zhang, L.; Zhang, C.; Wang, Z.; Chen, X. An Energy-Efficient ASIC for Wireless Body

Sensor Networks in Medical Applications. IEEE Trans. Biomed. Circuits Syst. 2010, 4, 11–18.
27. Simon, D. Kalman Filtering. Embed. Syst. Program. 2001, 14, 72–79.
28. Texas Instrument. ez430-2500 Development Tool—User’s Guide, Literature Number: SLAU227E; Texas

Instrument: Dallas, TX, USA, 2009.
29. Thakor, N.V. From Holter Monitors to Automatic Defibrillators: Developments in Ambulatory Arrhythmia

Monitoring. IEEE Trans. Biomed. Eng. 1984, 31, 770–778.
30. Bradley, A.P. The Use of the Area under the ROC Curve in the Evaluation of Machine Learning Algorithms.

Pattern Recognit. 1997, 30, 1145–1159.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

	1. Introduction
	2. Related Studies
	3. Methodology
	3.1. The Proposed VF Detection Methodology
	3.2. The Filtering Process
	3.2.1. High and Low Pass Filter for Removing Noise
	3.2.2. Kalman Filter for Tracking Baseline

	3.3. The Scaling Process
	3.4. The Revision in Detection Algorithms
	3.4.1. The TCI algorithm
	3.4.2. The TCSC Algorithm
	3.4.3. The TD Algorithm
	3.4.4. The VFF Algorithm
	3.4.5. The TOMP Algorithm

	3.5. The Development of Testing Prototype

	4. Performance Evaluation
	4.1. Experimental Design
	4.2. The Prototype and Real-Time Evaluation Program
	4.3. Performance Measures
	4.4. The Testing Database

	5. Results and Analysis
	5.1. Performance of the Proposed Filtering Method
	5.2. Feasibility and Effectiveness
	5.3. Efficiency and Power Saving

	6. Discussion
	7. Conclusions
	References

