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Abstract: A State Controlled-Cellular Neural Network (SC-CNN) based chaotic model for generating
multi-scroll attractors via hyperbolic tangent function series is proposed in this paper. After presenting
the double scroll generation, the presented SC-CNN system is used in multi-scroll chaotic attractor
generation by adding hyperbolic tangent function series. By using equilibrium analysis and their
stability such as Lyapunov exponent analysis, bifurcation diagrams and Poincaré map, the dynamical
behaviors of the proposed system are theoretically analyzed and numerically investigated.

Keywords: State Controlled-Cellular Neural Networks; multi-scroll chaotic attractors; hyperbolic
tangent function

1. Introduction

It has been accepted that chaos can be quite useful in some engineering and technological
applications. Complex biological systems, information processing, secure communication, mechanism
of memory, etc., can be listed among these applications. Chaos, when under control, can provide useful
properties and flexibility to the designer. Some studies have been carried out to elucidate the effects
of memory on the excitation dynamics of organic dynamical systems. For example, cardiac action
potential models demonstrate that memory can cause dynamical instabilities which result in complex
excitation dynamics and chaos [1]. Moreover, chaos-based communication schemes and chaos-based
cryptosystems using more complex attractors are preferable for enhancing the security of the systems.
Accordingly, simple dynamical systems like multi-scroll chaos generators that show more complex
chaotic attractors are desirable [2].

Cellular Neural Network (CNN), introduced by Chua and Yang in 1988, has been the subject of
many theoretical and experimental studies as a subfield of nonlinear electrical systems [3,4]. Various
CNN based chaotic oscillators have facilitated the understanding of the chaotic phenomenon by
complementing the research on chaos through analog simulations. Designing more complex chaotic
attractors using CNN among multi-scroll generation studies has yet to be well studied and it needs
proper consideration.

The work on generating multi-scroll attractors has always grab researchers’ attention and has
gradually become a new research field. The functions such as piecewise linear (PWL), sawtooth,
step wave, hysteresis series, switching, sine, saturated sequence and hyperbolic tangent have been
proposed for generating a different type of multi-scroll chaotic attractors so far.

Suykens and Vandewalle proposed quasi-linear function approach to introduce a family of
n-double scroll chaotic attractors [5-7]. Alaoui et al. presented multispiral chaotic attractors using
PWL function approach for both autonomous and non-autonomous differential equations [8,9]. Yalcin
et al. introduced a hyperchaotic attractor technique for generating a family of multi-scroll, and they
also proposed a simple circuit model for generating multi-scroll chaotic attractors [10,11]. Lii et al.
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proposed multi-scroll chaotic attractors using hysteresis series method, saturated function series
approach and thresholding approach [12-14]. Sine function method by Tang et al. and nonlinear
trans conductor method by Ozoguz et al. and Salama et al. are suggested for creating n-scroll chaotic
attractors [15-17]. For creating grid scroll hyperchaotic attractors from one-directional (1-D) n-scroll
to three-directional (3-D) n-scroll attractors, Cafagna and Grassi developed a coupling Chua’s circuit
method [18,19]. Yalcin et al. presented a family of scroll-grid chaotic attractors using a stepping
circuit [20]. Adjustable triangular, sawtooth and trans conductor wave functions were also utilized by
Yuet al. to generate n-scroll chaotic attractors from a general jerk circuit [21,22]. Deng and Lii used a
fractional order system such as stair function, saturated, and hysteresis series methods to generate
n-scroll attractors [23-25]. Generation of multi-scroll chaotic attractors for the fractional-order system
using the piecewise-linear, the stair, and the saturated function are utilized by Chen et al. [26,27].
While Xu and Yu presented hyperbolic tangent function in chaos control and chaos synchronization
of multi-scroll chaotic attractors, Chen et al. used hyperbolic tangent function series to present grid
multi-scroll chaos generation [28,29]. Wang et al. showed multi-level pulses, multi-double-scroll
attractors that are generated from the variable-boostable chaotic system [30]. Mufioz-Pacheco et al.
presented experimental verification of optimized multi-scroll chaotic attractors based on irregular
saturated function [31].

Itis shown that multi-scrolls could be generated by adding additional breaking points in the output
function of SC-CNN, which has a PWL characteristic [32]. Giinay and Alg1 revisited multi-scrolls in
SC-CNN circuit via diode-based PWL function [33]. In addition to PWL approach, the trigonometric
function was presented by Giinay and Kili¢ as an alternative way of generating multi-scroll attractors
in SC-CNN [34].

In this paper, a novel methodfor multi-scroll chaotic attractor generation in SC-CNN is presented
based on hyperbolic tangent function. Firstly, the double scroll generation is analyzed via dynamical
behaviors of the presented system, such as its equilibrium, stability, Lyapunov exponents, bifurcation
diagrams, and Poincaré map. Then, the dynamical mechanisms of multi-scroll chaos generations
based on the corresponding model are theoretically analyzed and numerically investigated including
one, two, and three directional multi-scroll chaotic attractors. Finally, discussions, suggestions, and
potential future work plans are presented in the Conclusions Section.

2. New Double Scroll Attractor

As stated in the literature, besides being an image processing system, Cellular Neural Networks
(CNNis) also offer an effective methodology and technology for the analysis and design of complex
dynamics [2]. In 1995, Arena et al. showed complex dynamical systems can be imitated by CNN
canonic model with an additional input that represents the feedbacks from the states of the cells [34].
The generalized dimensionless nonlinear state equations of SC-CNN can be given as follows:

. ; 1
Xj = =xj + jy; + Go+ Gs +ij, 4 = 5 [[x;+1] =[x~ 1]] ()

where j, x;, and y; denote cell index, state variable and cell output, respectively. 4; and i; stand for
constant parameter and threshold, respectively. G, and Gg represent the outputs and state variables
of connected cells, respectively. The dynamic model of three fully connected generalized CNN cells
according to Equation (1) is defined in [34] as follows:

. 3 3 .

x1=—x1+ L anyk + L suXp +i
k=1 k=1

. 3 3 .
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X3 = —x3+ kZ askYk + kZ SakXk + 13
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where k is the cell index.
In this section, we discuss new double scroll generation and give its dynamical properties such as
their equilibria and stability. Consider the dynamical system obtained from Equation (2):

X1 = Xp + x3
Xp = —X1] — Xp + Sp0X7
3.63 = —X3 — tanh(nyz) + i3
y2 = 3l +1] =[x —1]]

®)

where
s11 =812 =513 =432 = 1,801 = —1;

823 =831 =532 =533 =a11 =12 =A13 = 4d| =y =3 =a31 =as3 = i1 =ip =0;and

sy, i3 and n are constants. The equilibrium points of Equation (3) exist in three subspaces defined
as follows:
Dy = {(x1,xp,x3)|xp > 1}: P = (ka,kﬁ,kv),
D*:{(xl,xz,x3)\\x2| Sl}:P*: (l“,l’g,l/y), (4)
D_ = {(x,x2,x3)|xp < =1} :P_ = (ma,mﬁ,my)

where
ke = —(522 — 1)(i3 — 1),](/3 =1-—13, kry =i3—1
my = —(s22 = 1) (i3 +1), mg=—1—1i3 my =iz +1 ©)
[, = Blw=l) y i3 —i
o (1) 7 BT )t T (D)

The equilibrium points P, P+, and P_ can be found from the Jacobian matrices.
0 1 1 0 1 1
J+=J]-=| -1 (s2-1) 0 |;Js=| -1 (s2—1) O (6)
0 0 -1 0 —n -1
The corresponding characteristic equation is:

aA} +bA2 +cA+d=0 7)

where

The equilibrium points P, P+, and P_ are given by:

Pj:()t) = /\3 + (1 - 522))\2 + (1 - 522))\ +1

P.(A) = A3+ (1—sp)A2+ (1 —sp)A+n+1 ®

Numerical computations show that proposed system in Equation (3) will produce chaotic behavior
under the conditions of A1 <0, (1 <sp <1.28), (—1 <i3 <1) and n > 0. Thus, Equation (3) has a negative
eigenvalue and one pair of complex conjugate eigenvalues with positive real parts. Thus, the proposed
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SC-CNN system is unstable, and all equilibrium points P are saddle points of index 2 [35]. Those can
be given as follows:

v’ P’ bed | P oy, — =b 3/ 3/ —¢?
A= gty g oo =3 F VA E - VA<O
g2 —g2
a:f—%({/2‘7+\/g+{’/2‘7—\/z>>0

©)

The system can produce chaotic behaviors for most of the initial conditions and those are taken
as (0.1, 0.1, 0.1) in this paper. The equilibrium points and eigenvalues of the Jacobian matrices are
calculated for the parameter values, namely: 511 =s1p =513 =a3 =1; 5031 = —1; 500 =1.2;i33 =0.1; and n
= 10. The eigenvalues for equilibrium point (—0.06, —0.05, 0.05) € D* are calculated from the matrix J*
as Ay = —1.2469 and A 3 = 0.7234 £ 1.0396i.

On the other hand, the eigenvalues for equilibrium points (—1.32, —1.1, 1.1) € D, and (1.08, 0.9,
—0.9) € D_ are calculated from the matrix J+ as A; = =1 and A3 = 0.6 £ 0.8i. As seen from results,
the proposed system has one negative root and one pair of complex conjugate roots with positive real
parts. Thus, SC-CNN system is unstable, and all equilibrium P are saddle points of index 2.

To study the dynamics of the system in Equation (3), firstly, phase portraits and time domain
responses are presented in the following figures. In phase portraits, 3T-periodic solution for i33 = —0.83,
one band chaotic solution for i33 = —0.59, a double-scroll chaotic attractor for iz3 = 0.1, and similarly
3T-periodic solution for i33 = 0.83 can be seen in Figure 1a—h with time domain representations.

1 1 1 1 1
100 200 300 400 500 600 700 800 900 1000

(b)
T
1 1 1 1 1 1 1 1 1
100 200 300 400 500 600 700 800 900 1000
(d)

Figure 1. Cont.
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(h)

Figure 1. Numerical results of the Switched-SC-CNN Based system: (a) 3T-periodic solution for i3
= —0.83; (b) time response of x1(t) dynamic for iz3 = —0.83; (c) one band chaos for i33 = —0.59; (d)
time response of x(t) dynamic for iz3 = —0.59; (e) double scroll for iz3 = 0.1; (f) time response of x,(t)
dynamic for i33 = 0.1; (g) 3T-periodic solution for iz3 = 0.83; and (h) time response of x; (t) dynamic for
iz3 = 0.83.

3. Bifurcation Diagrams, Lyapunov Exponents Spectra and Poincaré Map

In this study, three bifurcation studies are given. In the first one, system parameters are fixed
as s1] =512 =513 = a3p = 1; 5p1 =—1; 530 = 1.2; and n = 10, with varying is. The system is calculated
numerically for i3 € [—1, 1], and an increment of Aiz = 0.001. Period-doubling route to chaos is clearly
seen in the bifurcation diagram, x; versus i3, as given in Figure 2a. From the bifurcation diagram and
the phase domain figures given in Figure 1, the proposed system is symmetrical with respect to is.

In the second bifurcation study, system parameters are fixed as sj1 =sjp =s13 =az; =1;531 = —1;
iz = 0.1; and n = 10, with varying s». The system is calculated numerically with sy € [1, 1.28] for
an increment of Asy; = 0.001. Within [1, 1.28], various curves seem to expand explosively and merge
together to produce an area of almost solid black, which are indicators of the onset of chaos.

In the last bifurcation study, system parameters are fixed as s11 =512 =513 =a3 =1; 531 = —1;
i3 = 0.1; and sy = 1.2, with varying n. The system is calculated numerically with n € [1, 3.5] for an
increment of An = 0.001. As shown in Figure 2c, when n exceeds 1.21, period-1 orbit becomes, when n
exceeds 1.85 period-2 orbit, becomes period-4 orbit.
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Figure 2. (a) Bifurcation study with x; versus i3 € [—1, 1] for an increment of Aiz = 0.001; (b) bifurcation
study with xj versus sy, € [1, 1.3] for an increment of Asy; = 0.001; and (c) bifurcation study with x;
versus n € [1, 3.5] for an increment of An = 0.001.

The alternative approach to determine whether a system is chaotic is to compute its Lyapunov
exponents. The system is accepted as chaotic if it has at least one positive Lyapunov exponent, and all
the trajectories are ultimately bounded [13]. By using the same parameter values in bifurcation studies,
three Lyapunov exponent investigations are presented in Figure 3. As seen from the numerical results,
the Lyapunov exponent spectrums with respect to i3, s»» and #, are consonant with corresponding
phase and bifurcation diagrams. In our study, we developed an algorithm that estimates the dominant
Lyapunov exponent of time series by monitoring orbital divergence of the proposed system in
Equation (3). The Lyapunov exponent spectrums are calculated using the numerical methods described
in [36]. In addjition, a Poincaré section of the proposed system in x;-x3 domain can be seen in Figure 4.
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Figure 3. (a) Diagram of largest Lyapunov exponent for i3 € [—1, 1]; (b) Lyapunov exponents of the

system for i3 € [—1, 1]; (c) diagram of largest Lyapunov exponent for sy € [1, 1.3]; (d) Lyapunov
exponents of the system for sy, € [1, 1.3]; (e) diagram of largest Lyapunov exponent for n € [1, 3.5];
and (f) Lyapunov exponents of the system for n € [1, 3.5].
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Figure 4. Poincaré mapping of the double-scroll attractor (sj1 =s1p =513 =asz = 1,531 =—1; 590 = 1.2;
n =10, i3 = 0.1).

4. Generating Multi-Scroll Chaotic Attractors

In this section, we introduce approaches in generating multi-scroll chaotic attractors utilizing
hyperbolic tangent function series in the proposed system. Firstly, hyperbolic tangent function series
are added along x3 to generate one direction (1-D) multi-scroll chaotic attractors. Then, to generate
two directions (2-D) multi-scroll chaotic attractors, hyperbolic tangent function series are added to the
system along x1-x3 directions and xp-x3 directions in two different ways. Finally, three direction (3-D)
multi-scroll chaotic attractors are obtained by adding hyperbolic tangent function series to the system
along x1-xp-x3 directions in three different ways.

4.1. Generating One Direction (1-D) Multi-Scroll Chaotic Attractors
Consider the following system:
X1 = Xp + X3

Xp = —X1 — X2+ S»X (10)
3.(3 = —X3 — tanh(nyz) + i3 - tanh(”y2) - i3

where
S11 =S12 =813 =d3p = 1; Sy1 = —1; Spp = 1.1, i3 =0.1,n =10; and
S23 = S31 = S3p =S33 =a11 =12 =a13 =dp1 = =dp3 =d3 = a3z =i1 =i =0.
The equilibrium points of Equation (10) exist in these three subspaces, defined as follows:
Dy = {(x1,x2,x3)|x2 > 1} : Py = (ky, k2, k3),

DO = {(x1/x2/x3)||x2| S 1} : PO = (lll 12113)/ (11)
Dy = {(x1,%2,%3)|x2 < =1} : Py = (my, mp, m3)

where
k1 = 2522 -2, kz =2, k3 = —21111 = 2—2522, my = -2, ms = 2 (12)
Lh=0,1L=013=0
The equilibrium points Py, Py, and P, can be found from the Jacobian matrices.
0 1 1 0 1 1
Ji=h=| -1 (s2—-1) 0 |;Jo=| -1 (s2—1) 0 (13)

0 0 -1 0 2n -1



Electronics 2018, 7, 67 9 of 26

Thus, the corresponding characteristic equations and eigenvalues take the following form:

Pl( Y =Py(A) = A3+ (2 —sp)A2 4+ (2 —sp)A +1 ”
Po(A) = A% — (2 = s2)A% + (2 —s;)A +2n + 1

AMA+A+A3=(520—-2) <0 AMA+A+A3=(500—-2) <0
Dq,D D 1
AMAsAs = —1 < 0 forDuba ) 3s = (—om—1) <o (forPo (15

The initial conditions are taken as (0.1, 0.1, 0.1) in this study. The eigenvalues for equilibrium
point (0, 0, 0) € Dy are calculated from the matrix Jo as A; = —2.9731 and A, 3 = 1.0365 £ 2.4472i, and
the eigenvalues for equilibrium points (—0.2, —2,2) € D; and (0.2, 2, —2) € D; are calculated from the
matrix [12 as A; = —1 and Ay 3 = 0.05 &+ 0.9987i.

Remark 1. System (10) can generate 1-D multi-scroll chaotic attractors via two basic strategies that can be
summarized as follows:

e adding tanh functions in x3 direction via y, nonlinear function; and
e parameterssy, and n satisfy condition given in Equation (15).

System (10) has one negative root and one pair of complex conjugate roots with positive real parts
for all subspaces. Then, SC-CNN system becomes unstable and all equilibrium points P are saddle
points of index 2. Figure 5a,b shows x1-x2-x3 plane projection of 2-double-scroll attractor with variable
x1(t), respectively. Figure 5c,d presents 4-double-scroll attractor and time response of x;(t) for:

x3 = —x3 — tanh(ny,) + i3, — tanh(nyy) — i3, — tanh(ny,) + iz, — tanh(nyz) — iz (16)

where i3, = 0.5 and 735 = 1.

05

1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000

(b)

Figure 5. Cont.
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Figure 5. Numerical results of the 1-D multi-scroll SC-CNN Based system: (a) 2-double scrollin x;-x7-x3
plane; (b) time response of x1(t) dynamic for 2-double scroll; (c) 4-double scrollin x;-x;-x3 plane; and
(d) time response of x1(t) dynamic for 4-double scroll.

4.2. Generating Two Direction (2-D) Multi-Scroll Chaotic Attractors

In this section, we introduce the ways of generating two-direction (2-D) multi-scroll chaotic

attractors in SC-CNN based system. 2-D multi-scrolls can be generated by adding hyperbolic tangent

function series to the SC-CNN system along x1-x3 directions and x;-x3 directions.

In the first model, hyperbolic tangent function series are added along x;-x3 directions via y3 and
Y2 nonlinear functions, respectively.

In the second model, hyperbolic tangent function series are added along x;-x3 directions by using
y2 nonlinear function, respectively.

In the third model, hyperbolic tangent function series are injected to the system along x;-x3
directions via y, and y; nonlinear functions, respectively.

In the fourth model, hyperbolic tangent function series are attached to the system along x;-x3
directions by using y; and y, nonlinear functions, respectively.

4.2.1. x1-x3 Direction 2-D Multi-Scroll Attractors-I:

Consider 2-D multi-scroll chaotic attractor generator:

X1 = X + x3 + tanh(nyz) + i3
Xp = —X1 — X2 +520X2 (17)
X3 = —X3 — tanh(nyz) + i3

$11 =S12 =513 =411 = a3 = 1,‘ S21 = —1; So0 = 1.1, i1 = i3 = 0.1, n= 10,‘ and
$23 =531 =53 =833 =12 =13 =Ay] =dx =3 =31 =4az3 =1p =0.

The equilibrium points of Equation (17) exist in these three subspaces, defined as follows:

Dy = {(x1,x2,x3)|x2,x3 > 1} : Py = (ky, ks, k¢),
D3 = {(x1,x2,x3)|x2], [x3] <1} : P3 = (Is,I5,16), (18)
Ds = {(x1,x2,x3)|x2,x3 < —1} : P5 = (my, ms, mg)

ky =my; = *(1'1 +i3)(522*1), ks =mg=—1—1i3, ke =mg =iz —1
_ —(ip+iz+ipn—izsy) —i3 i3

(19)
ly = T () (n—1) I5 = (n+1)” le = (n+1)




Electronics 2018, 7, 67 11 of 26

The equilibrium points Pg, Py, and Pg can be found from the Jacobian matrices.

0 1 1 0 1 apn+1
Ja=ls=1] -1 (s2—1) 0 |, z=| -1 (s»—1) 0 (20)
0 0 -1 0 —azpn -1

The corresponding characteristic equation is:

Py(A) = P5s(A) = A3+ (2 —5;0)A%2 4+ (2 —s0p)A + 1

21

P3(A) = A%+ (2— 522)/\2 —(2—sp)A+ a32a13n2 —apn+1 1)
MAA+A3=(502—-2)<0 MAA+A3=(502—-2)<0

Dy, D D 22

/\1/\2)\3 =-1<0 for s )\1)\2)\3 = (a32a13n2 + azpn — 1) >0 for 3 ( )

The system can produce chaotic behaviors for most of the initial conditions and those are taken
as (0.1, 0.1, 0.1) in this model. The eigenvalues for equilibrium point (—0.02, —0.2, —0.9) € D3 are
calculated from the matrix J3 as A; = —5.0591 and Ay 3 = 2.0795 + 4.1972i, and the eigenvalues for
equilibrium points (-0.02, —0.2, —0.9) € D4 and (—0.02, —0.2, 1.1) € D5 are calculated from the matrix
]4/5 as /\1 =—1and A2/3 =0.05 4+ 0.987i.

Remark 2. The strategies which can generate 2-D multi-scroll chaotic attractors in System (17):

e adding tanh functions in x; via y3 nonlinear function, and x3 direction via y, nonlinear function; and
e parameterssy,, 1, 413, andazy satisfy condition Equation (22).

System (17) has one negative root and one pair of complex conjugate roots with positive real parts
for all subspaces, and SC-CNN System (17) becomes unstable and equilibrium P is a saddle point
index 2. Figure 6a shows x1-xp-x3 plane projection of 2-double-scroll attractor. Figure 6b presents time
domain responses of x,(t), Figure 6¢,d presents 12-double-scroll attractor and time response of x1(t) for:

X1 = xp + x3 + tanh(ny3) + i1, + tanh(nysz) — i1, +
tanh(nys) + iy, + tanh(nys) — i1+
tanh(ny3) + ic + tanh(nyz) — iy
Xp = —X1 — X2 + Sp0Xp (23)
x3 = —x3 — tanh(ny;) + i3, — tanh(ny,) — iz, —
tanh(nyz) + i3, — tanh(nyz) — i3p—
tanh(nyz) + i3, — tanh(nyz) — i3

where ilu = i3a =0.1, ilb = i3b =0.2, and ilc = i3c =0.3.
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Figure 6. Numerical results of the x;-x3 direction2-D multi-scroll SC-CNN based system-I: (a) 2-double
scrollin x1-x-x3 plane; (b) variable x1(t); (c) 12-double scrollin x1-x3 plane; and (d) variable x(t).

4.2.2. x1-x3 Direction 2-D Multi-Scroll Attractor-II:

X1 = Xy +x3 — tanh(nyz) + i1
Xy = —X1 — X2 + 822X (24)
X3 = —x3 — tanh(ny,) + i3

§11 =812 =813 =12 =43 = 1; Sy1 = —-1; Spp = 1.1, il = i3 =0.1,n=10; and
$23 =831 =853 =833 =11 =a13 = Ay =dx =3 =31 =4az3 =1p =0.

Three subspaces can be defined as follows:

Dy = {(x1,x2,x3)|x2 > 1} : P; = (k7, kg, ko),
De = {(x1,x2,x3)||x2| <1} :Ps = (I7,13,19), (25)
DS = {(xllx2/x3)|x2 S _1} : P8 = (m7/m8/m9)

k7:—(522—1)(i1+i3—2), ks =2—i3—11, kg =13 —1
my = —(sp —1)(i1 +i3+2), mg =2—iz—iy, mg=iz+1, (26)

17:[(522*1)(i1+i3*ﬂ32i1”)] s = (i1+iz—azyirn) g =
(apn+1)(azon—1) 7 (a12n+1) (az2n—1)” (az2n—1)
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The equilibrium points Py, P13, and P14 can be found from the Jacobian matrices.

0 1 1 0 apn+1 1
Jr=Js=| -1 (s2—1) 0 |[;Je=]| -1 (s;2—1) 0 (27)
0 0 -1 0 0 aszpn — 1

The corresponding characteristic equation is:

P7()\) = Pg(/\) = A3 + (2 — 522))\2 + (2 — SQQ))L +1
Ps(A) = A% — (522 + azon — 2)A2 — (a1an — spp — azn + aznsy + 2)A — appazn? (28)
+apn —apn+1

)t1+/\2+/\3=(522—2)<0 A1+/\2+/\3:(522+Il327’1—2)>0
D7, D Dg (29
AMAA3 = -1 <0 fOT’ 78 AMA2A3 = (al2n + 1)(613211 _ 1) >0 for 6 (29

Remark 3. System (24) can generate 2-D multi-scroll chaotic attractors:

e  adding tanh functions in x; and x3 direction via y, nonlinear function; and
e parameterssy,, 1, a1y, a3y satisfy condition as given in Equation (29).

The system can produce chaotic behaviors for most of the initial conditions and those are taken as
(0.1, 0.1, 0.1) in this paper. The eigenvalues for equilibrium point (0, —0.01, —0.01) € D are calculated
from the matrix Jg as A; =9 and Ay 3 = 0.05 &£ 3.3162i, and the eigenvalues for equilibrium points (0.18,
1.8, —0.9) € D7 and (—0.22, —2.2, 1.1) € Dg are calculated from the matrix J7g as A; = =1 and Ap3 = 0.05
£ 0.9987i. System (24) has one positive root and one pair of complex conjugate roots with positive real
parts for Dg subspace, and SC-CNN System (24) becomes unstable and equilibria Py is afocus node.
On the other hand, System (24) has one negative root and one pair of complex conjugate roots with
positive real parts for Dy g subspaces. Thus, SC-CNN System (24) becomes unstable and equilibrium
points Py g are saddle point index 2. Figure 7a shows x1-x3 plane projection of 2-double-scroll attractor.
Figure 6b presents time domain responses of x;(t), Figure 6¢,d presents 12-double-scroll attractor and
time response of x(t) for:

X1 = Xp+ x3 — tanh(nyz) + i1 — tanh(nyz) —iy—
tanh(nyy) + iy — tanh(nyy) — ipp—
tanh(ny,) + i1, — tanh(ny,) — i1,
Xo = —X1 — X2 + S20X) (30)
x3 = —x3 — tanh(ny;) + i3, — tanh(nyy) — iz, —
tanh(nyy) + iz, — tanh(nyy) — izp—
tanh(ny;) + i3c — tanh(nyz) — i3

where ila = i3a =0.1, ilb = i3b =0.2, and ilc = i3c =0.3.
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Figure 7. Numerical results of the x;-x3 direction2-D multi-scroll SC-CNN based system-II: (a) 2-double
scrollin x1-x,-x3 plane; (b) variable x;(t); (c) 7-double scrollin x1-x,-x3 plane; and (d) variable x,(t).

4.2.3. xp-x3 Direction 2-D Multi-Scroll Attractors-I:

X1 = X2+ X3
jCZ = —X1 — X2 + Sp2Xp — tanh(nyz) + 1 (31)
5(3 = —x3+ tanh(nyl) + i3

S11 =812 =813 =a31 =axn = 1,821 = —1; 82 = 1.05,ip =i3 = 0.1, n = 10;
$23 =531 =83 =833 =11 =A1p =13 =dp3 = a3z = a3z =11 =0;
The equilibrium points of Equation (31) exist in these three subspaces defined as follows:
Dig = {(x1,x2,x3)|x1,x2 > 1} : Pig = (kqo, k11, k12)

D9 = {(xlerI x3)||x1|/ |x2| S 1} : P9 = (110/ lll/ 112)/ (32)
D1 = {(x1,x2,x3)|x1,%0 < =1} : P1y = (mag, m11, m12)

kip =io +1i3 —sp0 — 13520, k11 = —1—1i3, kip =iz +1

. . . . . (33)
mig = ip +i3 +5spp —i3spp, myp =1—1i3, myp =iz —1
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—(ip+i3—i350p —ap2i3n)

ho = (a31nsy—az n+az ann?+1)’

Iy = —(iz+azipn)
(a311822 — a3 n+azann+1)’

Iy = (i3+azipn)
(a311522 —az1 n+aza2n°+1)

The equilibrium points Py, P19, and P11 can be found from the Jacobian matrices.

0 1 1 0 1 1
Ju=Ju=| -1 (s2—1) 0 |, Jo=| -1 (spp+apn—-1) 0 (34)
0 0 -1 asn 0 -1

The corresponding characteristic equation is:

Pig(A) = Pri(A) = A3 4 (2 —s2)A% + (2 —spp)A + 1

35
Py(A) = A3 — (spp + amn — 2)A? — (sop + azyn + anpn — 2)A + azyann® + aznsy — azjn + 1 35
M+Ar+A3=(s2—-2) <0
D1y, D
)\1)\2)\3 =-1<0 fOT’ 10 1
(36)

MAAy+A3=(spp+apn—2)>0
)Ll)tz)\g, = [(6131 — 1131522)1’1 — a31a22n2 — 1] <0

}for Dy

Remark 4. System (31) can generate 2-D multi-scroll chaotic attractors via two basic strategies that can be
summarized as follows:

e adding tanh functions in x, direction via y, nonlinear function and in x3 direction via y; nonlinear
function; and
e parameterssyy, 1, Ay, and az; satisfy condition as given in Equation (36).

Initial conditions are taken as (0.1, 0.1, 0.1) in this paper. The eigenvalues for equilibrium point
(—0.06, —0.05, 0.05) € Dy are calculated from the matrix Jg as A; = —1.2469 and A, 3 = 0.7234 £ 1.03961,
and the eigenvalues for equilibrium points (—0.9550, —1.1, 1.1) € Djg and (1.1450, 0.9, —0.9) € Dy, are
calculated from the matrix J1011 as A1 = —1 and Ay 3 = 0.0250 £ 0.9997i. System (29) has one negative
root and one pair of complex conjugate roots with positive real parts for all subspaces. Then, System
(31) is unstable and all equilibrium points P are saddle points of index 2. Figure 8a shows x1-x2-x3 plane
projection of 2-double-scroll attractor. Figure 8b presents time domain responses of x;(t), Figure 8c,d
presents 4-double-scroll attractor and time response of x(t) for:

X1 = Xo + X3
9.(72 = —X1 — X2 +SpXxy — tanh(nyz) + iy, — tanh(nyz) —ip—
tanh(nyy) + ipp — tanh(nyy) — iy (37)
x3 = —x3 + tanh(nyy) + i3, + tanh(ny,) — iz, +
tanh(nyl) + iz, + tanh(nyl) — i3y

where iy, = i3, = 0.1, and iy, = iz, = 0.2.



Electronics 2018, 7, 67

16 of 26

I I
0 200 400 600 800 1000 1200

(b)

I
1400

1600

I
1800

2000

4 1 1 1 1
0 200 400 600 800 1000 1200

(d)

1400

1600

1800

2000

Figure 8. Numerical results of the xp-x3 direction 2-D multi-scroll SC-CNN based system-I: (a)
2-doublescroll in x1-x-x3 plane; (b) variable x;(t); (c) 4-double scrollin x;-x3-x3 plane; and (d) variable

XZ(t).
4.2.4. xp-x3 Direction 2-D Multi-Scroll Attractors-II:

Consider the dynamical system:

X1 = Xp + X3
Xy = —X1 — X2 + Sp2X2 + tanh(nyy) + iz
X3 = —x3 — tanh(nyy) + i3

S11 =812 =513 =az1 =a3 = 1,801 = —1; 8 =1.05,1p =13 = 0.1, n = 10;

$23 =831 =53 =833 =411 =412 =A13 = Ay =3 =az] =az3 =11 =0;

Three subspaces can be defined as follows:

D3 = {(x1,x2,x3)|x1,x2 > 1} : P13 = (k13, k14, k15)
D1y = {(x1,x2,x3)||x1], |x2] <1} : Pip = (I13, 114, 115),
Dig = {(x1,x2,x3)|x1, %20 < =1} : Py = (my3,myg, mys)

kiz =iy +i3+50 —i3s00, kig=1—1i3, kis=i3—1
miz = ip +1i3 —Spp — i3S, My = —1—13, my5 =iz +1

_ —(ig+iz+ipn—izsy) =i i
ha = =i 4= G B = Gl

his =

(38)

(39)

(40)
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The equilibrium points Py, P13, and P14 can be found from the Jacobian matrices.

0 1 1 0 1 1
Ju=Ju=| -1 (s2—-1) 0 |, Ju=|n—-1 (s;x—1) 0 (41)
0 0 -1 0 n -1

The corresponding characteristic equation is:

Pi3(A) = Pig(A) = A3+ (2 —500)A2 + (2 —s0p)A + 1

42
Ppp(A) =A% — (522 = 2)A* = (n+s:2 = 2)A+1—n? 42
AMA+A+A3=(50—-2) <0
Dq3,D
AAgAs = —1 <0 for D1z, Da
(43)

MA+A+A3=(s2-2)<0
D
AMArAz = (112 — 1) >0 fOT 12

The system can produce chaotic behaviors for most of the initial conditions and those are taken
as (0.1, 0.1, 0.1) in this paper. The eigenvalues for equilibrium point (—-0.011, —0.09, 0.09) € Dy, are
calculated from the matrix Ji5 as Aq = 4.9396 and Ay 3 = —2.9448 & 3.3777i, and the eigenvalues for
equilibrium points (1.145, 0.9, —0.9) € Dy3 and (—0.9550, —1.1, 1.1) € Dy4 are calculated from the
matrix [1314 as Ay = —1 and A, 3 = 0.0250 =+ 0.9997i. System (38) has one positive root and one pair of
complex conjugate roots with negative real parts for D1, subspace, and SC-CNN System (38) becomes
unstable and equilibria Py, is a saddle point index 1.

On the other hand, System (38) has one negative root and one pair of complex conjugate roots with
positive real parts for D13 14 subspaces. Thus, SC-CNN System (38) becomes unstable and equilibrium
points Pj3 14 are saddle point index 2. Figure 9 shows x1-xp-x3 plane projection of 4-double-scroll
attractor with xj(t), xp(t) and x3(t) variables, respectively.

Remark 5. There are two basic mechanisms to generate 2-D multi-scroll chaotic attractors in System (38):

e adding tanh functions in x; direction via y; nonlinear function and in x3 direction via y, nonlinear
function; and
e parameter ssyy and n satisfy condition as given in Equation (43).

K L I
0 500 1000 1500 2000 2500

(b)

Figure 9. Cont.
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Figure 9. Numerical results of the x;-x3 direction 2-D multi-scroll attractors-II: (a) 4-double scrollin
x1-x2-x3 plane; (b) variable xq (t); (c) variable x,(t); and (d) variable x3(t).

4.3. Generating Three Direction 3-D Multi-Scroll Chaotic Attractors

In this section, we introduce the ways of generating three directions (3-D) multi-scroll chaotic
attractors in SC-CNN based system. Hyperbolic tangent function series are added to SC-CNN system
along x1-x3-x, directions, x3-x;-x1 directions and x3-x1-x, directions, respectively, to generate 3-D
multi-scrolls. Equilibrium analysis and their stability are given with phase and time domain responses
of each system.

4.3.1. 3-D multi-Scroll Attractors along x1-x3-x; Directions:

X1 = X + x3 + tanh(nyq) + i3
3'C2 = —Xx1 — X2 + Sp0x7 + tanh(ny3) +is (44)
X3 = —Xx3 — tanh(nyz) + i3

$11 =S12 =513 =411 =dp3 =433 = 1; So1 = —1; Sy = 1.05, il = i2 = i3 = 0.1, n= 10,' and
873 =831 =832 =833 = d1p = d13 = do1 =dxp = a3 =4az3 = 0.

The equilibrium points of Equation (44) exist in these three subspaces defined as follows:
D16 = {(x1,x2,x3)|x1, X2, %3 > 1} : Py = (kis, k17, k18),

D15 = {(x1,x2,x3)|[x1], |x2], |x3| <1} : Pis = (le, 17, l18), (45)

D17 = {(x1,x2,x3)|x1, %2, x3 < =1} : Py = (m1g, m17,1m18)

‘ [e)}

kig = i1 +ip +i3 —i1800 —i3s22 + 1, k17 = —iz — iy, kig = i3 — 1 (46)
mie =iy +ip + i3 — 1822 —i3sp2 — 1, myy = —i3 — iy, mg =iz +1
lig = —(ir+ip i3 —iysp —izspn —anipn+azisntarnasin’
(ap1n-+azgn—aryspn+arapazpnd—1) ’
l o a11a32i3n 7!1]1’23714’1’1“1’1}3
7 (ar1n+azsn—ayispn+anapaznn’-1)’ .
l o 7(l3+ﬂz311ﬂ*ﬂ1]1371+ﬂ113522n+011a23121’l )
18 (a11n-+azzn—argspn+ayaxgazpn’—1)
The equilibrium points Py5, P16, and P17 can be found from the Jacobian matrices.
0 1 1 ann 1 1
J=Tir=| -1 (s2—-1) 0 |, Jis=| -1 (sp—1) axpn (47)

0 0 -1 0 —axsn 1
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The corresponding characteristic equation is:

P16()\) = P17(/\) =A3 + (2 — 522))\2 + (2 — 522))\ +1
Pi5(A) = A3 — (sp2 +ann — 2)/\2 — (611171522 —2a11n — sy + a23a32n2 + 2))\ — axn (48)
—a11n + 11501 — ay1axsaznn’ + 1

The system can produce chaotic behaviors for most of the initial conditions and those are taken as
(0.1, 0.1, 0.1) in this paper. The eigenvalues for equilibrium point (—0.01, 0.0111, —0.0111) € D5 are
calculated from the matrix Ji5 as A1 =9.9952 and A, 3 = —0.4726 £ 10.03371, and the eigenvalues for
equilibrium points (1.09, —0.2, —0.9) € D34 and (—0.91, —0.2, 1.1) € D7 are calculated from the matrix
J16,17 as A; = —1 and Ay 3 = 0.0250 £ 0.9997i. System (44) has one positive root and one pair of complex
conjugate roots with negative real parts for D15 subspace, and SC-CNN System (44) becomes unstable
and equilibria Py5 is a saddle point index 1. On the other hand, System (44) has one negative root
and one pair of complex conjugate roots with positive real parts for Dy4 17 subspaces. Thus, SC-CNN
System (44) becomes unstable and equilibrium points P1¢ 17 are saddle point index 2.

AM+A+A3=(507—2) <0
ot — (—§2< 0) }f or Dg, D7
M+A2+A3=(sp+ayn—2) >0
MA2A3 = [(a11 + a3 — a1152)n + agyapazpn® — 1] >0

(49)
}fOT D15

Figure 10a shows x1-x-x3 plane projection of 2-double-scroll attractor.

Remark 6. System (44) can generate 3-D multi-scroll chaotic attractors by:

e  adding tanh functions in x; direction via y; nonlinear function, and in x, direction via y3 nonlinear
function, and in x3 direction via y, nonlinear function; and
e choosing parameters sy, n, ajq, A3, a3y to satisfy condition given in Equation (49).

Figure 10b presents time domain responses of x1(t), Figure 10c,d presents 4-double-scroll attractor
and time response of x3(t) for:

X1 = Xz + x3 + tanh(ny) + i1, + tanh(nyy) — iz, +
tanh(nyy) + iy + tanh(ny;) — iy
X2 = —X1 — X2 + Sp;xp + tanh(nysz) + ip, + tanh(nys) — in+
tanh(nys) + iy + tanh(nys) — iz
x3 = —x3 — tanh(nyy) + i3, — tanh(nyy) — iz, —
tanh(nyz) + i3, — tanh(ny2) — iz

(50)

where ilu = iZa = i3a =0.1, ilb =0.3, and izb = i3b =0.2.
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Figure 10. Numerical results of the 3-D multi-scroll attractors-I: (a) 2-double scrollin x1-xp-x3 plane;
(b) variable x1(t); (c) 4-double scrollin x1-xp-x3 plane; and (d) variable x3(t).

4.3.2. 3-D Multi-Scroll Attractors along x3-xp-x1 Directions:

X1 = X + x3 + tanh(nyz) + i1
Xp = —Xx1 — X3 + Spxp + tanh(nyy) + iz (51)
X3 = —X3 — tanh(nyl) +1i3

511 =812 =813 =13 =dpp =4d3] = 1; S21 = —1; Syp = 1.1, i1 = iz = i3 =0.1,n=10; and
$23 =531 =832 = S33 =11 =12 =1 =3 =4a3p =a33 = 0.
The equilibrium points of Equation (48) exist in these three subspaces, defined as follows:
D19 = {(x1,x2,x3)|x1, %2, %3 > 1} : Prg = (k9, koo, k1),

{(21, x2,x3)||x1], |x2], |x3] <1} : Pig = (lo,la0,121), (52)
= {(x1,x2,x3)|x1,X2,x3 < =1} : Pog = (myg, map, M)
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ki9 =11+ iy +i3 —i1800 — i3S + 1, kog = —iz — iy, kg =iz —1
Mig =11 +1ip +i3 —i1S0p — i3S — 1, mpg = —iz — iy, My = i3+ 1
Lo — —(i1522—iz—i3—il+i3522+{122i1Yl+1122i3t’l—1131i371+u31i352271+{122ﬂ31i3n2)
19 = (a131500 —ay3n+a13a0n> —a13a31 N2 +a13a0a31 13 +aizaz spn®+1) 7 (53)
l _ —(i1+i3+a13i2n+a31i3n+a13a31i2n
20 = Tagznsyr—arzn+ar3a0n? —ag3az 1+ a13a00051 10+ 41303152212 +1)

i34ay3in—+a3ipn—ay3i1Spn—ayzagniin
(a13ns20 —ar3n+ai3apn? —ayzaz n2+ay3axa3 13 +a13azspn>+1)

Iy =

The equilibrium points P13, P19, Pyo can be found through the Jacobian matrices.

0 1 1 0 1 apn+1
Jou=Jo=| -1 (s2—1) 0 |;Jis=| —1 (s;p+amn—1) 0 (54)
0 0 -1 aizn 0 -1

The corresponding characteristic equation is:

Pig(A) = Pyo(A) = A3+ (2= 522)A% + (2 —s;)A + 1
Pig(A) = A3 — (spp + agon — 2)A% — (spp + a13n + apn + ayyazn® — 2)A (55)
—a131 + a135001 + A130201° — A13a311% + a13a0a311° + A13a3150n% + 1

MAA+A3= (520 —2) <
AMAAz =—-1<0
AMFAy+ A3 = (522 + axpn — 2) >0 (56)
(a13 — a1352)n + (13031 — A13020 — A13522a31 1> -0 for D1g
—(m13a2003 )% — 1

0
}f or D19, Dy

AA2Az =

Initial conditions are taken as (0.1, 0.1, 0.1) and the equilibrium points and eigenvalues of the
Jacobian matrices are calculated for the parameter values as s11 =S1p =s13 =a13 =axp =a3; = 1,551 = —1;
spp =1.1,11 =ip =i3 = 0.1, and n = 10. The eigenvalues for equilibrium point (—0.0108, —0.0110, 0.0081)
€ Dg are calculated from the matrix J1g as A1 = —10.9774 and A, 3 = 10.0387 +£ 0.7231i; the eigenvalues
for equilibrium points (1.09, —0.2, —0.9) € Djg are calculated from the matrix Jj9 as Ay = =1 and A3 =
0.0250 £ 0.9997i; and (—0.92, —0.2, 1.1) € Dy are calculated from the matrix Jop as A; = —1and Ay 3
= 0.0500 £ 0.9987i. System (51) has one negative root and one pair of complex conjugate roots with
positive real parts for all subspaces.

Remark 7. System (51) can generate 3-D multi-scroll chaotic attractors by:

e adding tanh functions in x; direction via y3 nonlinear function, and in x, direction via y, nonlinear
function, and in x3 direction via y; nonlinear function; and
e choosing parameters Sy, 1, 13, Ay, 31 according to satisfy condition Equation (56)

System (51) is unstable and all equilibrium points P are saddle points of index 2. Figure 11a shows
X1-x3-x3 plane projection of 2-double-scroll attractor. Figure 11b presents time domain responses of
x1(t), Figure 11c,d presents 4-double-scroll attractor and time response of x3(t) for:

X1 = X2 + X3 + tanh(ny3) + i1, + tanh(nys) — i+
tanh(nys) + iy, + tanh(nys) — iy,
Xy = —X1 — X2 + sy + tanh(nyy) + ip, + tanh(nyy) — iz + (57)
tanh(nyy) + iy, + tanh(ny,) — iy
x3 = —x3 — tanh(ny) + i3, — tanh(nyy) — iz, —tanh(ny, ) + iz, — tanh(ny1) — iz

where l']a = iza = iga =0.2, and ilb = iZb = i3b =0.3.
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Figure 11. Numerical results of the 3-D multi-scroll attractors-II: (a) 2-double scrollin x1-xp-x3 plane;
(b) variable xq (t); (c) 4-double scrollin x1-x;-x3 plane; and (d) variable x3(t).

4.3.3. 3-D Multi-Scroll Attractors along x3-x1-x, Directions:

X1 = X + x3 + tanh(nyz) + i
Xy = —X1 — X2 + SppXp + tanh(ny) + iz (58)
X3 = —X3 — tanh(nyz) + i3

§11 =812 =513 =413 =dp1 =032 = 1,‘ So1 = —1,‘ Sy = 1.1, i1 = iz = i3 = 0.1, n= 10,‘ and
$23 =531 = S3p = S33 =11 =12 =y =d3 =4a31 = a3z = 0.
The equilibrium points of Equation (53) exist in these three subspaces, defined as follows:
Doy = {(x1,x2,x3)|x1,%2,x3 > 1} : Py = (ka2, k23, ko4),

Doy = {(x1,x2,x3)||x1], |x2|, |x3| <1} : Poy = (lao, 123, l04), (59)
D3 = {(x1,x2,x3)|x1, X2, x3 < —1} : Po3 = (mnp, M3, Mp4),
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kop =iy +ip +i3 — i1 — 3822 + 1, koz = —iz — 1y, kog =iz —1
My =iy +ip +1i3 —i18p — 1350 — 1, mp3 = —iz — iy, my =iz +1
Iy — — (1522 —ip —i3—i1+izspn +ap1ian—azizn+azizsopn-tay agin?)
2= (a13n—1) (a1 asn>+ay n—1) ¢ (60)
lys = (i1+i3+azizn)

(ﬂ21 a32n2+u2lnfl) 4
—(i3+az1i1n)
(ag1a31%+-ayn—1)

by =

The equilibrium points Py, P»y, and Pp3 can be found from the Jacobian matrices.

0 1 1 0 1 (01321’1 + 1)
Jo=Jn=| -1 (s2—1) 0 |Jaa=| (azn—1) (spp—1) 0 (61)
0 0 -1 0 —dayn -1

The corresponding characteristic equation is:

Pzz(/\) = P23<)L) =A3 4 (2 — 522))\2 + (2 — 522))\ +1
Pyi(A) = A% — (spp — 2)A% — (sp + a1an — 2)A — apzn — apn + ayzazn® — azazsn® + ajzanann’ + 1
(62)
MAA+A3=(sn-2)<

0
MAA3 = —-1<0 }for Dz, D2

(63)
AMAA+A3=(50—-2) <0

or D
)\1/\2)L3 = (61131’1 — 1) (ll2161321’12 +aynn — 1) <0 }f 2

The system can produce chaotic behaviors for most of the initial conditions and those are taken
as (0.1, 0.1, 0.1) in this paper. The equilibrium points and eigenvalues of the Jacobian matrices are
calculated for the parameter values sj1 =sjp =s;3=a13 =ap1 =asp =1, 501 = —1; s =11, i1 =ip =
i3 = 0.1; and n = 10. The eigenvalues for equilibrium point (—0.06, —0.05, 0.05) € Dy; are calculated
from the matrix J; as A; = —1.2469 and A, 3 = 0.7234 £ 1.0396i, and the eigenvalues for equilibrium
points (—1.32, —1.1, 1.1) € Dy, and (1.08, 0.9, —0.9) € Dy3 are calculated from the matrix J12 as A1 =
—1and A3 = 0.6 £ 0.8i. System (58) has one negative root and one pair of complex conjugate roots
with positive real parts for all subspaces. Then, System (58) is unstable and all equilibrium points P are
saddle points of index 2.

Remark 8. The two strategies that can generate 3-D multi-scroll chaotic attractors in System (58) are
summarized as follows:

e adding tanh functions in x; direction via y3 nonlinear function, and in x, direction via y; nonlinear
function, and in x3 direction via y, nonlinear function; and
e parameterssyy, n, a3, Ap1, A3y satisfy condition given in Equation (63).

Figure 12a shows x;-x3-x3 plane projection of 4-double-scroll attractor. Figure 12b presents time
domain responses of x;(t), Figure 12¢,d presents 8-double-scroll attractor and time response of x3(t) for:

X1 = xp + x3 + tanh(nys) + i1, + tanh(nys) — i1+
tanh(nys) + iy + tanh(nys) — iy
Xy = —X1 — X2 + spxp + tanh(nyy ) + ipy + tanh(nyy) — in+
tanh(nyq ) + iy, + tanh(nyq) — ig
x3 = —x3 — tanh(nyy) + i3, — tanh(nyy) — iz, —
tanh(nyz) + iz, — tanh(nyz) — iz

(64)

where i]a = izu = iga =0.1, and ilb = iz[, = igb =0.2.
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Figure 12. Numerical results of the 3-D multi-scroll attractors-III: (a) 2-double scrollin x;-x;-x3 plane;
(b) variable xq (t); (c) 8-double scrollin x1-x;-x3 plane; and (d) variable x3(t).

5. Conclusions

In this paper, a new SC-CNN based chaotic system with multiple hyperbolic tangent functions is
proposed. This paper presents a mathematical approach for generating multi-scroll chaotic attractors,
such as (one-directional) 1-D, (two-directional) 2-D scroll, and (three-directional) 3-D scroll attractors,
from a given 3D linear autonomous SC-CNN system with a hyperbolic function series as the controller.
The mechanism for generating multi-scroll chaotic attractors is theoretically analyzed and numerically
simulated. Some dynamical behaviors of this system are investigated, such as their equilibria, stability,
Lyapunov exponents and bifurcation diagrams. A Poincaré map, particularly is constructed for
verifying the chaotic behaviors of the double-scroll attractor.

The system under consideration displays complex nonlinear phenomena as period doubling
bifurcation and multi-scroll generation for different sets of system parameters. The model considered
in this work represents an interesting tool for students and researchers to learn better about nonlinear
dynamics and chaos. Furthermore, this system can be widely evaluated in data encryption and
signal communication. Finally, it can be predicted that various related bifurcation phenomena in the
generated multi-scroll chaotic systems need to be further investigated in the near future.
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