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Abstract: The estimation problem for target velocity is addressed in this in the scenario with
a distributed multi-input multi-out (MIMO) radar system. A maximum likelihood (ML)-based
estimation method is derived with the knowledge of target position. Then, in the scenario without
the knowledge of target position, an iterative method is proposed to estimate the target velocity by
updating the position information iteratively. Moreover, the Carmér-Rao Lower Bounds (CRLBs)
for both scenarios are derived, and the performance degradation of velocity estimation without
the position information is also expressed. Simulation results show that the proposed estimation
methods can approach the CRLBs, and the velocity estimation performance can be further improved
by increasing either the number of radar antennas or the information accuracy of the target position.
Furthermore, compared with the existing methods, a better estimation performance can be achieved.

Keywords: CRLB; distributed multi-input multi-output (MIMO) radar; moving target; velocity
estimation

1. Introduction

Usually, the multi-input multi-output (MIMO) radar systems can be classified into the following
two types:

1. Colocated MIMO radar [1,2]: The antennas in the colocated MIMO are close to each other, so the
waveforms and beam-patterns can be optimized to improve the performance of target detection
and estimation [3–7].

2. Distributed MIMO radar [8,9]: The antennas are widely separated, so the performance of target
detection and estimation can be improved by exploiting the spatial diversity of the target’s radar
cross section (RCS) [10–12].

In the distributed MIMO radar systems [13–16], both the spatial and waveform diversities
can be adopted to increase the radar performance in target estimation, detection and tracking.
Therefore, this paper focuses on the distributed MIMO radar system.

To overcome the challenges brought by the target movement [17,18], the MIMO radar has been
adopted to estimate and detect the moving target. For example, the tracking method for the MIMO
radar is analyzed in [19]. In [20–22], the detection problem for moving target is considered in the
scenario with homogeneous and non-homogeneous clutter, respectively. The Bayesian-based method
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has also been proposed to estimate the position and velocity of moving target in [23,24]. In [25–28],
the fractal-fractional modeling and the Weierstrass-Mandelbrot function have also proposed and can
be used to improve the radar performance.

The Carmér-Rao Lower Bound (CRLB) can be used to analyze the target estimation performance
in the MIMO radar system. For example, the CRLB for velocity estimation is given in the distributed
MIMO radar in [29], but the effect of position estimation error has not been considered. In [30],
the CRLB matrix is used to solve the problem of range compression and waveform optimization.
Moreover, in [31], the direction finding performance of the MIMO radar is described by the outage
CRLB. Different from the existing works, this letter gives the velocity estimation methods for the
scenarios with or without the information of target position. Then, the CRLBs are used to measure the
velocity estimation performance in the distributed MIMO radar, and the effect of target position error
is also considered.

In this paper, the estimation problem for target velocity is addressed in the distributed MIMO
radar, and a Maximum Likelihood (ML)-based method is expressed to estimate the target velocity in
the scenario with target position information. Then, in the scenario without the position information,
an iterative method is proposed to update the target position, and to improve the performance
of velocity estimation. Moreover, the corresponding Carmér-Rao Lower Bounds (CRLBs) for both
scenarios are derived and compared with the estimation performance of the proposed methods.

Notations: ‖ · ‖2 is the `2 norm. 1N stands for a N × 1 vector with all entries being 1. IN denotes
an N × N identity matrix. E {·} denotes the expectation operation. N (a, B) denotes the Gaussian
distribution with the mean being a and the variance matrix being B. ⊗, Tr {·}, and (·)T denote the
Kronecker product, the trace of a matrix, and the matrix transpose, respectively.

The remainder of this paper is organized as follows. The distributed MIMO radar system is given
in Section 2. The estimation method with and without the knowledge of target position are given in in
Section 3. Then, the corresponding CRLBs are given in Section 4, and the simulation results are given
Section 5. Finally, Section 6 concludes the paper.

Figure 1. Velocity measurement using the distributed multi-input multi-output (MIMO) radar.
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2. System Model and Problem Formulation

Different from the colocated MIMO radar system with the close antennas, the distributed
MIMO radar system is considered in this paper, where the widely separated antennas are adopted.
Additionally, the the transmitters and receivers are also widely separated, as shown in Figure 1.
We denote the number of transmitters and receivers as NT and NR, respectively. The position of the
m-th transmitter (m = 0, 1, . . . , NT − 1) and the n-th receiver (n = 0, 1, . . . , NR − 1) are denoted as
pm ∈ RN and qn ∈ RN , respectively, where N = 2 for the 2-dimension measurement or N = 3 for the
3-dimension measurement.

All the transmitters and receivers are adopted to measure the target velocity v ∈ RN . Then, for the
signal transmitted by the m-th transmitter and received by the n-th receiver, the Doppler frequency of
the received signal can be expressed as

fD,m,n =
1
λ
(vTdT,m + vTdR,n), (1)

where t ∈ RN is denoted as the target position, λ denotes the wavelength of the transmitted signal,
and the direction vectors are defined as

dT,m ,
t− pm
‖t− pm‖2

, (2)

dR,n ,
t− qn
‖t− qn‖2

.

In the radar system, the Doppler frequency is estimated and denoted as f̂D,m,n = fD,m,n + em,n,
where em,n is the estimation error for the Doppler frequency fD,m,n. Collecting all the estimation errors
into a vector

e ,
[
e0,0, e0,1, . . . , e0,NR−1, e1,0, . . . , eNT−1,NR−1

]T , (3)

The vector e follows the Gaussian distribution with zero-mean, i.e., e ∼ N (0, E), where E denotes
the covariance matrix of the estimation errors. In addition, a vector is also adopted to collect all the
estimated Doppler frequencies

f̂ D ,
[

f̂D,0,0, f̂D,0,1, . . . , f̂D,NT−1,NR−1

]T
, (4)

And we have
f̂ D = f D + e. (5)

Alternatively, the Doppler frequency vector f D can be also expressed as

f D =
1
λ



(dT,0 + dR,0)
T

(dT,0 + dR,1)
T

...
(dT,0 + dR,NR−1)

T

(dT,1 + dR,0)
T

...
(dT,NT−1 + dR,NR−1)

T


︸ ︷︷ ︸

D

v, (6)

where D denotes the direction matrix. Then, (5) can be finally rewritten as

f̂ D =
1
λ

Dv + e. (7)
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3. Target Velocity Estimation

3.1. With the Target Position Information

When the ML-based method is adopted to estimate the target velocity, the estimated result can be
expressed as

v̂ = arg max
v

f ( f̂ D|v), (8)

where f ( f̂ D|v) denotes the probability density function (PDF) of the Doppler frequency f̂ D given the
target velocity v, and can be expressed as

f ( f̂ D|v) =
1√

(2π)NT NR |E|
e−

1
2 ( f̂ D− 1

λ Dv)T E−1( f̂ D− 1
λ Dv). (9)

Therefore, the ML-based estimation method is obtained as

v̂ = arg min
v

( f̂ D −
1
λ

Dv)TE−1( f̂ D −
1
λ

Dv), (10)

Which is a weighted least square (WLS) problem and can be solved efficiently. Taking the
derivative with respect to v, the solution of (10) is

v = λ
(

DTE−1D
)−1

DTE−1 f̂ D. (11)

3.2. Without the Target Position Information

In the ML-based estimation method (11), the direction matrix D is assumed to be known. However,
in the practical radar systems, the information of target position t is unknown. In this subsection,
an iterative method is proposed to estimate the target velocity without the knowledge of target position.

In this scenario, the initially estimated target position is denoted as t̂, and the initially estimated
velocity can be obtained from (11) as

v̂ = λ
(

DT
0 E−1D0

)−1
DT

0 E−1 f̂ D, (12)

where the initial direction matrix D0 is defined as

D0 , [INT ⊗ 1NR , 1NT ⊗ INR ]

[
DT0

DR0

]
. (13)

DT0 and DR0 are respectively defined as

DT0 ,


1

RT,0
(t̂− p0)

T

...
1

RT,NT−1
(t̂− pNT−1)

T

 (14)

DR0 ,


1

RR,0
(t̂− q0)

T

...
1

RR,NR−1
(t̂− qNR−1)

T

 , (15)
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where

RT,m , ‖t̂− pm‖2, (16)

RR,n , ‖t̂− qn‖2. (17)

The real target position can be written as

t = t̂− t′, (18)

where ‖t′‖2 � ‖t − pm‖2, and t′ denotes the error of estimated position. Therefore, dT,m can be
approximated by

dT,m =
t− pm
‖t− pm‖2

(19)

≈ 1
RT,m

(t̂− t′ − pm),

And dR,n ≈ 1
RR,n

(t̂− t′ − qn). By defining rT and rR as

rT ,
[

1
RT,0

, . . . ,
1

RT,NT−1

]T
(20)

rR ,
[

1
RR,0

, . . . ,
1

RT,NR−1

]T
, (21)

The Doppler frequency vector f̂ D can be approximated as

f̂ D ≈
1
λ

D0v− 1
λ

R(v)t′ + e (22)

where R(v) , [INT ⊗ 1NR , 1NT ⊗ INR ]

[
rT
rR

]
vT .

Then, with the estimated target velocity v̂ in (12), the estimation of t̂′ is

t̂′ = arg min
t′

( f̂ D −
1
λ

D0v̂ +
1
λ

R(v̂)t′)TE−1

( f̂ D −
1
λ

D0v̂ +
1
λ

R(v̂)t′), (23)

which can be solved and simplified as

t̂′ =
(

RT(v̂)E−1R(v̂)
)−1

RT(v̂)E−1
(

D0v̂− λ f̂ D

)
. (24)

After obtaining t̂′, the target position is updated as (t̂− t′), and used to obtain a new direction
matrix D0. Substitute the updated D0 into (12), and we can iterate the processes from (12) to (24).
Finally, the target velocity and position can be obtained as v̂ and (t̂ − t′), respectively. The details
about this algorithm is given in Algorithm 1.

In Algorithm 1, the main complexity lies in the steps to calculate the estimated velocity v̂ and
position t̂′. Therefore, the computational complexity can be roughly calculate as O

(
(NNT NR)

3),
which depends on the number of transmitters NT , the number of receivers NR and the velocity
dimension N.
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Algorithm 1 Proposed Algorithm for Estimating Target Velocity

1: Input: Doppler frequency vector f̂ D, initially estimated target position t̂, transmitter positions pm
(m = 0, . . . , NT − 1), receiver positions qn (n = 0, . . . , NR − 1), the number of iterations K.

2: Initialization:

k = 0, t̂k = t̂,

RT,m , ‖t̂− pm‖2, RR,n , ‖t̂− qn‖2,

rT ,
[

1
RT,0

, . . . ,
1

RT,NT−1

]T
,

rR ,
[

1
RR,0

, . . . ,
1

RT,NR−1

]T
,

DTk , diag {rT}
(

1T
NT
⊗ t̂−

[
p0, . . . , pNT−1

])T
,

DRk , diag {rR}
(

1T
NR
⊗ t̂−

[
q0, . . . , qNR−1

])T
,

Dk = [INT ⊗ 1NR , 1NT ⊗ INR ]

[
DTk
DRk

]
.

3: while k ≤ K− 1 do

4: v̂ = λ
(

DT
k E−1Dk

)−1
DT

k E−1 f̂ D.

5: R(v̂) , [INT ⊗ 1NR , 1NT ⊗ INR ]

[
rT
rR

]
v̂T .

6: t̂′ =
(

RT(v̂)E−1R(v̂)
)−1

RT(v̂)E−1
(

Dkv̂− λ f̂ D

)
.

7: t̂k+1 = t̂k − t̂′.
8: Update parameters:

RT,m , ‖t̂k+1 − pm‖2, RR,n , ‖t̂k+1 − qn‖2,

rT ,
[

1
RT,0

, . . . ,
1

RT,NT−1

]T
,

rR ,
[

1
RR,0

, . . . ,
1

RT,NR−1

]T
,

DTk = diag {rT}
(

1T
NT
⊗ t̂k+1 −

[
p0, . . . , pNT−1

])T
,

DRk = diag {rR}
(

1T
NR
⊗ t̂k+1 −

[
q0, . . . , qNR−1

])T
,

Dk = [INT ⊗ 1NR , 1NT ⊗ INR ]

[
DTk
DRk

]
, k = k + 1.

9: end while
10: Output: the estimated target velocity v̂ and the estimated target position t̂k.

4. Carmér-Rao Lower Bound

4.1. With the Target Position Information

The Carmér-Rao Lower Bound (CRLB) of the estimated velocity is defined as

CRLB(v) = I(v)−1, (25)
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where I(v) denotes the Fisher information matrix (FIM) with the i-th row and j-th column entry being

I(v)i,j = −E
{

∂2 log( f ( f̂ D; v))
∂vi∂vj

}

=
1

λ2 DT [i]E−1D[j], (26)

where D[i] denotes the i-th column of D. Therefore, I(v) = 1
λ2 DTE−1D, and the mean square error

(MSE) of the estimated velocity is bounded by the CRLB

E
{
‖v̂− v‖2

2

}
≥

N−1

∑
i=0

[
I(v)−1

]
i,i

= λ2 Tr
{[

DTE−1D
]−1
}

. (27)

4.2. Without the Target Position Information

When the target position t is unknown, the Doppler frequency vector and the estimated target
position can be respectively rewritten as

f̂ D =
1
λ

Dv + e, t̂ = t + t′, (28)

where we assume the position error follows the zero-mean Gaussian distribution t′ ∼ N (0, Q).

By defining θ ,
[
vT , tT

]T
, the CRLB of θ can be expressed as

CRLB(θ) = I(θ)−1, (29)

where the FIM is defined as

I(θ) ,

[
Ivv Ivt

Itv Itt

]
. (30)

Given the target velocity v and position t, the joint PDF of f̂ D and t̂ is

f ( f̂ D, t̂|v, t) =
1√

(2π)NR NT |Σ|
e−

1
2 ([ f̂

T
D ,t̂T

]T−µ)TΣ−1([ f̂
T
D ,t̂T

]T−µ) (31)

where

Σ ,

[
E 0
0 Q

]
, (32)

µ ,

[
1
λ Dv

t

]
. (33)

Then, the i-th row and j-th column entry of FIM can be obtained as

I(θ)i,j =
∂µT

∂θi

[
E−1 0

0 Q−1

]
∂µ

∂θj
. (34)

Therefore, the following results can be obtained:
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1. When θi = vi, we have

∂µ

∂vi
=
[

1
λ DT [i], 0T

]T
; (35)

2. When θi = ti, we have

∂µ

∂ti
=

[
1
λ

∂Dv
∂ti

∂t
∂ti

]
. (36)

Then, the entries of FIM are:

1. For the i-row and j-th column of Ivv, we have

Ivv[i, j] =
1

λ2 DT [i]E−1D[j]. (37)

2. For the i-row and j-th column of Itt, we have

Itt[i, j] =
1

λ2 ZT [i]E−1Z[j] + Q−1
i,j , (38)

where Z[i] , ∂Dv
∂ti

.

3. For the i-row and j-th column of Ivt, we have

Ivt[i, j] =
1

λ2 DT [i]E−1Z[j]. (39)

4. For the i-row and j-th column of Itv, we have

Itv[i, j] =
1

λ2 ZT [i]E−1DT [j]. (40)

Therefore, after simplifications, we have

Ivv =
1

λ2 DTE−1D, (41)

Itt =
1

λ2 ZTE−1Z + Q−1, (42)

Ivt =
1

λ2 DTE−1Z, (43)

Itv =
1

λ2 ZTE−1D. (44)

Using the block matrix method, the inverse of FIM can be obtained as I−1(θ) =

[
I1 I2

I3 I4

]
,

where we have

I1 , I−1
vv + I−1

vv Ivt(Itt − Itv I−1
vv Ivt)

−1 Itv I−1
vv , (45)

I2 , −I−1
vv Ivt(Itt − Itv I−1

vv Ivt)
−1, (46)

I3 , −(Itt − Itv I−1
vv Ivt)

−1 Itv I−1
vv , (47)

I4 , (Itt − Itv I−1
vv Ivt)

−1. (48)
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Finally, we can obtain the CRLB of target velocity

CRLB′(v) = Tr
{

I−1
vv + I−1

vv Ivt(Itt − Itv I−1
vv Ivt)

−1 Itv I−1
vv

}
, (49)

And the CRLB of target position can be also obtained as

CRLB(t′) =
N−1

∑
i=0

I4,ii (50)

= Tr
{
(Itt − Itv I−1

vv Ivt)
−1
}

.

Comparing the CRLB in (29) with the one in (49), we can find that CRLB′(v) ≥ CRLB(v),
so without the position information, the estimation accuracy of target velocity is worse than that with
the position information.

5. Simulation Results

In this section, the simulation results are given, and the simulation parameters are given as
follows: the carrier frequency is fc = 10 GHz, the number of dimensions is N = 3, and the number of
receivers is NT = 20. The positions of transmitters, receivers and target are shown in Figure 2.

20
15

x (km)

10
5

00y (km)

10

0

6

10

8

2

4

20

z 
(k

m
)

Transmitters

Receivers

Moving target

Figure 2. The positions of transmitters, receivers and target.

First, with the position information, the estimation performance of target velocity is given in
Figure 3. In this figure, both the MSE of ML-based method and CRLB with different Doppler error
variances are given, where E = σ2

e INT NR , and we use 10 log10 σ2
e to indicate the values of horizontal

ordinate. The ML-based estimation method can approach the CRLB, which shows the effective of
ML-based method. Additionally, we also give the estimation performance with different numbers of
receivers, i.e., NR = 10, 20 and 30. The estimation performance is improved by increasing the number
of receivers.

Second, the estimation performance of target velocity with position estimation error is shown
in Figure 4, where the number of transmitters and receivers are NT = 20 and NR = 30, respectively.
As shown in this figure, increasing the variance of Doppler error will decrease the estimation
performance of target velocity. Additionally, we have Q = σ2

q IN , and we use 10 log10 σ2
q to show
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the value of σ2
q in dB. In Figure 4, decreasing the performance of position estimation, i.e., increasing

the value of σ2
q , the performance of velocity estimation is also decreasing, especially, in the scenario

with worse performance of position estimation.
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-55
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-45
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M
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d
B

)

CRLB(RX=10)

CRLB(RX=20)

CRLB(RX=30)

Estimated resulted (RX=10)

Estimated resulted (RX=20)

Estimated resulted (RX=30)

Figure 3. Target velocity estimation performance without position errors.
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Estimated results (Position error variance=10 dB)

Estimated results (Position error variance=20 dB)

CRLB(Position error variance=0 dB)

CRLB(Position error variance=10 dB)

CRLB(Position error variance=20 dB)

Figure 4. Target velocity estimation performance with position errors.

Finally, with the number of RX being 20, we compare the proposed method with the existing
methods. As shown in Figure 5, the proposed method is compared with the orthogonal matching
pursuit (OMP) method [22] and the Atomic-Norm method [32]. Since both existing methods are based
on the theory of compressed sensing, the better performance can be achieved in the scenario with less
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data. However, in our scenario, we have enough data from the receivers, so the proposed method
can achieve better estimation performance. Additionally, since the discretized grids are adopted in
the OMP method, when the Doppler variance is good enough, the estimation performance cannot be
better with decreasing error of Doppler variance as shown in Figure 5. Therefore, compared with the
existing methods, we can achieve the better velocity estimation performance.

0 5 10 15 20 25

Doppler error variance (dB)

-50

-45

-40

-35

-30

-25

-20

M
S

E

OMP method

Atomic-Norm method

Proposed method

Figure 5. Compared with the existing methods.

6. Conclusions

In the distributed MIMO radar system, the estimation problem for target velocity has been
considered in this paper. We have proposed the novel ML-based estimation methods in the scenarios
with and without the knowledge of target position to obtain the information of target velocity.
Additionally, the corresponding CRLBs have also been derived. Simulation results demonstrate that
the proposed estimation methods can approach the CRLBs, and the velocity estimation performance
can be further improved by increasing either the number of antennas or the information accuracy
about target position. Further work will focus on the estimation of target velocity with the moving
radar platforms.
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