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Abstract: Cooperative control consensus is one of the most actively studied topics within the realm
of multi-agent systems. It generally aims to drive multi-agent systems to achieve a common group
objective. The core aim of this paper is to promote research in cooperative control community by
presenting the latest trends in this field. A summary of theoretical results regarding consensus
for agreement analysis for complex dynamic systems and time-invariant information exchange
topologies is briefly described in a unified way. The application under both non-formation and
formation cooperative control consensus for multi-agent system also investigated. In addition, future
recommendations and some open problems are also proposed.
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1. Introduction

In comparison to an autonomous single agent/mobile robot, which only executes solo missions,
better operational capability and efficiency can be achieved from multi-agent systems that are operating
in a coordinated fashion. Owing to the ability to handle abundant computational resources that are
embedded in an autonomous agent enables it to enhance operational effective capabilities through a
cooperative teamwork of multi-agent in military and civilian applications [1]. So by using multi-agent
systems, certain global objectives can be achieved through sensing, exchange of information using
communication, computation and their control [2,3].

A significant amount of research effort has been put into the cooperative control of multi-agent
systems in the last decade. In the cooperative control consensus, agents share their information
with each other. This information may lead to achieve common group objectives, relative position
information or common control algorithms.

The behavior-based approach has been used for researchers to examine the social characteristics
of animals and insects to apply coordination control findings to the design of multi-agent systems.
In Reference [4] Reynolds presented three basic rules of cohesion, separation and alignment. Where
cohesion means staying close to all nearby neighbors, separation means avoiding collision and
alignment means to match velocities with the remaining agents. By introducing the aggregate motions
of a multi-agent system, the author generated the first animation on the computer. Also, for dynamic
topologies, Viscek’s model is very important, which can be classified as a special type of a distributed
behavioral model with Reynolds’ rules [5].

Cooperative control for multiple agents can be classified as non-formation cooperative control
problems such as role assignment, automated parallel delivery of payload transport, foraging, task
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handling, air traffic control, cooperative search and timing, or as formation control problems such
as mobile agents involved in surveillance and reconnaissance operations, flying or unmanned
aerial vehicles (UAVs), self-assembly of connected mobile networks, autonomous underwater
vehicles, spacecraft, aircraft, satellites and automated highway systems. To enable these applications
in multi-agent systems, diverse cooperative control techniques need to be built up, including
rendezvous [6,7] flocking [8,9] and swarming [10,11].

The main issues for the multi-agent consensus are coverage problems [12], network consensus [13],
multi-agent navigation [14] and formation control [15]. The main approaches found in recent literature
to solve these problems include algebraic graph theory-based approaches [16], geometric constraint
techniques [17] and the artificial potential field method [18]. In all these approaches, the agents are
assumed to remain entirely connected with each other for communication links and particularly for
formation control they should further form a predefined shape as well.

The ultimate focus of this paper is to present a review of consensus problems in multi-agent
coordination systems with the aim of elevating more and more research in this field by emphasizing
highly cited papers. Finally, applications of multi-agent systems including consensus, flocking and
swarming are also presented.

The paper outline is as follows: A brief background on algebraic graphs and matrix theory is given
in Section 2. Theoretical progress in consensus that includes convergence analysis for the time-invariant
and dynamic state, consensus speed and heterogeneous agents is presented in Section 3. Section 4
demonstrates the convergence constraint due to practical limitations. The application of multi-agent
systems can be seen in Section 5. Finally, conclusions and some open questions are discussed in
Section 6.

2. Preliminaries

In order to exchange information among multi-agent systems, it is natural to model this by way
of an undirected or directed graph, where vertices represent agents and edges are the information
exchange links among agents. A pair (V,E) is called a directed graph where V = {1, ..., n}isa
nonempty finite node set and E C V x V is called an edge set. The neighbor of i agent is denoted
by N; = {j € V: (i,j) € E}. For the edge (i, ), i is known as parent node whereas j is mentioned as
the child node. The edge (i,j) € E means that agent j can get updates from agent i but for agent i it is
not permissible. Contrary to a directed graph, the undirected graph can be seen as a special type of
directed graph where un-ordered pairs of nodes are allowed. The edge (i,]) € E is referred to as agent
i and j and can receive updates from each other so edges (i, j) and (j, i) in the directed graph equate to
an edge (i, j) in the undirected graph [19].

In a directed graph, if there is a directed path from every node to every other node it is known as
“strongly connected”. Similarly, in an undirected graph, if there is an undirected path between every
pair of distinct nodes then it is called “connected graph”. A node is called a root if it has a directed
path to the remaining nodes without having a parent itself. A rooted directed tree is a directed graph
where except for one node remaining nodes should have exactly one parent node [20].

For a directed graph with a node set V = {1, ..., n} the adjacency matrix A = [a;;] € R"*" is
defined as a “positive weight” where a;; = 1if (j,i) € E and a;; = 0 for (j,i) ¢ E. As all the graphs
have some weights so if weights are not significant in a particular situation, then a;; is assumed to be
equal to one for all (j, i) € E. Self-edges with positive weight are also allowed. For some a;; graph is
referred to as balanced if } /' ; a;; = 2;7:1 aj; for all i. As adjacency matrix is symmetric for undirected
graph thus every undirected graph will be automatically balanced. Thus, the adjacency matrix can be

written as
Loifflgj—aqill <r
A = [ﬂij] — f J . !
0 otherwise
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The directed graph Laplacian matrix L = [llﬂ € R"™" can be defined as [;; Yjiaij and lij = —ajj
for all i # j. Similarly, if (j,i) ¢ E, then [;; = —a;; = 0. The graph Laplacian elements are defined as

. N i jENi
e {|N‘| j=i
1ls -

Here, |N;| is the number of neighbors of node i or simply its in-degree, where the degree matrix
is defined as D = diag(deg;, (1), ..., deg;,(N)). For a directed graph, L is not necessarily symmetric
however for an undirected graph, L is always symmetric. For a balanced graph, the degree-in and
degree-out should be same.
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Similarly, the Laplacian matrix in terms of degree matrix can be defined as “L = D — A”. For an
undirected graph, if i smallest eigenvalue of Laplacian matrix is A;(L) with A;(L) < A»(L) < ... <
An(L) such that first eigenvalue is zero then convergence rate of consensus algorithms is quantified by
A2 (L) which is known as algebraic connectivity [21]. If the undirected graph is connected then A,(L)
is always greater than zero [22]. Also, zero is the simple eigenvalue of Laplacian matrix, if the directed
graph is strongly connected or the undirected graph is connected, while the reverse does not hold.

The eigenvalue for Laplacian matrix having undirected topology are A(L) = 0 and A;(L) > 0,
for a graph having spanning tree are A1(L) = 0 and Re(A;(L)) > 0 and for a complete graph are
A(L) =0and Aj(L) = N —1wherei = 2,3, ..., N. For more details on graph theory, the reader
should refer to [19].

3. Theoretical Progress in Consensus

A consensus protocol is a communication rule that specifies the exchange of information within a
network, between an agent and all its nearby neighbors. If the information exchange among agents
allows continuous communication or the bandwidth of communication is significantly large, then
differential equation is used to model the information state. Similarly, if the information exchange data
arrive in discrete packets, then difference equation is used to model information state of each agent [1].
The three major areas that have been covered under consensus network are consensus algorithm,
network topology and convergence rate. So, in this section, there is a review of the recent theoretical
aspects of multi-agent consensus problems.

3.1. Convergence Analysis for Time-Invariant Topology

Time-invariant communication topology means that if at any time instant an agent can access
information of another agent, then it is assumed that it can get updates from those agents all the time.
The comparison between continuous and discrete consensus is presented in Table 1. From here, it can
be seen that the final equilibrium state for continuous and discrete case is the weighted average of the
initial condition of each agent. Still, it is not obvious that whether every agent will have some effect
on the ultimate equilibrium state or not. As v; and y; are positive for strongly connected topology,
thus in this situation each agent will have some effect on the final equilibrium state [23]. Besides this,
for continuous and discrete protocol if v; = v; = 1/n and p; = p; = 1/n where i # j then the average
consensus can be achieved which is the average of the initial condition of each agent [20].

For a directed topology, consensus can be achieved when the topology is strongly connected
because all the agents can pass information to each other as depicted in Figure 1 but to achieve average
consensus topology should be strongly connected and balanced as can be seen in Figure 2. For an
undirected graph, the agreement can be achieved only if the graph is connected [20]. It also claims
in [19] that if a graph is balanced and weakly connected then automatically it is strongly connected
hence it contains rooted out branching thus average consensus can be achieved.
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Table 1. Continuous vs. Discrete: Consensus Comparison.

Continuous Discrete

xilk+1] = i bij [k]x;[k]
=1

Dynamics =i
x(t) = —Lx(t) x[k+ 1] = D[K]x[k]
Key Matrix log; e — 1T logy oo D% — 1T
M(L) =0 M(D) =1
Eigen Value Re (A{(L)) =0, i=23,...,N ML) < 1,

Figure 2. Strongly Connected and Balanced: Average Consensus.
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Moreover, if the number of edges increases then algebraic connection will also increase causing

settling time to reduce but overall cost will be increased, as shown in Figure 3.
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Figure 3. Balanced Multi-Agent Consensus. (a) Node Value vs time (b) Disagreement vs time.

3.2. Convergence Analysis for Complex Dynamic Systems

The network can be classified as static, dynamic and random network. Where static depends on
linear-time invariant systems, hybrid systems are dynamic, which leads to the Lyapunov function
and at last, random networks rely on both Lyapunov and stochastic stability [19]. Here, the complex
dynamic system is classified as switching network and synchronization network.

3.2.1. Switching Network

Recently, much research efforts for switching information exchange topologies of coordination
of multi-agent system has been performed. In communication, there are constraints in terms of
bandwidth and energy while in sensing the limitations are in term of range and resolution [19]. There
is also the possibility that the neighbor of an autonomous agent will not remain its neighbor for all the
time, it may change according to the situation. For example, if the communication is being done using
the direct sensor, then there is a possibility that the visible neighbors may change with respect to time.
Similarly, the information exchange links may be changeable due to communication range limitations
or disturbances.

To achieve consensus for a time-invariant, communication topology is notably simple. But,
this is the not case with the communication topology to be dynamic. In switching for the single
integral kinematics, the final value is constant while for the double integral kinematics the
final value is dynamic. Here, the dynamic topology can be achieved using algebraic graph.
Transition matrix ®(t,0) corresponding to —L(t) in continuous-time then the solution of the
continuous-time and discrete-time agreement protocols can be modified as x(t) = ®(t,0)x(0) and
x[k] = D[k] ... D[1]D[0]x[0] respectively.

Therefore, consensus can be guaranteed if limi—e®(,0) — 10T and
limg_,oDIK] ... D[1]D[0] — 14T, where v = [v}, ..., v;]" and u = [, ..., pn]’ correspond
for continuous and discrete-time respectively. There is another possibility when L(t) is constant with
some dwell time 7; = ;1 — t;, where “dwell time” is defined as the time when there is no change
in information exchange topology. The connectivity of 15-nodes realization of a random geometric
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network with different radius is illustrated in Figure 4, where it can be seen that for increasing radius
(r) the average node degree is also increasing. For r = 0.48 the average node degree is 5.87, whereas
for r = 0.60 and r = 0.80 the average node degree is 9.60 and 12.80 respectively.

Avg. node degree = 12.80
0 05 1 0 05 1 0 05 1
(a) (b) (c)

5 \
Avg. node degree = 9.60

| Avg. node degree = 5.87

=
(=)
=]

Figure 4. Nodes Realization, (a) For radius = 0.48, (b) For radius = 0.6, (c) For radius = 0.8 [19].

3.2.2. Synchronization Network

Synchronization in the complex network has also been extensively studied in [24,25] where
the agents should synchronize their state with the remaining agents while achieving the target.
The equation can be modeled as shown in Equation (1).

|xi(t—Ti)—x]‘(f—Tj)| — 00 Vl,] 1)

Different approaches are utilized for both consensus and synchronization because consensus for a
team of agent concerns for distributed cooperative control while in complex network synchronization
concerns for non-linear dynamics. Similarly, in multi-agent consensus the self-dynamic is linear or
zero thus leading to a constant final state [20] and can be studied through algebraic graph theory,
stochastic matrix theory [26] and convexity analysis [27]. While synchronization in the complex
network the self-dynamic is non-linear thus leading to a time-varying final state where the connectivity
is known prior and can be studied through algebraic graph theory, matrix theory [28] and Lyapunov
function [29].

3.3. Convergence Speed in Finite Time

An important performance measure in consensus protocol is the convergence speed in finite time.
The main objective is to design a control law in such a way that states should reach a common point in
t > T, where T is the constant consensus time. The finite time consensus has two significant properties
as compared to others in the sense of robust against uncertainties and disturbance rejection.

As discussed earlier that except the smallest eigenvalue of Laplacian matrix which is always
zero, all the remaining eigenvalues should be positive for a connected undirected graph, where A,
is the smallest positive eigenvalue. There are two measures to know about the convergence speed,
one is by using A, value which is expected to be large for a random network and the third smallest
eigenvalue should be far away from A; for faster convergence. Another measure is by using the ratio

in Equation (2) [30].
. IX(t) — X*|| )”f
= hm ——— 2
P e, X (1) X" ( 1X(0) — X @)
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where, X* represents as the final equilibrium state. Reference [20] mentions the worst-convergence
speed for an undirected connected graph is Equation (3).

XTLX
min 5 =
x£01Tx=0 || X||

®)

Using optimal weight, consensus maximum fastest speed is discussed in [31]. Also, per-step
convergence factor for convergence speed is presented in [32] using stochastic theory. Continuous finite
time consensus with single integral dynamic [33] and double integral kinematic [34] are demonstrated
using a signum function [35]. Recently discrete finite time consensus is investigated in [36].

3.4. Heterogeneous Agents

In comparison to homogeneous agents, where all the agents have the same dynamics, which is not
practical in many real-life applications. So an extensive study has been done recently on heterogeneous
agents group where each agent has different objectives, role, preference and capabilities [37,38].
For example, in the multi-agent system case when there are some agents on the ground and others
are in space, having different dynamics with each other. This motivates a hot research topic for
researchers in multi-agent system. Similarly, it is also not practical that all agents may updates their
states synchronously with each other at the same time, because some agents may not get any update
from any other agent will stay to its previous status as compared to dominant agents who require
to update their state continuously. Thus, in reality, it is more suitable that agent should update their
states regardless of other agents known as an asynchronous effect.

This effect is also investigated using matrix theory [39] and linear matrix inequality [40].
Non-linear multi-agent consensus protocol for heterogeneous agents using fuzzy disturbance
observer [38], distributed He, controller [41], internal model principle [42] and switching topology [43]
are also studied recently.

4. Convergence Constraints due to Practical Limitations

4.1. Computation, Execution, Control and Communication Delays

In practical, there is always some time delay while sharing information among all the agents.
It may affect system stability or the performance of the system by degrading it. The time delay
can be categorized as communication, control, computation and actuation delay. Due to the limited
communication speed, the delay is called “communication delay”, the time required for the sensor to
get information is called “control delay”, the computation time required to generate control input is
called “computation delay” and time required for input to be actuated is called “actuation delay”.

If we consider the time delay for the transmitted and received information states which are called
input delay that contains both the computation and execution delays, then the equation of continuous
time consensus protocol can be modified as shown in (4)

() = iaij<t>(xj<t — 1) —x(t— 7)) @
L

where 7;; is the time delay between agent i and j. If the time delay degrades the system performance
but not leads to instability, then there is a threshold that must be obeyed. Reference [20], shown that for
a graph Laplacian matrix, where for all i and j, 7;; = 7 and the communication topology is connected,
undirected and fixed then average consensus can be achieved if and only if it obeys (5)

s
we 0 om) v
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There is another possibility when only the transmitted information state is affected by the time
delay, which is known as “communication delay” then the equation of continuous time consensus
protocol will be modified as (6)

Xi(t) = iﬂij(t) (x](t—'q]) —xi(t)) (6)
j=

where, the collective dynamic can be expressed as x;(t) = —Lx(t — 7). Fortunately, packet loss can be
treated as a special case of communication delay, where packet loss can be considered as retransmission
of that packet after it is loss in exchanging information. It is mentioned in Reference [44] that input
delay does affect the consensus ability but the communication delay does not. Reference [45], describes
that for all i and j, 7;; = T and the communication topology is switching and directed then consensus
results presented previously is still applicable for an arbitrary time delay.

For a regular or scale-free network, there is more delay as compared to the random or small
world [46], because in the regular network there is a high degree of nodes that is not good for consensus
speed thus leading it to a trade-off between time delay and large maximum degree. For a regular
network with N = 20 and K = 80, A, is small as shown in Figure 5a, in contrast to random network
with N = 20 and K = 80 as shown in Figure 5b.

A
o 22 o TN
e e ¥—7 / AN
iy "\ o Vs X \\.\
.,’, r} k“. e / E\‘ // / \\“-‘K’\
Y NN\ 7 N
@, W
QI*\ A5 =Small R p w.{*‘: "
Ny P T
L\ o |\ b g
NN A7 \D 4, =L »
o /8 WA 2T g
g e *. L”// ./,"—’-‘
e
(a) (b)

Figure 5. Examples of Networks [47]. (a) Regular Network (b) Random Network.

As the second smallest eigenvalue is relatively large for the dense graph as compared to sparse
one and the third smallest eigenvalue should be far away from A, for fastest convergence. The author
in [20], claims that the average consensus can be achieved if for all initial conditions one hop time
delay is within 0 < T < 71/2A,,. The speed of convergence for 3-different networks with 100 nodes is
shown in Figure 6.
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Figure 6. Consensus Algorithm for 3 different networks [47]. (a) Small-world with 300 links and
100 nodes (b) A regular lattice with k = 3 nearest neighbors, 300 links and 100 nodes (c) A regular lattice
with k = 3 nearest neighbors, 300 links and 100 nodes (d) State evolution of part-a (e) State evolution of
part-b (f) State evolution of part-c.

Time delay consensus with complex dynamics are also studied for double-integrator
dynamics [48], general nonlinear dynamics [49] and rigid bodies [50]. Similarly, main tools of stability
analysis for both linear and nonlinear dynamics are addressed through matrix theory [51], Lyapunov
approach [52], contraction principle [53] and frequency domain function [44].

4.2. Quantization & Sample-Data Consensus

Quantization and sample data are significant practical constraints. As states are real values but
only finite bits of information are transmitted at each time step. In reality, to implement the consensus
algorithm the measurements should be digital rather than analog is known as quantization consensus.
The main research on quantization consensus is that maximum state difference should not be lager
enough then the associated system accuracy level which is motivated by digital signal processing.
For a quantize signal Q(s), if s is the analog signal and ¢ is the accuracy parameter or quantization



Electronics 2018, 7, 22 10 of 20

step size then the typical quantizer can be written as Q(s) = g(s, ). Reference [54], indicates that for
an integer set Z the rounding signal to its closest neighbor can be modeled as (7)

[

There are some notable features for consensus with quantization such that in a finite time the
system should converge to an accuracy level, where the convergence time depends on both network
topology and quantization level. Also, the author in [55] claims that convergence rate does not
depend on the coding or decoding, rather that it only depends on system accuracy and for distributed
consensus, the convergence rate depends on the connectivity and synchronizability [56]. It is also the
reality that by any method someone will choose the control parameters the quantization level will
surely increase as the number of agent increases.

As the graph-theoretic method has some limitation for environment and feedback over a delayed
and loss-less line where there are some issues of packet loss and even for a pair of agents are
dominant [19]. So for stabilizing the linear time-invariant system, the minimum channel capacity in
term of bit rate is proposed in [57,58] and with logarithm quantizer, it is shown in [59]. An algorithm
related to quantization consensus which is based on sector bound is proposed in [60]. Similarly to
ensure stabilization using stochastic [61], sample encoded measurement [62] and saturating quantized
measurements [63] are also investigated. For average consensus, the dynamic quantizer and dithered
quantizer can be seen in [64,65].

There are also some limitations in measurements and control because it is almost impractical to
acquire measurement information with no time delay and then take a control action instantaneously.
Thus, in reality, to tackle this issue a hybrid model is proposed where the system plant is continuous
and the control/measurements inputs are addressed as a piecewise constant. By doing so the obvious
advantage is that it requires much less computational power and information exchange as compared
to continuous time consensus. So, the equation for the sample data consensus can be modified as (8)

x;(t) = x;(kT) = i a,-]-(kT) (x](kT) — xi(kT)), ForkT <t< (k+1)T (8)
=1

where T is the sampling period and k is described as a discrete-time index.

The main research concentrates to find different conditions on sampling period. Sample date
consensus with a fix and switching topology using single integrator [66] and double integrator
kinematics [67] are also investigated. Similarly approaches with different conditions for sample data
consensus are address using stochastic matrices [67], Lyapunov function [68], matrix theory [48] and
linear matrix inequality [69].

5. Application of Consensus in Multi-Agent Network

General multi-agent consensus applications that are being extensively pursued in this field,
are briefly mentioned ahead

e  Multi-agent flocking means to achieve some common group objectives by interacting with
each other.

e Swarm is an approach of multi-agent system that takes inspiration from social animals that exhibit
a self-organized behavior. Through local interactions and simple rules, swarm agents focus
flexible, scalable and robust collective behaviors for the coordination of multi-agent system.

The difference in flocking and swarming is that in flocking there is a homogeneous and coherent
directed motion whereas swarming is the condensation into a compact group propagating in a coherent
fashion. Consensus-based different protocols can be seen in Table 2.
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Table 2. Different Coordination Protocols.

11 0f 20

Protocol Source
Consensus 1/2))x;(t) — x;(1)|> = 0 [20,26,70,71]
Flocking 1/2)|x;(t) — x;(t) —d||* = d [5,8,9,72,73]
Swarming 1/2|xj(t) — x;(t) H2 <d [74-77]

5.1. Rendezvous

Each agent should reach a common point at a common time is called “rendezvous” problem,
where time can be dynamic or fixed depending on the application. Rendezvous can be classified as the
cooperative tracking problems that require multi-agent system to reach a pre-specified point [78].

Rendezvous has been mentioned in many literatures in a variety of settings. Basically, there
are two main types which are proposed for rendezvous known as, synchronous and asynchronous
rendezvous problems where in synchronous all agents share the same clock and in asynchronous they
did not [79,80]. In [81] for both synchronized and non-synchronized multi-agent, consensus-based
rendezvous problem is applied to guaranteed a common location. The simple rendezvous algorithm
of three agents achieving a common point is shown in Figure 7.

T— Agent-1 (y-axis)
| =——Agent-2 (y-axis)
Agent-3 (y-axis)

i ——— Agent-1 (x-axis)
—— Agent-2 (x-axis) 70+
Agent-3 (x-axis)

—— . o 50 /x—_
404
W}
20 .
40 50 60 70 ] o0 100 0 10 20 a0 40 50 &0 T0 BO 80 100
(a) (b)
80 T T
o}
B0 (—
sol 2 L
- -5
| *
40 + .|
»
0} *
*
204—% L 1 1 1
20 30 a0 50 60 70 80

(e)

Figure 7. Rendezvous algorithm for 3-agents. (a) x-axis vs time (b) y-axis vs time (c) x-axis vs y-axis.

5.2. Formation Control

As compared to multi-agent consensus where all the agents need to reach a common point, in
formation control a particular geometric shape of all the agents using consensus scheme is required
and it is extensively studied in many literatures. Formation control of multi-agent system can be found
in [19,82], while consensus bases formation can be seen in [47]. Moreover, formation control in term of
sensing capabilities is subdivided as position, displacement and distance-based control.

e In position-based control, agents sense their own position with respect to the global
coordinate system.

e Indisplacement-based control, agents sense the relative position of its neighbor with respect to
the global coordinate system.

e Indistance-based control, agents sense the relative position of its neighbor with respect to own
local coordinate system.

The difference between displacement and distance based control is depicted in Figure 8.
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Figure 8. Formation Control Setup (a) Displacement based formation (b) Distance-based formation.

Distance-based control is a bit complicated because now the system becomes nonlinear.
The important factor in distance-based control is the graph rigidity. According to [83] for n agents,
the minimum number of edges for rigid graph should be 2n — 3. The example of an undirected
framework for rigid can be seen in Figure 9. In Figure 9a the structure is not unique and can easily be
deformed as depicted in dotted line so it is not rigid. By joining node 2 and 3 it becomes locally unique
to lie in the category of the rigid graph as shown in Figure 9b. Finally, joining node 1 and 4 it becomes
globally rigid as it is globally unique as shown in Figure 9c.

(@) (b) (©)

Figure 9. Undirected Frameworks (a) Not Rigid (b) Rigid (c) Globally Rigid

The example of a directed framework for rigid and persistent can be seen in Figure 10.
As Figure 10a can easily be deformed so it is not rigid. Although Figure 10b is rigid but the node 2
independently cannot control the lengths of three edges so it is not persistent. Finally, in Figure 10c,
the responsibility to control the length of edges is well-distributed so it is persistent [84].

| ﬂg | | | |
1 2 1&2 1&2
(@) (b) (©

Figure 10. Directed Frameworks (a) Not Rigid (b) Not Persistent (c) Persistent

The distinction between position, displacement and distance-based formation control in term
of sensed variables, controlled variables, coordinate system and interaction topology is presented in
Table 3.

Table 3. Distinctions among position, displacement and distance-based formation control [85].

Position-Based Displacement-Based Distance-Based
Sensed Variables Positions of agents Relative positions of neighbors  Relative positions of neighbors
Controller Variables Positions of agents Relative positions of neighbors  Inter-agent distance
Coordinate System A global coordinate system  Orientation aligned local Local Coordinate systems

coordinate systems

Interaction Topology Usually not required Connectedness or existence of ~ Rigidity or persistence
spanning tree
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To form a formation control, first the system has to execute the rendezvous control strategy until it
achieves a complete graph then it will change the desired formation control using only local interaction
as shown in Figure 11, where from (a—c) rendezvous is achieved and from (d—f) formation control

\---—_ :u
. [ f

is formed.

(d) (e) ()

Figure 11. Rendezvous to Formation Control [19]. (a—c) Achieving rendezvous (d—f) Adjusting to
desired formation.

6. Discussion

Based on the presented literature review, the authors conclude this article on the multi-agent
cooperative control consensus as well as highlight potential research challenges in this field.

6.1. Consensus

A lot of work has been done regarding continuous and discrete time consensus. For a directed
topology, consensus can be achieved when the topology is strongly connected but to achieve average
consensus topology should be strongly connected and balanced. Whereas for undirected graph, the
agreement can be achieved only if the graph is connected [20]. For this control, most researchers focus
on the homogenous agent using simple dynamic. For effective control of multi-agent system, further
research is essential to harness the nonlinear dynamics of these dynamical systems. Future directions
and some open problems that can be pursued in this area are as follows.

e  Existing control strategies for multi-agent consensus and formation focus on simple system
dynamics using basic connectivity assumption and Laplacian matrix, so higher order dynamics
or nonlinear dynamics is still needed to be investigated.

e  Using heterogeneous agents, more work is required in the field of consensus for more complicated
nonlinear dynamic so that each agent can choose the best responses based on its own objectives.

6.2. Formation

As in formation control, a particular geometric shape of all the agents is required based on some
consensus scheme.

In ideal condition for position-based control there is no interaction among all the agents to form
a formation but practically there is some issue like time delay, actuator saturation and disturbances
causing inter-agent interaction. This control is a practical solution for formation but the disadvantage
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is the requirement of very high sensing equipment like GPS, thus owing to this requirement they are
very costly. The author in [86] proposed a position-based control law for double integrator while for a
non-holonomic agent similar idea is presented in [87]. Using relative position feedback variable size
formation is addressed in [88], where desired scaling size information is known to only a few agents
whereas shape information is known to all the agents.

In displacement-based control, for the undirected graph the only requirement is that the graph
should be connected and for the undirected one, the requirement is that the topology should be
spanning tree. The consensus dynamic for an undirected graph is discussed in [20] and the extension
of this for directed one is discussed in [23]. Reference [89] described the intermittent interaction for
general linear agents. Under displacement-based problem, a significant topic that has been studied in
the recent years is the formation scaling issue which is discussed in [88,90]. The reason for this scaling
is the adjustment of all the agents depending on the situation.

In distance-based control, depending on the desired value among the agents the formation is
formed by the inter-agent interaction. Thus, more interaction is required among the agents but the
advantage is in term of less sensing capabilities because less global information is needed. The author
in [91] argued that by reaching the consensus on the center position of the formation can lead to agent
formation. The paper also discusses different communication topologies to improve the performance
of formation and stability margins. Formation Control in term of sensing capabilities is categorized in
Table 4.

Table 4. Formation Control with respect to Sensing Capabilities.

Sensing Capabilities

Formation Control Strengths Bottlenecks References
Position-based . Efasy to 1mplem.ent Costly l?ecausg GPS [86-88]
o Simple mechanism system is required
Displacement-based o Spanning tree required for directed network Orientation aligned [20,89,90,92]

o Connectedness required for undirected network  local coordinate system

o Less sensing capabilities required Complicated because

Di - ; . . - -
istance-based o Less global information required system is non-linear

[93,94]

Formation control in term of time-varying can be categories as formation producing and
formation tracking.

In formation producing the control objective is to form a pre-specified pattern without a group
reference. Ref. [95], in order to offset the control input by some angle a coupling matrix C with
compatible size is introduced in the consensus equation. Thus, the modified equation can be described
in (9)

(1) = Ly (1C (5 (0) (1) ©
L

In linear closed loop system, the formation production has two significant aspects in the fixed
network topology. The first aspect is that at least one eigenvalue should be zero and other is the
presence of at least one imaginary eigenvalues pair.

In formation tracking the control objective is to form a pre-specified pattern with a particular
group reference making it more complex as compared to formation producing. In such control,
the main task is to design an algorithm for distributed control in order to derive multi-agent system to
follow some pre-specified state so that by keeping the geometric formation agents also track the group
reference. Formation Control in term of time-varying is categories in Table 5.

In real life, there are many applications where the network topology is directed but this literature
review reveals that mostly the researchers discuss the undirected network for formation rather than
directed one. Also, the stability analysis is stick to only three agents. Future directions and some open
problems that can be pursued in this area are as follows.
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e  Global stability properties for general rigid and persistent formation are yet to be investigated
(Only triangle formation is done so far).

e  For formation producing the network topology is assumed to be undirected which is not applicable
to many practical applications.

e  More research efforts on distance-based formation with moving leader is needed.

Table 5. Formation Control with respect to Time-varying.

Time-Varying

Formation Control Control Objective Methodologies References

Matrix theory, Lyapunov, Graph rigidity, Receding

Format¥0n Pr.e specified pattern horizon approach, Leaderless flocking, Inverse [96-99]
Producing without a group reference . . .
agreement problem, Circulation formation
Formation Pre-specified pattern witha ~ Matrix theory, Lyapunov, Gradient-based function,
. . . [100-103]
Tracking particular group reference Variable structural based law

6.3. Obstacle Avoidance

As revealed by reviewed studies, the obstacle avoidance phenomena in multi-agent system have
been extensively analyzed. But, in multi-agent system obstacle avoidance mostly the researchers focus
on the point or circular obstacles which are not practical in real life. Certainly, there is an imperative
need for improvised mathematical methods so that dynamical systems can be studied analytically in
place of computer simulations and numerical analysis. The dynamic of agents to achieve all the three
tasks; achieve target using consensus, formation formed and avoid obstacles is shown in (10), whereas
the simulation can be seen in Figure 12.

X = Fform + Fgoal + Fobstacle (10)

(€) (d)

Figure 12. Simulation for multi-agent system [19]. (a-d) Step wise formation while avoiding obstacles.

There is a dearth of literature on complex obstacles in this area. Future directions and some open
problems that can be pursued in this area are as follows.

e  Multi-agent consensus for complex obstacles is still to be investigated, where the task connectivity
preservation and collision avoidance issues are important.
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7. Conclusions

From this review article, it can be appreciated that research on the multi-agent formation has
progressed through a number of stages. During the first stage, the consensus techniques for directed
and undirected dynamics in multi-agent system were uncovered. It was followed by formation
algorithms. This endeavor has entered the last phase, where researchers are applying cooperative
control techniques to resolve practical problems for unseen obstacles.

This paper describes the current status and future of cooperative control consensus in multi-agent
system. The main focus of this work was to give a brief overview of cooperative control consensus,
which has significant importance in multi-agent system. Summary of theoretical result including
dynamically changing and time-invariant communication topologies, convergence speed in finite time
and heterogeneous agents are presented. Furthermore, the convergence constraint due to practical
limitations and general application are also discussed. To promote more research in this filed, useful
future recommendation with some open problems are also proposed.

Conflicts of Interest: The authors declare no conflict of interest.
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