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Abstract: Indoor emitter localization is a topic of continued interest for improving wireless security
as wireless technologies continue to become more advanced. Conventional methods have focused
on the localization of devices relative to multi-sensor systems owing to ease of implementation
with pre-existing infrastructures. This work, however, focuses on enhancing wireless security via
non-cooperative emitter localization in scenarios where only a single receiver can be employed.
A vector sensor is simulated and experimentally developed that extracts three-dimensional signal
characteristics for room-based emitter localization and is compared to conventional methodologies
such as Received Signal Strength (RSS), Time of Arrival (ToA), and Direction of Arrival (DoA).
The proposed method generates time-frequency fingerprints and extracts features through
dimensionality reduction. A second stage extracts spatial parameters consisting of Channel State
Information (CSI) and DoAs that are analyzed using a Gaussian Mixture Model (GMM) to segregate
fine-grained regions of interest within each room where the non-cooperative emitter resides. Blind
channel equalization cascaded with a least squares channel estimate is used for acquiring the CSI,
whereas the DoAs are obtained by unique trigonometric properties of the vector sensing antenna.
The results demonstrate that a vector sensor can improve non-cooperative emitter localization and
enhance wireless security in indoor environments.

Keywords: blind channel equalization; channel estimation; direction of arrival; emitter localization;
indoor environment; machine learning; signal processing; vector sensing; wireless communications

1. Introduction

Although the Global Positioning System (GPS) is extraordinarily effective in outdoor applications,
GPS is less effective when used as an Indoor Positioning System (IPS) since it encounters
Non-Line-of-Sight (NLoS) signal propagation. IPS approaches have been addressed from a variety
of perspectives pertaining to commercial and military applications. The two methods used in user
localization are primarily based on device-based or device-free system designs. For intrusion detection
from an electronic security perspective, we propose a system based on a vector sensing antenna
using device-based emissions. The main systems evaluated in commercial device-based IPS systems
have revolved around Wi-Fi networks and Received Signal Strength (RSS) estimation owing to ease
of implementation in pre-existing infrastructures [1–9]. The techniques provide strong evidence
confirming the feasibility of localization; however, the methodologies require multiple access points
and cooperative communication with the Device Under Test (DUT) since the devices can readily
connect to the wireless network. Most importantly, the analytics never consider potential polarization
transitions of the linearly polarized devices and the transitions’ impact on device localization
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performance. Other techniques utilize Channel State Information (CSI) adding both amplitude and
phase attributes; however, such systems only consider cooperative devices that connect to Commercial
Off-The-Shelf systems (COTS) [10–12].

The implementation of COTS is more advantageous for cooperative emitter applications in
commercial domains. However, the consideration of COTS is less useful in this work as the study is
more geared towards the analysis of non-cooperative emitters when performing indoor localization
for improved wireless security for domains such as law enforcement and public safety. The extraction
of spatial parameters that capture environmental propagation anomalies such as sensor signal timing,
frequency deviations, and positioning, commonly found using Time Difference of Arrival (TDoA),
Frequency Difference of Arrival (FDoA), and Direction of Arrival (DoA), have shown to be efficient in
law enforcement, emergency services, and public safety applications [13–16]. Such systems, however,
predominantly require multiple receivers to obtain the localization estimates based on the propagation
paths and arrival times at each spatially separated sensor. Limited investigations have explored
non-cooperative emitter localization with single receiver systems by extracting ToA information from
a mobile receiver along with time deviations embedded within multipath channels [17–20]. However,
these studies have not been experimentally validated.

Therefore, our proposed approach considers the novelties associated with the aforementioned,
state-of-the-art, research studies in indoor environments where only a single receiver is employed
for investigating non-cooperative cellular emissions using the three-dimensional (3D) received signal
acquisitions via a vector sensing antenna. Vector sensing antennas are predominantly used for
polarization tracking via adaptive filtering, direction of arrival estimation, interference rejection, and
unknown source separation [21–24]. The antenna has proven adequacy primarily in direction finding
for military applications; however, its purpose in this work is to extract 3D spatial characteristics
embedded in a received waveform and be resilient to potential polarization transitions while
optimizing room localization performance of a machine learning model. The analytical waveform
evaluated in the simulations is the Universal for Mobile Telecommunications System (UMTS) in which
a method is proposed based on time-frequency representations, similar to [25,26]. In addition, other
solutions via machine learning, vector sensing, and the Wavelet Transform (WT) are investigated in
conjunction with the proposed vector sensor. Localization performance is first evaluated by exploring
room-based localization (i.e., detecting the room in which the non-cooperative emitter resides) from
a Weighted K-Nearest-Neighbor (WKNN) classifier that analyzes time-frequency features of the
proposed approach, compared to conventional features extracted from signals received by a dipole
antenna such as RSS, ToA, DoA, and their combinations from a simulation standpoint.

After ensuring that the employment of the vector sensor and time-frequency features is more
robust than RSS, ToA, and DoA from a synthesized perspective, an experimental configuration is
implemented that extends and validates the proposed approach from a UMTS emission to other
non-cooperative waveforms such as Global System for Mobile Communication (GSM). The final
analysis of this work explores fine-grained location estimation through cascaded room-localization
with a Region of Interest (RoI) generated by a Gaussian Mixture Model that clusters CSI and DoAs in a
probabilistic manner. The procedure acquires the CSI by performing blind channel equalization and
system identification through a developed algorithm comprised of the Modified Constant Modulus
Algorithm (MCMA) and a least squares channel estimate. The results demonstrated in this work will
reveal that adding polarization diversity at the receiver via vector sensing methodologies can allow for
simplistic machine learning algorithms such as the WKNN to perform indoor localization to a high
degree of accuracy. The proposed procedure invokes the capability of extracting and exploiting unique
information embedded within a received signal without needing multiple receivers or access points to
be scattered throughout the building. The novelty of this work lies in the first implementation of the
three-element vector sensor for use with machine learning algorithms and a proposed fingerprinting
approach when localizing a non-cooperative device in an indoor environment with a single receiver.
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2. Vector Sensing with a Triad Dipole Vector Sensor

Conventional methods that evaluate non-cooperative emissions from stationary devices in
stationary indoor environments utilize uni-dimensional (i.e., single element) dipole antennas in the
form of omni-directional radiation patterns. The resultant received signal is of the form

yρ(t) =
P−1

∑
i=0

hi Aρiej(ω(t−τi)+θi) + nρi(t), (1)

where Aρ is the amplitude of the signal as a function of the antenna polarization ρ, hi is the
static time-invariant complex wireless channel impulse response for the i-th channel, ω is the
modulating angular frequency, P is the number of received signals impinging on the receiver, τi
denotes propagation delay for the i-th channel, θ describes the phase, and nρ(t) is system-contributed
complex Additive White Gaussian Noise (AWGN) of zero-mean and variance σ2

n . One limitation to the
received signal model in (1) is its non-consideration of potential polarization changes caused by the
device or the environment which can effectively degrade indoor localization performance. A second
limitation to the azimuthal omni-directional antenna model is its inability to extract propagation
information from the non-cooperative emission from a 3D perspective [27].

The realization that the wireless channel, h, is a space-time function of Cartesian coordinates
(x, y, z) corresponding to the non-cooperative emitter’s position [28], indicates that the traditional
received signal model cannot heuristically obtain such information regarding the wireless channel
characteristics. Analogous to the space-time wireless channel, changes in polarization yield varying 3D
characteristics of the electric field associated with the amplitude of the received signal, A, which also
cannot be obtained heuristically with a standard receiver configuration.

To overcome the above drawbacks, a more sophisticated receiver can be built with emphasis on
fundamental electromagnetic theory which obtains all properties of the 3D electric field signal, A.
For such a receiver, the received signal, y, can be expressed in the form y(t; x, y, z) = [yx(t), yy(t), yz(t)]T,
where yx, yy, and yz are the signal components along the three coordinate axes. Vector sensing has
proven adequacy in obtaining such a relation using three orthogonally co-located dipoles known
as the Triad Dipole Vector Sensor (TDVS) [21–24]. Most commonly, the TDVS is employed for DoA
estimation, however, it is only proposed here for acquisition of three perspectives of the received signal
along the x-, y-, and z-axis of the receiver. The received non-cooperative signal on the vector sensor is
modeled as

y(t; x, y, z) =
P−1

∑
i=0

hi Aej(ω(t−τi)) + ni(t), (2)

where
A =

{
A(i)

x ejθ(i)x , A(i)
y ejθ(i)y , A(i)

z ejθ(i)z
}

, (3)

with hi = [hx, hyi, hzi]
T in (2) denoting the i-th complex wireless channel impulse responses

accompanied by 3D amplitude A described in (3), and ni(t) = [nxi(t), nyi(t), nzi(t)]T described the 3D
AWGN present on each dipole antenna of the TDVS. The received signal model allows for the entire
electric field to be obtained in vector form regardless of multipath, scattering, and polarization changes
from varying non-cooperative emitters found in the indoor environment. A synthetic version of the
TDVS model is constructed in an electromagnetic solver, FEKO R©, and is depicted in Figure 1.

The design and intuition of the TDVS is four-fold when being employed for use in indoor
localization systems. First, the TDVS model is polarization diverse such that it can acquire unique
polarization transitions induced by a change in transmitter orientation (i.e., if the antenna is linearly
polarized) or even polarization degradations invoked by the wireless channel. The model can obtain
DoA estimates based solely on received signal amplitude on each orthogonal axis of the TDVS
receiver [21–24]. The receiver can obtain the entire realization of the 3D electric field. Lastly, the TDVS
offers the capability of rejecting interfering sources based on the diverse polarization characteristics
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embodied in the structure of the antenna [23], which is imperative when performing non-cooperative
indoor emitter localization.

Figure 1. FEKO R© model of the Triad Dipole Vector Sensor (TDVS) with three-orthogonally co-located
half-wave dipole elements and three copper baluns oriented 45◦ away from the radiating elements to
minimize coupling effects.

3. Simulated Room Localization of Non-Cooperative Emitters

The development of a single receiver system was performed in Wireless InSite R©. The ray-tracing
simulation was used to explore different methods of localization commonly found in Indoor Positioning
System (IPS) literature and to guide the development of a new method of non-cooperative device
localization for a single receiver system. The simulation serves as a method of obtaining a fundamental
realization of signal propagation in an ideal scenario that encompasses parameters of the real-world
setting. The purpose of the simulation is to promote the utilization of the TDVS for indoor localization
and compare the simulated performance of the TDVS results with an experimental verification. Specific
features such as ToA and DoA are only considered in the simulation to further provide evidence of the
superior performance of the TDVS, however, they are not further evaluated with experimentation as
they are considered to be the ground truth in the simulation.

3.1. Indoor Environment

The indoor environment generated in Wireless InSite R© was modeled to resemble the office
environment in which experimentation was performed (see Figure 2). The building was modeled as
23 m in length, 9 m in width, and 3 m in height with the walls made of brick material, the ceiling made
of ceiling board, the floor modeled as concrete, the closed doors modeled as metal, and the windows
modeled as glass. A total of eight rooms were created as 552 potential transmitter locations were
evaluated inside the simulated indoor environment with a spacing of 0.5 m at a constant height of
1.8 m. The specific height is used for realization of a device located in an area above the waist similar to
the work performed in [4]. It can be inferred that changing the height of the transmitter would invoke
different wireless channel effects and in turn yield a potential change in room localization performance;
however, we do not believe that the changes in the room localization performance would be substantial
in areas above a standing person’s waist. This conclusion is based on [29] which experimentally
revealed that transmitters located near the surface would experience the highest fades in received
signal strength at a receiver and increased separation between the surface and the transmitter improves
fading effects. Therefore, as a preliminary study with the proposed vector sensor, only emitters located
above a person’s waist are considered in this work.

The transmitters were modeled as UMTS emitters and evaluated one at a time for both
horizontal and vertical polarizations to analyze the robustness of conventional features used in
localization to features acquired from the TDVS. The total number of data samples on a per-room
basis (i.e., the number of transmitter locations per-room) are as follows: 72 locations in the Hardware
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area, 36 locations in the Storage area, 234 locations in the Hallway, 36 locations in Office #4, 96 in
Office #3, 12 locations in the Corridor area, 36 in Office #2, and 30 in Office #1. The extraction of RSS,
ToA, and DoA was performed on signals received by a dipole antenna (i.e., omni-directional in the
azimuth plane) of vertical polarization mounted to the ceiling in the Hallway, whereas the proposed
approach implemented the TDVS antenna in the exact same location.

(a)

(b)

Figure 2. Simulated indoor environment and demonstration of different signal paths emitted from
a non-cooperative Universal for Mobile Telecommunications System (UMTS) emitter in Office #1.
(a) Plan View, (b) Perspective View.

3.2. Room Localization

Since RSS, ToA, and DoA are features that are extracted from signals received by the traditional
dipole antenna and do not require further post-processing, a machine learning model can be
directly applied. The proposed approach of obtaining the 3D signal vector y(t; x, y, z) from an
emitter at each location, however, requires further processing for fingerprint generation and feature
extraction. The proposed procedure is a two-fold approach comprised of fingerprint generation through
time-frequency/scale signal analysis followed by feature extraction through dimensionality reduction.

3.2.1. Fingerprint Generation

Radio Frequency (RF) fingerprints are unique and identifiable signatures that are extracted
from RF signals and used in exploiting non-cooperative devices in the localization procedure.
The proposed procedure encompasses time-frequency/scale signal analysis comprised of the short-time
Fourier transform (STFT) and the wavelet transform (WT). The motivation behind employing the
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STFT and WT for fingerprint generation is based on the realization that the transformations allow
for the decomposition of a non-cooperative signal to be evaluated in both time-frequency and
time-scale surfaces. As the non-cooperative emission propagates through the indoor wireless channel,
instantaneous transients, frequency selective artifacts induced by multipath, and wireless channel
characteristics become entangled in the received signal which can be resolved via time-frequency
signal decomposition. Applying such a decomposition to a signal for analysis in time-frequency/scale
allows for machine learning algorithms to exploit such characteristics (as will be revealed in the next
section) when performing feature extraction.

The discrete STFT is employed on all three signals. As an example, the discrete STFT as a function
of the z-axis signal is computed as

STFT{yz[n]}(m, l) = ∑
n

yz[n]g∗[n−m]e−j 2π
N ln, (4)

where (·)∗ denotes the complex conjugate, g denotes a Hamming window of fixed length, N denotes
the transform length, yz[n] is equivalent to yz[nTs] as Ts is the sampling interval, m describes the time
index, and l describes the frequency index. As can be inferred from (4), the STFT is limited by the
selection of the window due to the requirement of having a windowing function of fixed length. Such
a subtle conclusion provides the motivation for using a transformation that employs a varying window
as abrupt changes found in the STFT analysis could be potentially missed due to the fixed windowing
and trade-off between time-frequency resolution. Thus, the windowed Wavelet Transform (WT) allows
for such transients to be obtained through a discretized time-scale decomposition via approximation
of the continuous wavelet transform, mathematically described as

WT{yz[n]}(m, s) =
Ts√

s ∑
n

yz[n]ψ∗
[n−m

s

]
. (5)

where ψ is a mother wavelet that measures the variation of yz[n] around the delay, m, and is
proportional to scale, s, which has important applications in transient detection in modulating
signals [30,31]. A matrix of complex coefficients corresponding to the z-axis received signal is then
constructed for the STFT in (4) or the WT in (5) as

S̃z =



S̃(0)
z(0) S̃(0)

z(1) S̃(0)
z(2) · · · S̃(0)

z(B−1)

S̃(1)
z(0) S̃(1)

z(1) S̃(1)
z(2) · · · S̃(1)

z(B−1)

S̃(2)
z(0) S̃(2)

z(1) S̃(2)
z(2) · · · S̃(2)

z(B−1)
...

...
...

. . .
...

S̃(M−1)
z(0) S̃(M−1)

z(1) S̃(M−1)
z(2) · · · S̃(M−1)

z(B−1)


, (6)

where B is the number of frequency bins or scales extracted from the bandwidth of the transmitted
UMTS signal and M is the number of time instances, respectively. It is worth further emphasizing that
we only extract spectral information from the frequency spectra centered around the carrier of the
received signals up to the bandwidth of the emission. The information extracted by the STFT or WT is
solely from the propagation of the waveform through the wireless channel. An RF fingerprint is then
constructed by horizontally concatenating the matrix in (6) with the x- and y-axis fingerprints of the
TDVS such that the fingerprint contains 3D spectral information of the non-cooperative emission as a
function of time, defined mathematically as
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Xloc
c =



S(0)
x(0) S(0)

y(0) S(0)
z(0) · · · S(0)

z(B−1)

S(1)
x(0) S(1)

y(0) S(1)
z(0) · · · S(1)

z(B−1)

S(2)
x(0) S(2)

y(0) S(2)
z(0) · · · S(2)

z(B−1)
...

...
...

. . .
...

S(M−1)
x(0) S(M−1)

y(0) S(M−1)
z(0) · · · S(M−1)

z(B−1)


, (7)

is the resulting fingerprint matrix Xl
c of size (M×D) as D is three times the size of B, c is the class label

(i.e., the room where the emitter resides), S(0)
x(0) is the magnitude of S̃(0)

x(0), and loc denotes the finite
location where the non-cooperative emitter resides within room c. The procedure in (7) is repeated per
location inside the indoor environment generating a database of 552 fingerprints which is found by
stacking fingerprints in a column, i.e.,

X =


X1

1
X1

2
...

X30
8

 , (8)

where X1
1 is the fingerprint of the first transmitter located in the Hardware Area and X30

8 is the 30th
transmitter location in the fingerprint database located in Office #1. The fingerprints in (8) are then
converted from matrices to vectors realizing 552 independent observations. This formulation allows for
a database of time-frequency and time-scale representations to be generated and stored for localization
purposes in indoor environments based on received non-cooperative UMTS emissions.

3.2.2. Feature Extraction

After formulating the database of unique RF fingerprints for the x-, y-, and z-axis received
signal y(t; x, y, z), unique signatures can be extracted that vary per location of the non-cooperative
emitter. The proposed approach of utilizing the time-frequency representations has been attempted
by [25] and [26] for localization of signals obtained from omni-directional dipole antennas; however,
the redundancy in frequency content can degrade localization performance, and therefore, utilization of
dimensionality reduction based on the vector sensor receiver is a more effective approach to capture the
3D wireless channel characteristics embedded in the received non-cooperative signal. The procedure
of extracting unique signatures begins by performing two linear transformations on X in the form

y = WTxn, (9)

where W is a matrix of orthonormal weights and xn is a row vector from the fingerprint database
X. The first linear transformation used in (9) is Principal Component Analysis (PCA) which aims to
orthogonally project the data onto a linear subspace (i.e., principal space) and maximize the projections
with respect to the variance in an unsupervised manner [32]. PCA has proven to be extremely useful
in image classification [33]. The PCA weights, or eigenvectors, are computed as a maximization of the
total covariance matrix of X expressed as

WPCA = arg max
W

|WTSTW|, (10)

with ST denoting the total covariance defined as

ST =
1
N

N

∑
n=1

(xn − µ)(xn − µ)T, (11)
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where µ denotes the mean of X and N the number of samples in the fingerprinted database.
After computing all of the principal components in (10) based on the total covariance in (11), the second
linear transformation is performed as a mechanism to extract features that maximize class separation
in a supervised manner. This method used is Linear Discriminant Analysis (LDA) where the weights
are found based on Fisher’s criterion expressed as

WLDA = arg max
W

∣∣∣∣ WTSBW
WTSWW

∣∣∣∣, (12)

where SB and SW represent the within-class and between-class covariance matrices, defined as

SB =
C

∑
c=1

Nc(µc − µ)(µc − µ)T, (13a)

SW =
C

∑
c=1

∑
n∈c

(xn − µc)(xn − µc)
T, (13b)

where c is the class label and µc is the class mean [34]. The projection in (9) based on the weights
computed in (12) results in a dimension reduction from the D dimensional fingerprint space to a (c− 1)
dimensional subspace. The resulting linear transformations from PCA and LDA are then combined to
form a feature space representing RF signatures for training a classifier that maximize the total variance
of the fingerprints and maximize the ratio of the between-class (13a) and within-class separation (13b),
modeled as

X̃ = [WT
PCAX, WT

LDAX]. (14)

3.2.3. Classification

The method used for classification is a Weighted K-Nearest-Neighbor (WKNN) which searches
the fingerprint database, X̃ in (14), for the closest neighbors to a test sample and assigns the class
label based on the distance measurement computed in the feature space. The WKNN is used in this
work to perform indoor localization via simplistic/lazy machine learning to evaluate the richness
of information extracted by the proposed approach compared to traditional methodologies that use
dipole receivers. The classifier can evaluate the richness of information extracted from traditional
features such as DoA, RSS, and ToA relative to the simplistic yet effective classifier model, as well
as, to demonstrate the superior performance of the WKNN when trained on features extracted via
the proposed STFT/WT fingerprinting approach. Depending on the features being evaluated (i.e.,
RSS, ToA, DoA or the proposed PCA and LDA), the classifier is trained on the features and a model is
constructed as

ŷWKNN(fm) =
∑K

k=1 wkD(k)NN(x̃n, fm)

∑K
k=1 wk

, (15)

with the weights, wk, defined as the squared inverse of the distance, i.e.,

wk =
1

DNN(x̃n, fm)2 , (16)

where K in (15) describes the number of neighbors, and ŷWKNN is the room estimate based on DNN in
(16) which describes a Nearest-Neighbor (NN) Euclidean distance expressed as

DNN(x̃n, fm) = arg min

√√√√ M

∑
m=1

N

∑
n=1

∣∣x̃n − fm
∣∣2, (17)

with x̃n in (17) denoting the nth row of the training feature space, X̃ in (14), and fm denoting the mth
row of the testing feature space, respectively.
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3.3. Room Localization Discussion

We started the analysis by extracting the commonly used features such as DoA, RSS, and ToA
from the signals received by a traditional dipole antenna, as well as the features extracted from signals
received by the TDVS. A summary of the parameters used in extracting information from the simulated
ray-tracing software is presented in Table 1. The table gives an overview of the aforementioned
parameters prior to revealing the results of the room localization performance of the WKNN. The table
also describes the parameters used in the proposed fingerprinting approach such as the basis functions
(i.e., window and wavelet basis), analytical waveform, sampling frequency, channel complexity
(number of multipath signals), and the number of optimum neighbors used in each WKNN model
(i.e., 5). When evaluating the classifiers, the training percentage is used as a mechanism to demonstrate
the effectiveness of the algorithm when evaluating smaller amounts of data for training to larger
amounts. This evaluation realizes not only the effectiveness of the WKNN at performing room
localization, but also the richness of information extracted by the features used in localization. Training
percentage is analytically defined as the percentage of the overall data used in training the classifier
model (i.e., 80% training indicates that we hold out 20% of the data for testing the classifier and perform
five-fold cross-validation uniformly over all combinations of the data for training).

Table 1. Parameters Defined in the Wireless InSite R© Simulation.

Parameters Conventional Proposed

Reflections 5 5
Diffractions 1 1

Propagation Paths 25 25
Signal Type UMTS UMTS

Carrier Frequency ( fc) 831.86 MHz 831.86 MHz
Bandwidth (BW) 4.68 MHz 4.68 MHz

Sampling Frequency ( fs) 20 fc 20 fc
Filter Roll-Off 0.22 0.22

Transmitter Polarization Vertical & Horizontal Vertical & Horizontal
Receiver Polarization Vertical Vertical

Antenna Dipole 3-Element Vector Sensor
Output Features RSS, ToA, DoA 3D Received Signal, y(t; x, y, z)

WKNN Neighbors 5 5
STFT Window - Hamming
WT Wavelet - Morlet

Principal Components - 5 (85% Total Variance)
Linear Discriminants - 7 (c− 1)

Each training set is uniformly sampled from the dataset, X, where the remaining unseen (i.e.,
not used for training) samples are used as the testing samples. After performing the cross-validation,
the room localization results are averaged with respect to the number of folds used in the
cross-validation. Room localization results according to the specific training percentage were then
obtained using a Monte Carlo simulation with respect to the various training and testing data splits and
averaged once again over 100 trials per training percentage. Each Monte Carlo trial randomly permutes
X and redefines the training and testing sets on every iteration. A description of the way training
percentage is defined from a pseudo-code perspective and uniform sampling for cross-validation is
shown in Algorithm 1 with reference to the Monte Carlo simulation. It is evident that we only consider
training and testing samples that provide uniform sampling intervals in constructing cross-validation
(CV) sets such that training on 20% of the data and 80% of the data both perform 5-fold CV.
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Algorithm 1 Training Percentage and Cross-Validation without Monte Carlo Trials

1: for i = 1 to 2 do
2:
3: for c = 2 to 10 do
4:
5: if i = 1 then . Perform C-fold cross-validation
6:
7: Xtrain = X(nc, :) . Training % = 1

c ∗ 100
8:
9: Xtest = X(n 6= nc, :)

10:
11: ŷWKNN(Xtrain, Xtest)
12:
13: else . Perform C-fold cross-validation
14:
15: Xtest = X(nc, :)
16:
17: Xtrain = X(n 6= nc, :) . Training % = c−1

c ∗ 100
18:
19: ŷWKNN(Xtrain, Xtest)
20:
21: end if
22:
23: end for
24:
25: end for

3.4. Room Localization Results

The room localization results of the WKNN are displayed in Figure 3 as a function of the
training percentage for both vertically and horizontally polarized non-cooperative UMTS emitters.
The results demonstrate the robustness of the proposed approach of constructing time-frequency/scale
fingerprints as the approach for a vertically polarized transmitter and using 80% of the data for
training yields 86% room classification performance for STFT fingerprints and nearly 100% for WT
fingerprints. The proposed procedure obtains approximately 10–20% room localization improvement
over the second best method (i.e., the combination of DoA and ToA) which achieves 76% room
localization performance when only using 80% of the data for training. It is clear that RSS and ToA
are less informative when used individually for the WKNN as accuracies reach room localization
performances of 43% and 50%, respectively, when 80% of the entire dataset is trained.

(a) (b)

Figure 3. Room localization performance as a function of increased Weighted K-Nearest-Neighbor
(WKNN) training percentages for both vertically and horizontally polarized UMTS non-cooperative
emissions. (a) Vertical UMTS Transmitter, (b) Horizontal UMTS Transmitter
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The second analysis takes into account the consideration of a potential polarization transition at
the non-cooperative transmitter with respect to room localization performance. The results for the
change in polarization from vertical to horizontal show that RSS provides a localization performance
of 38% when using 80% of the data for training, resulting in a degradation of 5% compared to the
vertically polarized scenario. It is also observed that the proposed method achieves 84% and nearly
perfect accuracy for STFT and WT fingerprints, causing a less significant loss of 2% in room localization
performance when training on 80% of the dataset and testing on the remaining 20%. The realization
that RSS and ToA achieve the lowest performance can be understood as the receiver is placed in the
middle of the indoor environment, as such, distance contributions towards ToA and RSS are similar
when moving leftward and rightward of the receiver. Thus, room localization degrades due to this
distance impact on computing RSS and ToA with a single receiver system.

It will be shown in the upcoming section that RSS can be further improved with the TDVS based
on this realization and the incorporation of polarization diversity. As the TDVS can obtain directional
changes regarding polarization and RSS characteristics of an impinging waveform, similar tendencies
embedded within the primary polarization component (i.e., vertical or horizontal) can be further
characterized with the incorporation of the two additional polarization perspectives available in the
TDVS design.

4. Experimental Room Localization of Non-Cooperative Emitters

Although the aforementioned simulation leveraged sophisticated electromagnetic ray-tracing
software in analyzing conventional approaches in localizing non-cooperative UMTS emitters,
an experimental validation experiment was performed. The experimental verification began by
constructing the TDVS and receiver system (see Figure 4) based on the synthetic model used in
Wireless InSite R©. The TDVS was mounted to the ceiling in the Hallway where 118 transmitter
locations were used as the potential transmitter locations inside the office environment. The locations
were mapped out such that the majority of the area in the rooms was covered; however, the transmitters
were specifically placed in positions where a user would be able to freely walk around. The number of
unique transmitter locations used in each room were as follows: 16 locations in the Hardware area,
10 positions in the Storage room, 26 locations in the Hallway, 13 in Office #4, 21 in Office #3, 8 in the
Corridor, 11 in Office #2, and 13 in Office #1.

The experiment considered both GSM and UMTS non-cooperative emissions generated in
LabVIEW R© for realization of narrowband and wideband non-cooperative emissions. The waveforms
utilized pseudo-random NRZ streams to construct the GSM and UMTS emissions for realization
of a true non-cooperative device. The transmitter height of each GSM/UMTS emission was at
1.8 m, staying consistent with the simulation. The experiment began by orienting the transmitting
dipole of vertical/horizontal polarization in a direction towards the TDVS and propagating a
GSM/UMTS non-cooperative emission. The signals were captured 5 times per location and stored
for post-processing analytics. After capturing the five signal samples of different GSM/UMTS-NRZ
sequences at both vertical and horizontal polarizations, the transmitter is moved to the next location.

Regarding the receiver system, three Low-Noise Amplifiers (LNAs) were used, each cascaded
with a Bandpass Filter (BPF) spanning from 790-890 MHz for optimization of the signal-to-noise
ratio (SNR) on all three channels of the TDVS receiver (i.e., x-, y-, z-axis dipoles). The emissions were
received by the TDVS and sampled at 10 GHz by an oscilloscope. The experiments were performed
between the hours of 8:00 p.m. and 4:00 a.m. to minimize potential opportunities for interference.
The results of the STFT-generated fingerprints from one location inside each room are shown in
Figure 5. Sparse fingerprint representations are found for emitters placed in locations that are in
line-of-sight with the TDVS such as the Hallway and Office #3 as the TDVS adequately achieves
polarization tracking. For instances where the non-cooperative emitter is in regions considered to
be non-line-of-sight with respect to the TDVS, smearing effects are found in the fingerprints due to
increased multipath contributions.



Electronics 2018, 7, 442 12 of 25

(a) (b)

(c) (d)

Figure 4. Experimental configuration. (a) TDVS, (b) Mount/Receiver Setup, (c) LNA-BPF, (d) Transmit/Receive.

Figure 5. STFT-generated fingerprints recorded by the TDVS from one non-cooperative emitter location
inside each room of the indoor environment.
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4.1. Room Localization Discussion

The methods of performing fingerprint generation through STFT and WT followed by feature
extraction via PCA/LDA were performed on the experimental data in an identical manner to that of
the simulation. RSS is also extracted from signals impinging a vertical dipole to compare the proposed
approach with that of one of the most commonly used features used in indoor positioning systems.
DoA and ToA are not extracted in the experimentation due to the underlying principle of requiring high
precision of time synchronization and the necessity of having extreme manifold learning with the dipole
(i.e., the ability to measure all possible DoAs that could be found at the dipole receiver). The simulation
of DoA and ToA was a means of only comparing the features’ room localization performance relative
to the proposed STFT/WT procedure ensuring the superiority of the TDVS approach. It is highly
probable that the proposed method will also outperform the other methods based on the comparison
of RSS experimental measurements evaluated in this section. Room localization performance was
found when performing 5-fold cross-validation (i.e., 80% training and 20% testing splits) with the
WKNN in a 100 trial Monte Carlo simulation as shown in Table 2 (consistent with the procedure
defined in the simulated version of room localization). Since we obtain five measurement samples of
the GSM/UMTS waveforms per location, we proclaim that each waveform obtained from a distinct
location is independent from the other recorded samples (i.e., we randomly generate new GSM/UMTS
emissions on each recording).

4.2. Room Localization Results

The results found in Table 2 correspond to the room localization performance of the WKNN
when trained on STFT, WT, and RSS features extracted from GSM and UMTS emissions of vertical
and horizontal polarizations. Specific room localization performances correspond to the true positive
performance of the WKNN at correctly classifying the room where the non-cooperative device is
residing. The results indicate that the STFT achieves better overall room localization than the WT and
RSS approach for both GSM and UMTS emissions regardless of the polarization. The room localization
performance of the STFT features is optimum for narrowband GSM sources as performance reaches
approximately 99% regardless of transmitter polarization when trained on 80% of the data. For the
UMTS signal, the STFT achieves approximately 94% room localization performance for vertical emitters
and 90% for horizontal emitters, respectively, when using 80% training and 20% testing splits. When
using the WT features, the WKNN room localization performance reaches an overall accuracy of
approximately 82% for both vertical and horizontal polarizations (again when only trained on 80%
of the data). For the UMTS signals, the WT features with the WKNN achieve room localization
performances of approximately 89% and 83% for vertical and horizontal polarizations, respectively.

The comparison between the simulated and experimental room localization performances of
the STFT and WT features differ as the STFT outperforms the WT room localization performance
of the UMTS emissions in the experimental setting. Further analysis of Table 2 gave insight as to
why this phenomenon had occurred. For rooms where the UMTS emitter is in line-of-sight with
the TDVS, such as the Hallway and Office #3, the WT outperforms STFT by approximately 2%.
In all other circumstances, the emitter is located in cluttered rooms warranting non-line-of-sight signal
propagation where it is apparent that the WT realizes a marginal drop in room localization performance.
This specific realization grants the understanding that the inclusion of clutter such as furniture
(not considered in the simulations) severely degraded the WT performance. The furniture, such as
desks and tables, residing in all rooms, were hypothesized to cause confusion for the classifier model as
the varying wavelet basis function obtains the unique environmental characteristics embedded in the
multipath wireless channels at the cost of confusing the WKNN classifier (i.e., cluttered rooms appear
correlated to the classifier leading to increased misclassification). Nonetheless, wideband UMTS
sources allow for the WT to obtain unique frequency selective fading signatures embedded in the
received fingerprints caused by the multipath channels realizing minimally improved performances
when compared to GSM non-cooperative emitters.
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After evaluating the performance of room localization when using STFT/WT fingerprints,
RSS features were extracted from signals received by a vertical dipole antenna and analyzed by
the WKNN in an identical manner to that of the simulation. The results of the WKNN when trained
on 80% of the data realized approximately 20–25% room localization performance for GSM and UMTS
emissions. This evidence demonstrates the superior performance of the TDVS antenna relative to
traditional methodologies that use uni-dimensional antennas and RSS. The concluding evidence in
Table 2 demonstrates that the STFT achieves accurate room localization performances for vertical and
horizontal GSM/UMTS non-cooperative emitters, reaching optimal performance for the narrowband
GSM signals. The fixed windowing basis function of the STFT mitigates the abrupt changes caused by
frequency-selective fading effects and clutter anomalies, thus formulating resilient fingerprints and
information for the WKNN classifier to evaluate.

Table 2. Experimental WKNN Room Localization Performance for UMTS and Global System for Mobile
Communication (GSM) Non-Cooperative Emitters.

Room Localization Performance

Net.: Pol. Approach Hardware Storage Hallway Office #4 Office #3 Corridor Office #2 Office #1 Overall

GSM: V STFT 98.77% 98.75% 99.21% 99.27% 98.80% 98.25% 99.85% 99.83% 99.01%
− WT 74.04% 79.80% 92.51% 77.65% 85.47% 76.01% 83.67% 82.81% 81.49%
− RSS 28.85% 56.05% 47.93% 16.91% 23.08% 21.65% 13.95% 23.63% 25.25%

GSM: H STFT 98.98% 97.45% 98.43% 97.29% 99.30% 99.69% 98.64% 98.90% 98.58%
− WT 70.47% 71.31% 91.81% 79.87% 90.44% 85.62% 81.16% 79.43% 81.26%
− RSS 17.24% 14.50% 39.35% 8.20% 37.23% 16.75% 16.51% 22.82% 21.58%

UMTS: V STFT 94.21% 92.83% 96.60% 92.33% 96.31% 96.74% 94.35% 93.75% 94.64%
− WT 81.92% 74.71% 98.63% 86.67% 97.43% 96.09% 85.90% 86.73% 88.51%
− RSS 31.07% 23.92% 42.97% 14.89% 30.04% 12.70% 19.96% 31.65% 25.90%

UMTS: H STFT 87.48% 88.69% 93.82% 89.88% 90.50% 89.22% 89.39% 91.17% 90.01%
− WT 74.83% 78.81% 95.83% 82.63% 91.75% 79.18% 79.75% 83.97% 83.30%
− RSS 20.07% 18.38% 37.08% 12.05% 29.55% 11.80% 15.82% 21.17% 20.74%

Improving RSS Room Localization Performance via TDVS

The poor performance of uni-dimensional antenna elements further promotes the importance of
adding diversity to an antenna as drastic improvements can be produced in single-receiver localization
systems. This statement was justified by exploring the opportunistic functionality of the TDVS by
extracting 3D RSS defined as the power received along each orthogonal axis of the vector sensor
antenna. Feature vectors are created and evaluated by the WKNN, defined as

RSS3D =
{

RSSx, RSSy, RSSz
}

, (18)

where each RSS vector defined in (18) is extracted from all 590 signals obtained in the experiment. It is
apparent that the only difference between traditional RSS extracted from signals received by a vertical
dipole and the 3D RSS via TDVS antenna is an additional two-dimensional observation of the power
along the x- and y-axis of the TDVS. The room localization performance of the WKNN with respect to
the 3D RSS is demonstrated in Table 3. The results indicate that the additional perspectives of RSS in the
TDVS design grants opportunistic capabilities as it realizes drastic improvements when compared to
traditional RSS with the WKNN as results are propelled to 90% and 78% room localization performance
for vertical and horizontal polarizations when trained on 80% of the data. Similarly, the UMTS analysis
realizes room localization performances of 77% and 67% for vertical and horizontal polarizations,
respectively. The demonstration yields improvements in the GSM localization performance of 64.49%
and 56.03% for vertical and horizontal polarizations, whereas, UMTS is improved by 50.7% and 45.89%.
The additional analysis provides the fundamental limitation of traditional single-receiver systems in
indoor localization and ensures that the additional components of the TDVS can drastically improve
single-receiver localization performance through polarization diversity.
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Table 3. Experimental WKNN Room Localization Performance for 3D RSS.

Room Localization Performance

Net.: Pol. Approach Hardware Storage Hallway Office #4 Office #3 Corridor Office #2 Office #1 Overall

GSM: V RSS3D 82.41% 89.74% 89.34% 90.46% 94.72% 95.77% 84.89% 90.58% 89.74%
GSM: H − 66.70% 85.86% 84.78% 69.51% 80.19% 65.53% 89.02% 78.28% 77.61%

UMTS: V − 80.03% 86.84% 86.32% 70.40% 81.32% 68.70% 67.20% 72.49% 76.67%
UMTS: H − 73.54% 59.30% 82.92% 58.49% 63.70% 68.45% 65.85% 60.65% 66.63%

4.3. Noise Considerations on Room Localization Performance

A secondary analysis was performed to evaluate the robustness of the STFT, WT, and RSS feature
vectors with respect to system conditions and WKNN room localization performance as a function
of degrading SNR. Since the majority of localization systems train on ‘offline’ measurements and
perform ‘online’ localization, the consideration of environmental changes in system noise and their
contributions on training feature vectors is imperative to compare room localization performances and
their stability with respect to increased system noise. Therefore, complex AWGN with zero-mean and
variance, σ2

n , was added to the experimental received testing signals prior to fingerprint generation,
feature extraction, and classification by the trained WKNN. The simulation began by constructing
received signal vectors associated with the dipole elements as

ỹx[n] = yx[n] + nx[n], (19a)

ỹy[n] = yy[n] + ny[n], (19b)

ỹz[n] = yz[n] + nz[n], (19c)

where y[n] in (19a)–(19c) is the ground truth received bandpass waveform obtained in the experiment,
ỹ[n] is the noise corrupted received waveform, and n[n] is an independent and identically distributed
(i.i.d) AWGN source present on each dipole element. The performance of the WKNN classifier model
was evaluated based on the root-mean-square error (RMSE) defined as

RMSE =

√√√√ 1
NMC

NMC

∑
i=1

1
C

C

∑
c=1

(x̂(i)c − x(i)c )2, (20)

where x̂ denotes the room label estimates, x denotes the ground truth, NMC denotes the number of
Monte Carlo iterations (i.e., 100), and C describes the number of cross-validations (i.e., 5). For the case
of the RSS features, the WKNN is trained on the ground truth RSS and tested on the noisy observations.
The impact of noise on the three techniques (see Figure 6) yielded an interesting result on the WKNN
localization performance when trained on 80% of the entire dataset. In the case of wideband UMTS
emissions, the WT was far more robust to noise contributions on the testing data with respect to
the RMSE in (20). This ensures the WT’s capability of acquiring unique multipath characteristics
from the varying Morlet wavelet basis function, whereas, the STFT fingerprints are more severely
impacted by the decreased SNR. For the narrowband GSM signals, the STFT and WT fingerprints
achieved comparable performance degradations with respect to SNR which is presumably due to the
minimized frequency-selective fading effects at the receiver due to the narrower GSM bandwidth. It is
still apparent that RSS is less effective than the proposed features extracted from the signals received
by the TDVS as the STFT/WT outperform RSS across all SNR considerations. Nonetheless, the WT
achieves more robust stability with respect to decreased SNR for the wideband UMTS signals, whereas,
the STFT achieves best performance for the narrowband GSM signals.
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(a) (b)

Figure 6. Misclassification of the WKNN as a function of varying SNR for both GSM and UMTS
non-cooperative emissions. (a) GSM, (b) UMTS.

5. Simulated Region of Interest Localization

The above sections strictly compared the performance of a machine learning classifier model
to detect the room where a non-cooperative emitter resides based on radio frequency fingerprinting
and a designed TDVS receiver. Further work was performed in Wireless Insite R© to determine the
feasibility of obtaining regions of interest (RoIs) where the adversarial device is residing in each room
(i.e., obtain further information regarding the position of the non-cooperative/adversarial device).
The preliminary results for RoI localization in this section assume room classification is first performed
using the WKNN on STFT/WT-generated fingerprints. The room estimate is then cascaded with
a Gaussian Mixture Model (GMM) that forms probabilistic clusters on DoAs and Channel State
Information (CSI) extracted from the trigonometric properties of the TDVS along with a cascaded blind
channel equalization and estimation algorithm. Thus, this section reveals the method of performing
RoI localization of non-cooperative emitters through CSI and DoA obtained from the simulated TDVS
model and evaluated by the designed GMM. In general, RoI localization is evaluated to ensure that
DoA and CSI estimation via blind channel equalization and trigonometric properties of the TDVS can
be effective in obtaining further information about the location where the adversarial device resides
within a room. Traditional systems leverage waveform characteristics on a carrier-basis such as in
OFDM systems to obtain CSI estimates; however, our application requires the blind equalization and
estimation of the CSI such that it can be leveraged to perform RoI localization for various types of
non-cooperative emitters.

5.1. Feature Vectors

The features extracted from the signals received by the vector sensor are CSI and DoAs. Since DoA
is readily available in the ray-tracing Wireless Insite R© simulation, the method proposed for practical
applications is through either the trigonometric characteristics of the vector sensor using methods
proposed in [21,22] or through experimental measurements of the various DoA in the environment.
Obtaining the CSI within the simulation, however, required post-processing on the 3D received signal.
The acquisition of the CSI begins by performing channel equalization with the Modified Constant
Modulus Algorithm (MCMA). After obtaining the NRZ information sequence of the UMTS waveforms
in the simulation, a least squares channel estimate is performed to estimate the CSI.
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5.1.1. Channel Equalization

Since a priori information regarding the UMTS symbol sequence is unavailable at the receiver due
to the non-cooperative nature of the device, channel equalization is first performed on the received
waveform to obtain the non-return-to-zero (NRZ) information stream (i.e., a sequence of +1 and −1
used in creating GSM and UMTS emissions). The algorithm was developed in [35] for performing
blind channel equalization of complex wireless channels. The algorithm was designed to mitigate
the need for hardware such as phase locked loops and phase synchronization systems for recovering
phase errors present at the receiver. The MCMA procedure begins with the analysis of the following
received, baseband signal

yl [n] =
1
2

P−1

∑
i=0

Hl [i]α[n− i] + n[n], (21)

where P is the number of multipath signals impinging on the receiver, Hl [i] is a sampled
complex-valued baseband channel coefficient of the wireless channel convolved with the transmit and
receive filters [36], α[n] is a complex NRZ information sequence, and n[n] is system-generated AWGN
modeled as a complex random variable that is i.i.d with zero-mean and variance, E[|n[n]|2] = σ2

n . The
method of channel equalization employs the MCMA to resolve the information stream in a blind
adaptation of the cost function

J(w) = JR(w) + JI(w), (22a)

=
(1

4

){
E
[(
|zR[n]|2 − γR

)2
]
+ E

[(
|zI [n]|2 − γI

)2
]}

, (22b)

where E[·] denotes statistical expectation, JR and JI denote the real and imaginary cost functions,
respectively, of the equalizer output, and zR,I [n] denotes the impulse response of the MCMA equalizer
output. The predetermined constants, γR and γI , expressed in (22b) are used to drive the received
NRZ symbols towards the constant modulus and are dependent on the dispersion around the NRZ bit
values. The equalizer weights are updated via stochastic gradient descent on the cost function, J(w) in
(22a), such that the weights of the MCMA equalizer are found as

w[n + 1] = w[n]− µe[n]yH
l [n], (23)

with eR[n] and eI [n] describing the error functions for the real and imaginary cost functions, defined as

e[n] = eR[n] + jeI [n], (24a)

=
(
|zR[n]|2 − γR

)
zR[n] + j

(
|zI [n]|2 − γI

)
zI [n], (24b)

where µ denotes a fixed step-size parameter in (23) and e[n] describes the complex error function of
the equalizer in (24a) and (24b). Using the above derivations for the MCMA equalizer, estimates of the
NRZ information sequence can be made with a sign detector defined as

α̂R,I [n] =

{
+1, for zR,I [n] ≥ 0,

−1, for zR,I [n] < 0.
(25)

5.1.2. CSI Estimation

After performing unsupervised channel equalization to obtain the NRZ information sequence via
MCMA, an estimate is made about the impulse response of the CSI. Recalling (21), a sum of squares
error, ε, is constructed between the estimated received signal and the actual received signal as
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ε =
1
2

N

∑
n=1
{yl [n]− ŷl [n]}2. (26)

A minimization of the error, ε in (26), is computed by finding the derivative of the error with
respect to a sample estimate, Ĥ[l], found within the CSI sequence, H[n], such that

∂ε

∂Ĥ[l]
= ryα̂[l]−

P−1

∑
i=0

Ĥl [i]rα̂α̂[l − i], (27)

with ryα̂[l] and rα̂α̂[l − i] denoting cross- and auto-correlation, respectively. The CSI estimate is then
formulated based on manipulation of (27) via least squares and described in vector notation as

Ĥ = R−1
α̂α̂ ryα̂, (28)

where Rα̂α̂ is an (P × P) invertible Hermitian Toeplitz autocorrelation matrix and ryα̂ is a
cross-correlation vector as both are functions of the NRZ sequence estimated in (25). The method of
obtaining the CSI via least squares solution in (28) allows for a blind equalization/estimation to be
performed on received baseband signals. Since spatial information is embedded within the CSI as it
is a function of the non-cooperative emitter’s position, the information can be exploited by machine
learning procedures such as cluster modeling.

Using the non-cooperative signals obtained from the Wireless Insite R© simulation model, the
mean CSI and DoA are obtained and used for constructing feature vectors of four dimensions at each
discrete location within the indoor environment, defined as

F =
{

H̄R, H̄I , φ̄, θ̄
}

, (29)

where H̄R are the mean of real-valued components of the CSI, H̄I describe the mean of the imaginary
CSI, and φ̄ and θ̄ describe the mean directions of arrival in both azimuth and elevation planes of the
TDVS. An MCMA equalizer of length 30 was used on each received non-cooperative UMTS waveform
propagated through 25 different paths. The step-size parameter of 0.005 was used in order to ensure
convergence for the MCMA equalizer.

5.2. Probabilistic Cluster Modeling for RoI Localization

The probabilistic clustering model used for RoI localization of the non-cooperative UMTS emitters
is the Gaussian Mixture Model (GMM), comparable to the K-means clustering algorithm. A mixture of
Gaussians can be obtained from a linear superposition of Gaussian distributions in the form

p(x) =
K

∑
k=1

πkN (x|µk, Σk), (30)

where µk is the mean of the kth distribution (i.e., mixture), Σk is the kth covariance, and πk is an
unknown probability i.e., weight of the Gaussian distribution [32]. The distribution can be interpreted
by first selecting one of the mixing components in (30) that corresponds to the marginal distribution
p(zk = 1) = πk, which is defined as selecting a mixture component, k, with probability πk, based on
binary random variable z of length K as zk ∈ {0, 1}, in which only one element in z is equal to 1 and all
else are 0. A responsibility (i.e., conditional distribution of assigning zk to a specific mixture defined as
a soft-class membership), r(zk), can be generated that helps infer the probability of assigning random
variable z to a cluster given the sample x based on Bayes’ theorem described as

r(zk) ≡
πkN (x|µk, Σk)

∑K
j=1 πjN (x|µj, Σj)

. (31)
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The parameters µk, Σk, and πk in (31) are estimated as follows:

1. Initialize the component mixture probability πk with equally-likely probability (i.e., 1
K ) and define

the covariance Σk to be diagonal and identical, i.e.,

Σk =


σ2

1 0 0 · · · 0
0 σ2

2 0 · · · 0
0 0 σ2

3 · · · 0
...

...
...

. . .
...

0 0 0 · · · σ2
K

 , (32)

as σ2
k is the variance of the data in the kth cluster, σ2

1 = σ2
2 = · · · = σ2

K, and K is the number of
clustering components selected. The cluster mean µk is then selected by minimizing the cost as a
function of the squared Euclidean distance via K-means between the data sample and kth cluster
mean described as

J(x) =
N

∑
n=1

K

∑
k=1

znk
∣∣∣∣xn − µk

∣∣∣∣2, (33)

where xn denotes the nth data sample and znk is defined as

znk =

1, if k = arg min
i

∣∣∣∣xn − µi
∣∣∣∣2 ,

0, otherwise.
(34)

where µi in (34) defines the ith mean within the set of K cluster means such that znk = 1 if the data
sample is assigned to cluster k, and zni = 0 for i 6= k. The selection of znk and µk is performed
through the minimization of J(x) in (33) until convergence is obtained.

2. Initialize the GMM with defined parameters µk and Σk in (32) that are initialized in the K-means
process and iteratively perform the expectation step (E-step) followed by the maximization step
(M-step) according to [32] until convergence is achieved and all responsibilities (31) are assigned.

For visualization of the GMM models, each discrete feature vector, F in (29), is projected to a
2D space using the t-Distributed-Stochastic-Neighbor-Embedding algorithm (t-SNE) [37]. The t-SNE
algorithm projects the high-dimensional data to a lower-dimensional feature space based on pairwise
similarities. The results of the GMM for various clusters is described by Figure 7 for dimensionally
reduced feature vectors obtained from the Hallway. We want to further emphasize that the depicted
results in Figure 7 only correspond to the GMM cluster models on the data in the Hallway area.
The same exact procedure performed on the Hallway area data is also performed on the other rooms
using different GMM parameters. This is due to the fact that we first estimate the room where the
non-cooperative emitter resides followed by a further estimate with a trained GMM model trained for
a specific number of K clusters. The results indicate the ability of the GMM to realize various clusters
within the feature vectors received from non-cooperative UMTS transmitters inside the Hallway
area. The GMM realizes spatial correlation between locations based on the CSI- and DoA-acquired
information at the TDVS. As the K-value increases, it is apparent that more discretized clusters are
formed indicating that specific regions inside the Hallway area are more statistically related than
others from the perspective of the GMM covariance matrices.
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(a) (b)

(c) (d)

Figure 7. Gaussian mixture models and the corresponding probability contours of CSI and DoA feature
vectors in the Hallway area of the simulated indoor environment. (a) Hallway GMM with four clusters,
(b) Hallway GMM with five clusters, (c) Hallway GMM with six clusters, (d) Hallway GMM with
10 clusters.

After creating a distinct GMM per room for various K clustering components, location assignment
is performed based on the covariance matrix from the GMM model such that feature vectors located
in similar clusters are assigned a specific k value ∈ [1, K]. For instances, where feature vectors were
located on GMM contours of uncertain covariance relationship, a K-means algorithm is invoked to
assign the feature vector to a specific mixture in the GMM. The K-means algorithm is used to arrive at
clusters by assigning a component, k, to data points that are close in feature space distance similar to
K-Nearest-Neighbor (KNN) classification. The notion of assigning a cluster component, k, to a data
point is intuitively found by evaluating the K clusters built of centralized mean values, µk, that denotes
the mean of the kth cluster in the GMM model. The K-means algorithm describes a ‘hard assignment’ of
data point xn to one distinct cluster based on the sum of squares distance measure. The approach is only
employed when the GMM gives uncertain probabilities to CSI and DoA feature vectors. The results of
the RoI localization based on GMM and K-means are shown in Figure 8. The results depict correlated
locations on a per-room basis.
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(a) (b)

(c) (d)

Figure 8. GMM results for region of interest (RoI) localization of non-cooperative emitters with respect
to various K clustering components. (a) RoI with four clusters, (b) RoI with five clusters, (c) RoI with
six clusters, (d) RoI with 10 clusters.

The results demonstrate the ability of the GMM to perform RoI localization for various K
clustering components. It is evident that the GMM allows the TDVS to localize emitters to smaller
regions within each room depending on the order of K. The GMM offers the ability to localize
the non-cooperative emitter to specific regions on a per-room basis, with optimal RoI localization
in rooms such as the Hallway and Office #3. As the emitter resides in rooms that resemble NLoS
signal characteristics, the GMM begins to cluster the locations with respect to the multipath channel
information (i.e., locations with similar multipath phenomena and scattering characteristics). Thus, the
GMM can be fine-tuned to meet the end-user’s application needs when performing RoI localization
with the TDVS receiver.
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6. Conclusions

Conventional indoor device localization methods exploit characteristics regarding signal
properties based on RSS owing to ease of implementation in pre-existing infrastructures. In certain
cases, however, the ability to localize non-cooperative signals may become a priority and multi-sensor
or multi-receiver systems may not be readily available. Therefore, it is imperative to construct
single receiver systems that can obtain high localization accuracies for estimating the positions of
non-cooperative transmitters to improve wireless security in cases where only one receiver is available.

This work encompassed the development of a vector sensor for acquiring 3D received signal
properties that are exploited by machine learning methodologies to perform room localization based
on the short-time Fourier transform and the wavelet transform. The results in the simulation stage
revealed that the proposed algorithm grants higher room localization performance than RSS, ToA,
DoA regardless of the non-cooperative emitter’s polarization. Further verification via experimentation
revealed room localization accuracies above 90% for two common wideband and narrowband wireless
communication signals modeled as non-cooperative transmissions.

A second simulation evaluated the ability of the TDVS to perform RoI localization within each
room to explore the idea of cascading a room estimate with a definitive location where the transmitter
resides. The approach leveraged a GMM to perform probabilistic clustering on CSI and DoA feature
vectors obtained from trigonometric properties of the TDVS along with a developed algorithm for
blind channel identification. The results indicate that the GMM is capable of obtaining fine-grained RoI
location estimates in rooms that are in line-of-sight with the TDVS. In rooms that are in non-line-of-sight
with the TDVS, the GMM clusters the spatial CSI and DoA features based on multipath channel
characteristics measured by the TDVS. Nevertheless, the procedure can be effective in multipath
environments and can perform highly accurate room localization regardless of the signal type and
polarization, granting a new method of performing non-cooperative device localization in indoor
environments with a single receiver.

The implementation of the TDVS, as shown in this work, improves indoor localization of single
receiver systems through antenna diversity and its ability to effectively acquire 3D wireless channel
characteristics of an impinging waveform. This specific design is the first attempt at using vector
sensing methodologies in the field of indoor localization and serves as a novel contribution as it can be
used as a benchmark for future research in the field of machine learning and indoor positioning. It has
been shown that RSS alone is greatly inferior to 3D RSS extracted from signals received by the TDVS
antenna when used with simplistic machine learning models such as the WKNN. It has also been
demonstrated, both synthetically and experimentally, that the TDVS and STFT/WT fingerprints can
achieve high-precision room localization performance without the need to use more than one sensor or
complex machine learning algorithms. Thus, the TDVS allows for new research to be formulated and
addressed in the field of indoor localization of non-cooperative emitters as this work demonstrates the
opportunistic results that can be obtained by assessing the 3D wireless channel properties of a received
communications waveform.
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Abbreviations

The following abbreviations are used in this manuscript:

CSI Channel State Information
DoA Direction of Arrival
GMM Gaussian Mixture Model
GSM Global System for Mobile Communication
LDA Linear Discriminant Analysis
LoS Line-of-Sight
MCMA Modified Constant Modulus Algorithm
NLoS Non-Line-of-Sight
NRZ Non-Return-to-Zero
PCA Principal Component Analysis
RoI Region of Interest
RRCF Root-Raised-Cosine Filter
RSS Received Signal Strength
STFT Short-Time Fourier Transform
TDVS Triad Dipole Vector Sensor
ToA Time of Arrival
UMTS Universal for Mobile Telecommunications System
WCDMA Wideband Code Division Multiple Access
WKNN Weighted K-Nearest-Neighbor
WT Wavelet Transform
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