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Abstract: In this study, a novel wetness and moisture concentration analysis approach is presented.
A finite element method is utilized for the solution technique mainly using thermal and surface effect
elements. Numerical results obtained from the current approach are compared against other existing
finite element-based solutions and the newly introduced peridynamics theory. For numerical analysis,
a reflow soldering stage is simulated for a multi-material system with time-dependent saturated
moisture concentrations. Different solubility activation energies and temperature conditions are
considered. Numerical results demonstrate that the developed methodology can make accurate
predictions under different conditions and it is more general than some other existing models which
are limited to certain conditions.
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1. Introduction

Polymer-based materials such as underfills, molding compounds, etc. are common materials
used in microelectronic and optoelectronic components. However, these polymeric components may
suffer from a large amount of volume expansion due to moisture absorption. Since electronic packages
are multi-material systems, such volume expansions can result in hygroscopic stresses and swelling.
Moreover, popcorn cracking can occur at high temperatures during reflow soldering since moisture
will transform into vapor with high pressure during this process [1]. Therefore, in order to achieve
durable electronic packages, moisture diffusion analysis is required.

The finite element method (FEM) is commonly used for this purpose. Since electronic packages
contain multi-material interfaces, moisture concentration is not continuous along these interfaces,
which introduces discontinuities. To overcome this problem, a wetness approach [2] was introduced
since the wetness field is continuous at the interfaces. If the saturated concentration does not depend on
time and temperature, it is possible to make a thermal-moisture analogy and a regular thermal analysis
can be performed by making a necessary calibration of its parameters with corresponding moisture
diffusion parameters. A review of thermal-moisture analogy schemes can be found in Yoon et al. [3].
According to this review, it was concluded that the direct analogy is limited to single-material systems
and the normalized analogy can be used for multi-material systems if thermal loading conditions are
isothermal, spatially as well as temporally. As saturated concentration is only a function of relative
humidity, regardless of temperature, Jang et al. [4] proposed an advanced thermal-moisture analogy
scheme for anisothermal moisture diffusion problems. On the other hand, if the saturated concentration
is time-dependent, then thermal-moisture analogy is no longer available. For such cases, piecewise
normalization and internal source approaches were developed [5,6]. The piecewise normalization
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approach is computationally expensive since it requires multiple load steps to ensure accuracy. On the
other hand, although the internal source approach is easier to implement, its convergence is reliant on
the number of iterations in each time step. More recently, peridynamic theory (PD) [7,8] was utilized
to determine moisture and wetness distribution in electronic packages for time-dependent saturated
moisture concentration condition. This technique is suitable for treating discontinuities and does not
require an iterative solution. Moreover, Chen et al. [9,10] developed a unified activity-based diffusion
theory which does not have any interface discontinuity issues since water activity is continuous at
the interface. This theory can also be used to unify existing normalized concentration-based theories.
In addition, ANSYS, a commercially available finite element software, provides coupled field (CF) and
diffusion (DF) elements for moisture diffusion analysis. These elements are suitable for either time- or
temperature-dependent saturated moisture concentrations. However, the diffusion element is limited
to a uniform temperature field. An in-depth investigation of ANSYS diffusion elements was provided
by Liu and Park [11] and Sutton [12].

In this study, a novel wetness and moisture concentration modeling approach is presented for
saturated moisture concentration, which is a function of time. This study is an extension of the
previously published conference paper [13]. The method uses conventional thermal and surface effect
elements and it is implemented in an ANSYS framework. The approach is computationally efficient
and straightforward in its computer implementation. Various verification and demonstration studies
are considered for multi-material systems having time-dependent saturated moisture concentrations,
with different solubility activation energies and temperature conditions. Results from the current
approach match well with PD and ANSYS CF element results for time-dependent diffusivity. However,
significant differences are observed in the case of temperature-dependent diffusivity. Besides, for
different solubility activation energies, there is also a difference between the present results and those
obtained using the ANSYS DF element.

2. Classical Wetness Formulation

The first Fick’s law can be used to represent moisture diffusion as

J = −D(t)∇C(t) (1)

where J represents diffusion flux, D is diffusivity, and C(t) is the moisture concentration. The
conservation of mass solute during the diffusion process can be satisfied by

∇·J + ∂C
∂t

= G(t) (2)

in which G(t) is the rate of diffusing substance generation per unit volume. Combining Equations (1)
and (2), the second Fick’s law for homogeneous domains can be obtained as

∂C
∂t

= D(t)∇·(∇C) + G(t). (3)

For multi-material systems (nonhomogeneous domains), moisture concentration is discontinuous
at multi-material interfaces. Therefore, a normalized wetness parameter w was introduced in
Reference [2] as

w =
C(t)

Csat(t)
(4)

where Csat(t) represents the saturated moisture concentration, which is the maximum concentration
that a material can absorb. Note that the wetness parameter is continuous at multi-material interfaces
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and the condition for chemical potentials to be equivalent is also satisfied at the interface. Therefore,
the concentration ratio at the interface of materials 1 and 2 remains constant at any instant as

C1

C2
=

Csat,1w1

Csat,2w2
= constant. (5)

As a result, the wetness field becomes continuous at the interface, i.e., w1 = w2. After substituting
the wetness parameter given in Equation (4) into Equation (3), the second Fick’s law equation can be
rewritten as

Csat(t)
∂w
∂t

+ w
∂Csat(t)

∂t
= D∇·(∇(Csatw)) + G(t) (6)

If the saturated concentration, Csat, is constant, Equation (6) will reduce to

Csat
∂w
∂t

= DCsat∇·(∇w) + G(t) (7)

Equation (7) can be directly solved by using the thermal-moisture analogy. However, if the
saturated concentration is time-dependent, then the thermal-moisture analogy cannot be utilized. For
this case, the commercial finite software ANSYS provides CF and DF elements [14], which are based
on the modified form of the first Fick’s law as

J = −D(t)∇C(t) + vC(t) (8)

and

J = −D(t)∇C(t)− D(t)Q
k

1
T2 C(t)∇T(t) (9)

where v represents the transport velocity vector, k is the Boltzmann constant, Q is the particle heat
of transport, and T(x, y, z, t) represents temperature. Combining Equations (8) and (2) and using the
wetness parameter definition given in Equation (4), the conservation of mass solute equation can be
rewritten as

Csat(t)
∂w
∂t

+ w
∂Csat(t)

∂t
= D∇·(∇(Csatw))−∇·(v(Csatw)) + G(t). (10)

If the saturated moisture concentration rate is neglected, Equation (10) can be shortened as

Csat
∂w
∂t

= DCsat∇·∇w− Csat∇·(vw) + G(t). (11)

A similar derivation can also be conducted for Equation (9) and the conservation of mass solute
equation can be derived as

Csat(t) ∂w
∂t + w ∂Csat

∂t = D∇Csat·(∇w) + DCsat∇·(∇w) + D∇w·(∇Csat) + Dw∇·(∇Csat)

+QDCsatw
k ∇

(
1

T2

)
·(∇T) + QDCsat

kT2 ∇w·(∇T) + QDw
kT2 ∇Csat·(∇T) + QDCsatw

kT2 ∇·(∇T) + G
. (12)

If the saturated concentration is temperature-dependent, i.e. the Csat(T) and chain rule are
utilized, Equation (12) can take the form of

Csat(T) ∂w
∂t + w ∂Csat(T)

∂T
∂T
∂t = D ∂Csat

∂T ∇T·∇w + DCsat(T)∇·∇w + D ∂Csat
∂T ∇w·∇T + Dw ∂Csat

∂T ∇·∇T
− 2DQCsatw

k
1

T3∇T·(∇T) + DQCsat
kT2 ∇w·(∇T) + DQw

kT2
∂Csat

∂T ∇T·(∇T) + DQCsatw
kT2 ∇·(∇T) + G

. (13)

Note that in Equation (13) the diffusivity, D, can be a function of time or temperature.
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3. Peridynamic Wetness Formulation

The moisture diffusion equation given Equation (2) can be expressed in peridynamic form as [7]

∂

∂t
[Csat(t)w(t)] =

∫
H

f
(
w′, w, x′, x, t

)
dV′ + G(t) (14)

where f
(

w′, w, x
′
, x, t

)
is the wetness response function which represents the exchange of moisture

between material points x and x
′

that are connected through hygro-bonds, as shown in Figure 1. In PD,
material points interact with each other in a nonlocal manner and a material point can interact with
other material points within its neighborhood named as the horizon, H (see Figure 1), with a radius of
δ.
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′
.

The wetness response function can be defined as

f
(

w′, w, x
′
, x, t

)
= d(t)

w
(

x
′
, t
)
− w(x, t)∣∣x′ − x
∣∣ (15)

where the PD bond parameter, d(t), in Equation (15) can be expressed in terms of the classical diffusivity,
D(t), and the saturated concentration, Csat(t), as

d =
2DCsat

Aδ2 (1−D), d =
6DCsat

πhδ3 (2−D)andd =
6DCsat

πδ4 (3−D). (16)

In Equation (16), A is the cross-sectional area of a one-dimensional structure and h is the thickness
of a two-dimensional structure.

The PD moisture diffusion equation given in Equation (14) can be solved by using the meshless
approach. Therefore, the integral term can be replaced by a finite summation and Equation (14) can be
rewritten as

Csat
∂w(k)

∂t
=

N

∑
j=1

f(k)(j)

(
w(j), w(k), x(j), x(k), t

)
V(j) + G(k) (17)

with
G(k) = −w(k)

∂Csat

∂t
(18)

where w(k) and w(j) are wetness values at material points x(k) and x(j), respectively, and N represents
the number of material points inside the horizon of the material point x(k). During the solution process
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for each time step, the time dependency of Csat can be approximated with the backward Euler method
between the consecutive time steps as

G(k) = −w(k)
∆Csat

∆t
= −w(k)

Csat(t + ∆t)− Csat(t)
∆t

(19)

and an iterative solution is not required to obtain the solution.

4. ANSYS Coupled Field and Diffusion Element Formulations

As mentioned earlier, the commercial finite element software, ANSYS, provides two different types
of elements for moisture diffusion analysis. The first type is diffusion (DF) elements, which are available
in different forms including Plane 238 (eight-node two-dimensional element), Solid 239 (20-node
three-dimensional element), and Solid 240 (10-node three-dimensional element). These elements
have only moisture concentration as the degree of freedom (DOF) per node. However, if the
saturated moisture concentration, Csat, is defined with the command “MP, CSAT” in ANSYS, the
DOF becomes the wetness parameter instead of the concentration. The formulation of these elements
is based on Equation (11) and they allow the saturated moisture concentration to be a function of
time or temperature. However, DF elements are only available for a uniform temperature. If the
temperature field is not uniform, ANSYS offers coupled field (CF) elements including Plane 223
(eight-node two-dimensional element), Solid 226 (20-node three-dimensional element), and Solid 227
(10-node three-dimensional element). These elements have two DOFs at each node as wetness, w,
and temperature, T. The formulation of these elements is based on Equation (13). The finite element
approximation of field variables for the element e can be expressed as

w = S·we (20)

and
T = S·Te (21)

where S is the vector of element shape functions, while Te and we represent the vectors of unknown
nodal temperature and wetness values of the element. Utilizing the virtual work principle for the
element e with the arbitrary virtual quantities of we and Te, Equation (13) can be rewritten as

Cdt .
Te + Cd .

we =
(

Kd + KdN
1 + KdN

2

)
we +

(
KdtN + Kdt

1 + Kdt
2 + KdtN

2

)
Te + R (22)

where
.

we and
.
Te represent the nodal time derivative of wetness and temperature, respectively.

Moreover, Cd is the element diffusion damping matrix, Cdt is the element thermal–diffusion damping
matrix, Kd is the element diffusion conductivity matrix, KdN

1 is the nonlinear part of the element
diffusion conductivity matrix associated with thermomigration, KdN

2 is the nonlinear part of the
element diffusion conductivity matrix due to ∂Csat/∂T, KdtN is the nonlinear part of the element
transport conductivity matrix, Kdt

1 is the element transport conductivity matrix, Kdt
2 is the element

thermal–diffusion conductivity matrix due to ∂Csat/∂T, KdtN
2 is the nonlinear part of the element

transport conductivity matrix due to ∂Csat/∂T, and R is the nodal diffusion flow rate vector. The
explicit definitions of these matrices are given in Reference [14] as

Cd = Csat(T)
∫
Ve

SSTdV (23)

Cdt =
∂Csat

∂T

∫
Ve

wSSTdV (24)
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Kd = −DCsat(T)
∫
Ve

(∇ST)
T∇STdV (25)

KdtN = −2DCsat(T)
Q
k

∫
Ve

w
T3 (∇ST)

T
(∇TST)dV (26)

Kdt
1 = −DCsat(T)

Q
k

∫
Ve

w
T2 (∇ST)

T∇STdV (27)

KdN
1 = DCsat(T)

Q
k

∫
Ve

1
T2 (∇ST)

T
(∇TST)dV (28)

Kdt
2 = −D

∂Csat

∂T

∫
Ve

w(∇ST)
T∇STdV (29)

KdN
2 = D

∂Csat

∂T

∫
Ve

[(∇ST)
T
(S(∇T)T) + (∇ST)

T
(∇TST)]dV (30)

KdtN
2 = D

∂Csat

∂T
Q
k

∫
Ve

w
T2 (∇ST)

T
(∇TST)dV (31)

R = G
∫
Ve

SdV (32)

where Ve is the volume of the element. Utilizing Equation (22), the coupled finite element
thermal–diffusion matrix equations can be written as[

Ct 0
Cdt Cd

]{ .
Te
.

we

}
+

[
Kt 0

(Kdt
1 + KdtN + KdtN

2 + Kdt
2 ) (Kd + KdN

1 + KdN
2 )

]{
Te

we

}
=

{
Q
R

}
(33)

where Ct, Kt, and Q represent the element specific heat matrix, the element thermal conductivity matrix,
and the element heat generation load matrix, respectively. The thermal conductivity matrix, Kt, is a
combination of the element mass transport conductivity matrix, Ktm, the element diffusion conductivity
matrix, Ktb, and the element convection surface conductivity matrix, Ktc. If thermomigration is
negligible, Equation (33) can be simplified as[

Ct 0
Cdt Cd

]{ .
Te
.

we

}
+

[
Kt 0

KdtN
2 (Kd + KdN

2 )

]{
Te

we

}
=

{
Q
R

}
. (34)

5. ANSYS Thermal and Surface Effect Element Formulations

In addition to elements provided by ANSYS described in the previous section for moisture
diffusion modeling, an alternative approach is presented in this study by utilizing conventional
thermal and surface effect elements. Utilizing the virtual work principle in conjunction with the
divergence theorem, Fick’s second law equation given in Equation (6) can be written as

δw
∫
Ve

Csat(t) ∂w
∂t dV + δw

∫
Ve

w ∂Csat
∂t dV =

−D(t)Csat(t)
∫
Ve

∇(δw)∇wdV + D(t)Csat(t)δw
∫
Ve

G(x, t)dV + δw
∫
Se

∇wndS
(35)
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where Se and n represent the surface of the element and unit normal vector to this surface, respectively.
In Equation (35), the time derivative of the saturated concentration, i.e., dCsat/dt, can be expressed by
using backward Euler method as

H = w
∆Csat

∆t
. (36)

After substituting the wetness field expression, w, given in Equation (20) into Equation (35) for
arbitrary δwe, Equation (35) can be written in a matrix form as

(Cdt + Cd)
.

we + Kdwe = R (37)

where
Cd = Csat(t)

∫
Ve

SSTdV (38)

Kd = DCsat(t)
∫
Ve

(∇ST)
T∇STdV (39)

Cdt =
∂Csat

∂t

∫
Ve

SSTdV (40)

R = G
∫
Ve

SdV. (41)

Note that this equation has the same form as the heat flow equation, which can be written as

Ct
e

.
Te + (Ktb

e + Ktc
e )Te = Qg

e (42)

where
Ct

e = ρc
∫
V

SSTdV (43)

Ktb
e = Dt

∫
V

(∇ST)
T∇STdV (44)

Ktc
e = h f

∫
S

SSTdS (45)

Qg
e = q

∫
V

SdV (46)

where ρ, c, D(t), h f , and q represent the density, the specific heat, the thermal conductivity, the film
coefficient, and the heat generation rate per unit volume, respectively. Since the wetness and heat
flow equations given in Equations (37) and (42) have the same form, it is possible to relate the thermal
parameters, ρ, c, Dt, h f , and q to diffusion parameters Csat(t), DCsat(t), ∂Csat/∂t, and G. Therefore, for
one-dimensional analysis, the wetness field equation given in Equation (37) can be made equivalent to
the thermal heat flow equation given in Equation (42) by using a combination of thermal link (LINK33)
and thermal surface effect (SURF151) elements between two nodes (see Figure 2) and adjusting
parameters as demonstrated in Tables 1 and 2. Note that the thermal link element is necessary to
construct Ct

e and Ktb
e matrices and the thermal surface effect element is necessary to construct the Ktc

e
matrix. In Table 1, the subscript n in Dn+1 and Csat,n+1 represents the current time step number. In
Table 2, the rate of Csat can be approximated with the backward Euler method as ∆Csat/∆t, in which ∆
implies the difference of values between the time steps. Moreover, the nodal heat generation rate per
unit volume, q, can be used in place of the diffusing substance generation rate per unit volume, G, in
ANSYS by defining the nodal loads with the “BF, Node, HGEN, Value” command.
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Table 3. Material properties for materials 1 and 2 for diffusion analysis. 

 Material 1 Material 2 

Diffusivity factor, 0D  ( 2m /s ) 35 10−×  34 10−×  

Figure 2. Current approach by combining thermal link and surface effect elements between two nodes.

Table 1. The relationship between thermal and diffusion parameters for the thermal link element, LINK33.

LINK33

Material
Properties

Original Modified ANSYS Command

Thermal
Conductivity Dt Dn+1Csat,n+1 MP, KXX, MAT 1, Dn+1Csat,n+1

Density ρ 1.0 MP, DENS, MAT 1, 1.0

Specific Heat c Csat,n+1 MP, C, MAT 1, Csat,n+1

Real Constants Cross Sectional
Area A A R, NSET 2, A

1 MAT: Material reference number, 2 NSET: Real constant set identification number.

Table 2. The relationship between thermal and diffusion parameters for surface effect element, SURF151.

SURF151

Applying Surface loads
on elements (SFE)

Convection
(CONV) Original Modified ANSYS Command

Film Coefficient h f
∆Csat A

∆t SFE, Elem 1, CONV, 1, ∆Csat A
∆t

Bulk Temperature TB 0.0 SFE, Elem 1, CONV, 2, 0.0
1 Elem: Element to which surface load applies.

6. Numerical Results

In this section, numerical results for the analysis of the desorption process in a bar during reflow
soldering are presented by considering conventional thermal link and surface effect elements, diffusion
(DF) and coupled field (CF) elements, and peridynamics. The two-material bar shown in Figure 3 is
initially fully saturated at 85 ◦C/100% RH with isolated lateral surfaces. The material properties for
diffusion and thermal analyses are given in Tables 3 and 4 based on the data provided in Reference [15].
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Figure 3. Two-material bar configuration in the desorption process.

Table 3. Material properties for materials 1 and 2 for diffusion analysis.

Material 1 Material 2

Diffusivity factor, D0 (m2/s) 5× 10−3 4× 10−3

Solubility factor, S0 (kg/m3Pa) 6× 10−10 2× 10−10

Pressure factor, P0 (Pa) 5.0492× 1010 5.0492× 1010

Diffusion activation energy, ED (J/mol) 5× 104 5× 104

Solubility activation energy, ES (J/mol) 4× 104 4× 104

Vapor pressure activation energy, EVP (J/mol) 4.08737× 104 4.08737× 104
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Table 4. Material properties for materials 1 and 2 for thermal analysis.

Material 1 Material 2

Density, ρ (kg/m3) 3× 103 3× 103

Specific Heat, c (J/kgK) 1.5× 103 1.5× 103

Thermal Conductivity, k (W/mK) 0.2 0.6

The initial and boundary conditions of the wetness field are specified as

w(x, t = 0) = 1 with −L ≤ x ≤ L (47)

w(x = ±L, t) = 0 (48)

∂w
∂y

(x, y = ±h/2) = 0 with −h/2 ≤ y ≤ h/2 (49)

where 2L and h represent the length and thickness of the bar, respectively. The solubility activation
energy of materials 1 and 2 are either equal or unequal at the interface. The time-dependent saturated
concentration, Csat(t), and diffusivity, D(t), can be expressed as

D(t) = D0e(
−ED
RT(t) ) (50)

and

Csat(t) = S0P0e(
ES−EVP

RT(t) ) × RH (51)

where R is the universal gas constant (R = 8.3145 J/Kmol), D0 is the diffusivity factor, S0 is the
solubility factor, P0 is the pressure factor, ED is the activation energy of the diffusivity, ES is the
activation energy of the solubility, EVP is the vapor pressure activation energy, and RH indicates the
relative humidity.

For CF elements, the saturated concentration, Csat(T) can be specified as temperature-dependent.
On the other hand, the diffusivity can be specified as either time-dependent, D(t), or
temperature-dependent, D(T). Moreover, the temperature field can be either uniform or nonuniform.
However, the DF element is not suitable for nonuniform temperature conditions since the temperature
is not known a priori. In addition, the solutions with diffusion and coupled field elements are obtained
by neglecting transport velocity and thermomigration, respectively.

The finite element (FE) discretization of a bar with conventional thermal elements (present
approach) and with two-dimensional DF or CF elements are shown in Figures 4 and 5, respectively.
The bar has a length of 2L = 2 mm, thickness of h = L/100, and cross-sectional area of A = h2.
The discretization size is specified as ∆x = h. The total time is specified as t = 80 s with a time step
size of ∆t = 2 s. The moisture concentration results are plotted at four different time instances, t = 20,
40, 60, and 80 s. The results obtained from the current approach are compared against peridynamics as
well as ANSYS DF and CF element results for uniform and nonuniform temperature conditions with
equal and unequal solubility activation energies of materials 1 and 2. In the case of unequal solubility
activation energy, material 2 has ES2 = 4.50× 104 J/mol.Electronics 2018, 7, x FOR PEER REVIEW  10 of 16 
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6.1. Bar Subjected to Uniform Temperature

In the first case, the two-material bar configuration is subjected to the uniform temperature field of

T(x, t) = (85 + 2t)◦C. (52)

As shown in Figures 6 and 7, the predictions based on the present approach, CF elements with
time-dependent diffusivity, D(t), and temperature-dependent saturated concentration, Csat(T), and
peridynamics are in excellent agreement for both equal and unequal values of ES under uniform
temperature conditions. However, the CF elements with temperature-dependent diffusivity, D(T),
and saturated concentration, Csat(T), and the DF elements show significant deviation from the other
solutions. When diffusivity is imposed as a time-dependent property, D(t), its value is known before
the next time step as part of time integration, and does not require approximation. However, if
temperature-dependent diffusivity, D(T), is considered, this requires approximation for the next time
step. Therefore, this will yield results significantly different from the correct solution. Moreover, the
DF elements do not predict the correct concentration because they disregard the effect of the time
derivative of the saturated concentration.
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6.2. Bar Subjected to Nonuniform Temperature

In the second case, a nonuniform temperature condition is considered. The nonuniform
temperature is obtained by applying the temperature boundary conditions in the form of

T(x = ±L, t) = (85 + 2t)◦C. (53)

The DF element is not applicable due to the nonuniformity of the temperature field. Moreover,
the CF element with time-dependent diffusivity, D(t), is also not applicable because diffusivity, D(t),
given in Equation (50), highly depends on temperature which is the unknown DOF in this problem.
The concentration results along the bar are plotted in Figures 8 and 9. As can be seen from these
figures, the predictions from the present approach and peridynamics are in very good agreement,
whereas there is a significant difference between the results from the CF elements with temperature
dependence, D(T).

Electronics 2018, 7, x FOR PEER REVIEW  13 of 16 

 

In the second case, a nonuniform temperature condition is considered. The nonuniform 
temperature is obtained by applying the temperature boundary conditions in the form of 

( )(  ,  ) 85 2 CT x L t t= ± = +  . (53) 

The DF element is not applicable due to the nonuniformity of the temperature field. Moreover, 
the CF element with time-dependent diffusivity, ( )D t , is also not applicable because diffusivity, 

( )D t , given in Equation (50), highly depends on temperature which is the unknown DOF in this 
problem. The concentration results along the bar are plotted in Figures 8 and 9. As can be seen from 
these figures, the predictions from the present approach and peridynamics are in very good 
agreement, whereas there is a significant difference between the results from the CF elements with 
temperature dependence, ( )D T . 

 
(a) 

 
(b) 

 
(c) 

Figure 8. Cont.



Electronics 2018, 7, 438 14 of 16

Electronics 2018, 7, x FOR PEER REVIEW  14 of 16 

 

 
(d) 

Figure 8. Variation of moisture concentration along the bar at t = (a) 20 s; (b) 40 s; (c) 60 s; and (d) 80 
s with equal SE  values for materials 1 and 2. 

(a) 

 
(b) 

 
(c) 

Figure 8. Variation of moisture concentration along the bar at t = (a) 20 s; (b) 40 s; (c) 60 s; and (d) 80 s
with equal ES values for materials 1 and 2.

Electronics 2018, 7, x FOR PEER REVIEW  14 of 16 

 

 
(d) 

Figure 8. Variation of moisture concentration along the bar at t = (a) 20 s; (b) 40 s; (c) 60 s; and (d) 80 
s with equal SE  values for materials 1 and 2. 

(a) 

 
(b) 

 
(c) 

Figure 9. Cont.



Electronics 2018, 7, 438 15 of 16

Electronics 2018, 7, x FOR PEER REVIEW  15 of 16 

 

 
(d) 

Figure 9. Variation of moisture concentration along the bar at t = (a) 20 s; (b) 40 s; (c) 60 s; and (d) 80 
s with unequal SE  for materials 1 and 2. 

7. Conclusions 

This study presents a new finite element-based modeling approach for moisture diffusion 
analysis in the presence of time-dependent saturated moisture concentration by utilizing 
conventional ANSYS thermal and surface effect elements. The capability of the present approach is 
demonstrated by comparing results from the present approach with those obtained using ANSYS 
diffusion and coupled field elements as well as peridynamic theory. For comparison purposes, a fully 
saturated one-dimensional two-material bar configuration is considered with either the same or 
different solubility activation energies in the presence of a time-dependent saturated moisture 
concentration. Both uniform and nonuniform temperature conditions are analyzed. For all cases, the 
current approach is capable of predicting correct concentration values. This is not true for ANSYS 
diffusion and coupled field elements. If the diffusivity is a function of temperature, coupled field 
elements could not provide an accurate solution. On the other hand, although the diffusion element 
is shown to be suitable for a uniform temperature, it can yield incorrect results, especially for unequal 
values of solubility activation energies in a multi-material system. As a summary, the present 
approach is superior to the diffusion and coupled field elements of ANSYS, especially under 
nonuniform temperature conditions. 

Author Contributions: Conceptualization, C.D., E.M., S.O., and E.O.; software, C.D.; writing—original draft 
preparation, C.D.; writing—review and editing, E.M. and E.O.; visualization, C.D.; supervision, E.M. 

Funding: This research received no external funding. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Wong, E.H.; Park, B. Moisture diffusion modeling—A critical review. Microelectron. Reliab. 2016, 65, 318–
326. 

2. Wong, E.H.; Teo, Y.C.; Lim, T.B. Moisture diffusion and vapor pressure modeling of IC packaging. In 
Proceedings of the 48th Electronic Components and Technology Conference, Seattle, WA, USA, 25–28 May 
1998; pp. 1372–1378. 

3. Yoon, S.; Han, B.; Wang, Z. On moisture diffusion modeling using thermal-moisture analogy. ASME J. 
Electron. Packag. 2007, 129, 421–426. 

4. Jang, C.; Park, S.; Han, B.; Yoon, S. Advanced thermal-moisture analogy scheme for anisothermal moisture 
diffusion problem. ASME J. Electron. Packag. 2008, 130, 011004. 

5. Wong, E.H.; Koh, S.W.; Lee, K.H.; Rajoo, R. Advanced moisture diffusion modeling & characterization for 
electronic packaging. In Proceedings of the 52nd Electronic Components and Technology Conference, San 
Diego, CA, USA, 28–31 May 2002; pp. 1297–1303. 

6. Wong, E.H. The fundamentals of thermal-mass diffusion analogy. Microelectron. Reliab. 2015, 55, 588–595. 

Figure 9. Variation of moisture concentration along the bar at t = (a) 20 s; (b) 40 s; (c) 60 s; and (d) 80 s
with unequal ES for materials 1 and 2.

7. Conclusions

This study presents a new finite element-based modeling approach for moisture diffusion analysis
in the presence of time-dependent saturated moisture concentration by utilizing conventional ANSYS
thermal and surface effect elements. The capability of the present approach is demonstrated by
comparing results from the present approach with those obtained using ANSYS diffusion and
coupled field elements as well as peridynamic theory. For comparison purposes, a fully saturated
one-dimensional two-material bar configuration is considered with either the same or different
solubility activation energies in the presence of a time-dependent saturated moisture concentration.
Both uniform and nonuniform temperature conditions are analyzed. For all cases, the current approach
is capable of predicting correct concentration values. This is not true for ANSYS diffusion and coupled
field elements. If the diffusivity is a function of temperature, coupled field elements could not provide
an accurate solution. On the other hand, although the diffusion element is shown to be suitable for a
uniform temperature, it can yield incorrect results, especially for unequal values of solubility activation
energies in a multi-material system. As a summary, the present approach is superior to the diffusion
and coupled field elements of ANSYS, especially under nonuniform temperature conditions.
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