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Abstract: This note presents an optimal design method to enhance image quality in optical image
stabilization (OIS) systems. First of all, performance limitations of conventional methods are shown
and secondly, a new design framework based on convex optimization is proposed. The resulting
controller essentially stabilizes the closed loop systems because the proposed method is derived
from Lyapunov stability. From the test results, it is confirmed that this method reduces the effect
of hand vibrations and makes images sharp. Additionally, it is shown that the proposed method is
also effective in robot vision and recognition rate of deep neural network (DNN) based traffic signs
and pedestrians detection in automotive applications. This note has three main contributions. First,
performance limitations of the conventional method are shown. Second, from the relation between
sensitivity and complementary sensitivity functions, an indirect design method for performance
improvement is proposed, and finally, stability guaranteed optimal design is proposed. Unlike
conventional methods, the proposed method does not require addition filters to suppress resonances
of the plant and this note highlights phases of the closed loop systems on removing external vibrations.

Keywords: external vibrations; image blur; LMI; optical image stabilization; optimal control

1. Introduction

This note focuses on optimal control design to achieve a wide bandwidth for high quality images
in OIS systems. Performance limitations of the conventional methods are presented, and a new
design framework to overcome the limitations is presented. In this section, background of this note,
formulation of the problem of this study, a brief literature survey, the contribution of this study, and the
organization of the manuscript are provided.

1.1. Background

Image-stabilization systems have been used in many applications, ranging from astronomical
imaging to optical communications systems [1]. Recently, the technologies are being applied
to consumer electronics such as digital cameras, digital camcorders, mobile phones and tablets.
In mobile applications, hands vibrations make unwanted camera movements and the unwanted
movements distort the optical path. In the camera, the distorted optical path is the reason for image
quality degradation.

According to the image compensation method, image stabilization technologies are categorized
into digital image stabilization (DIS) and optical image stabilization (OIS). In DIS, feature points
and motion vectors are calculated, and several frames are aligned by using the motion vectors. For
examples, a metric for evaluating fidelity, displacement and performance has been proposed [2],
and fast electronic digital image stabilization system based on a two-dimensional feature-based
multi-resolution motion estimation algorithm was presented. Stabilization is achieved by combining
all motions from a reference frame and subtracting this motion from the current frame [3]. However,
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during DIS processing, loss of edge is inevitable in the corrected image. DIS requires application specific
integrated circuit (ASIC) supporting DIS function, electrical power, and calculation time. However,
compared to OIS, DIS is cost effective because it does not necessitate additional electrical components.

OIS systems directly correct the distorted optical path disturbed by hand vibrations. Sensors
measure velocities and movements are calculated by using integral signal processing. In order to
counteract the vibrations, the measured signal is utilized as a reference signal of the feedback control
systems, and the control systems move the OIS compensation lens. The OIS lens should be able to
move parallel to an image sensor because the vibrations are introduced in both directions. Figure 1
shows the mechanism. The introduced hand vibrations perturb the optical path, but the OIS lens
compensates the distorted optical path and, finally, clear images are obtained. Compared to DIS, OIS
requires additional sensors and actuators to control OIS systems, but in general, OIS is superior to DIS
on the image quality.
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In the latest cameras, image pixel size is decreasing for high image quality. However, the small
pixel size makes the image quality more sensitive to the vibrations. Therefore, a more accurate and
precise control algorithm is demanded.

1.2. Formulation of the Problem of Interest for this Investigation

In order to control XY two direction actuators, multi-input multi-out (MIMO) control methods
and independent control along the single direction may be considered. MIMO control has been widely
used for aircraft and process applications [4,5]. In this method, min/max singular values are utilized
for design and analysis, but phase information cannot be used in general. In the independent control
method, each controller is designed to meet design specification to the corresponding single axis
actuator. In addition, the designed controller is augmented to build the two direction control systems.
In this method, phase information can be used for design and analysis. In this note, the independent
control method is used, and subscript x and y represent controller and plant for x and y directions.

In feedback control systems, a controller should be designed to meet design specifications and
the specifications are determined by design objectives. However, even though the same design
specifications are required, if the system types of plants to be controlled are different, the controller
should be also differently designed to meet the same specifications. For example, suppose that with a
given plant, command tracking is our design goal and a pole placement method is used as a controller.
The designed controller is in the shape of a lead compensator and this means that the controller has a
flat gain in the low frequency range. With such a controller, if the plant is type-0 (the plant has no pole
at the origin), the open loop transfer function defined by multiplication of controller and plant has low
gain in the low frequency range, resulting in poor command tracking performance. However, if the
plant is type-1/2 (the plant has one or two poles at the origin), the open loop transfer function has
high gain, resulting in good command tracking [6]. Therefore, before designing controllers, systems
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should be accurately identified and modeled. For those purposes, modal parameters were calculated,
and it was confirmed that the computed parameters were good for plant modeling [7]. As a result,
in order to meet design specifications, firstly the target plant should be analyzed, and secondly precise
control should be designed.

1.3. Literature Survey

Since vibrations and oscillations are the source of the image quality degradation, the features of
the vibrations should first be analyzed. As a study for oscillation, an analytical and computational
framework based on the adjoint method for optimal open loop and closed loop control laws
was proposed, and this method was applied to oscillating systems and successfully removed the
oscillations [8]. OIS systems mainly consist of OIS actuators and their controllers. For the actuator
affording better performances, the wide range of the linearity should be achieved, which was obtained
by minimizing hysteresis [9]. Additionally, a sophisticated algorithm was also applied to design
optimal actuators [10].

Along with developing the improved actuators, many controller design methods have been
developed. Several decades ago, OIS control systems were already developed [11]. To remove global
motions caused by hands or external disturbances, Kalman filtered smoothing of global camera
motion has been employed and it was reported that process noise covariance has a direct effect on the
operation of the stabilizer [12]. For cost effective CPU, instead of floating point CPU, 8bit fixed point
controller was developed [13]. The lead-lag controller was also implemented on field programmable
gate array (FPGA). In the designer friendly FPGA board, the poles and zeros were designed by design
specifications, such as percentage overshoot, settling time, and damping ratio. PID control was used
as well. In order to reduce the vibrations, multi-rate PID control was developed and the designed
controller can reduce power consumption. Thus, it was said to be applicable to mobile applications [14].
In addition, drift compensation filter (DCF) to reduce the DC component of gyro sensor output was
developed including PID controllers [15]. In [16], hand vibrations were measured and modeled by
using Discrete Fourier Transform (DFT). In the paper, as plant modeling, second order systems were
used. As a modern controller, current estimator based state feedback control was also developed [16].
However, these conventional methods have limitations on improving the performance of the closed
loop systems because the designed controllers do not take flexible shapes to the given plant models,
i.e., OIS actuators.

For the flexible control method, linear matrix inequality (LMI) based optimal controls have been
developed [17–19] and the method has been widely used for mathematical estimation including
optimal control design. It was reported that LMI can be used for identification and estimation. LMI
can be also used for model identification [20]. To calculate the fault estimation algorithm, additional
design constraints were faced, which could not be solved with typical methods. However, after the
problem was modified into the LMI form, a solution could be found [21]. LMI based particle swarm
optimization algorithm was also used to solve the distributional robust chance constrained model in
wind power estimation [22]. For controller design, LMI is also used. In [23], LMI was used for control
and stability analysis. Several sufficient conditions on stability and robust stability for sampled-data
systems and the uncertain sampled-data systems, respectively, have been provided in terms of LMI.
In an urban environment with heavy traffic, the transient current of battery of the small-sized electric
car is controlled by multi-objective L2-gain, which is formulated by LMI [24]. In wind generation
systems, the stability problems were reduced to a linear matrix inequality (LMI) problem and the
current controller was also designed by the LMI method [25]. For model predictive control (MPC) of a
quad-rotor platform, control took the form of linear matrix inequalities [26]. LMI control was used for
trajectory tracking instead of iterative learning control (ILC) [27].
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1.4. Scope and Contribution of this Study

This note proposes an optimal design method to enhance image quality in OIS systems. First,
performance limitations of the conventional methods are proposed and secondly a new optimal
method based on convex optimization is proposed. Since the proposed controller takes a flexible
shape, it can easily shape the closed loop systems, resulting in wide closed loop systems. No other
paper presents the performance limitations of the conventional methods and optimal solutions in OIS
systems. Image quality tests verify that the proposed method is apparently effective to reduce the
influences of the hand vibrations, resulting in clear and sharp images.

We summarize contributions of the note as follows.

• It is shown that the conventional methods have performance limitations on designing flexible
frequency responses because the plant to be controlled is type-0 system.

• From the relationship between sensitivity and complementary sensitivity functions, an indirect
design method for performance improvement is proposed and optimal design framework
is suggested.

• In order to reduce the plant resonance, the proposed method does not require any additional filters.
• The proposed method always satisfies the closed loop systems stability because the method is

based on Lyapunov stability.
• Unlike conventional methods, this note especially highlights phase responses of the closed

loop systems.

The proposed method is especially effective at night because exposure time of the camera is
longer, and more vibrations are introduced at night. Thus, this method is also applicable to automotive
applications including consumer electronics.

1.5. Organization of the Manuscript

The rest of the note is organized as follows. Section 2 analyzes a plant model and evaluates the
frequency response. In Section 3, convention design methods are presented. In the design of the
conventional controllers, a notch filter is introduced to suppress a resonance peak and the limitation
of the design flexibility is discussed. Section 4 contains a main idea, which is a flexible controller
design method based on convex optimization. In Section 5, image quality tests are performed by using
standard ISO resolution chart and in Section 6, the conclusions follow.

2. Plant Model

OIS requires two actuators because the lens for OIS should move in the XY-plane independently.
Additionally, the model of OIS along the single axis in the continuous time domain is represented by
second order systems

H(s) =
ω2

n
s2 + 2ςωns + ω2

n
· G =

2.527× 104

s2 + 75.4s + 1.421× 105 (1)

where ς = 0.1, ωn = 2 · π · 60 and G = 0.1778 are damping ratio, natural frequency, and actuator
driver gain, respectively [28,29]. Throughout the note, single axis systems are only considered, and the
designed single axis controller is expanded to parallel systems.

3. Performance Analysis of Conventional Methods

The identified model is lightly damped systems. Therefore, in the conventional method, a notch
filter is firstly designed to suppress oscillated responses of the plant as follows.

N(s) =
s2 + 2ςωns + ω2

n
s2 + 2ςmodωns + ω2

n
=

s2 + 75.4s + 1.421× 105

s2 + 533.1s + 1.421× 105 (2)
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Note that a numerator of N(s) cancels out the denominator of H(s) and applies a new
denominator, s2 + 2ςmodωns + ω2

n. ςmod = 0.707 is selected as a new and modified damping ratio
because with the damping ratio of 0.707, settling time and overshoot are absolute minimum in the
second order systems as shown in Figure 2.
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With N(s), combined H(s) · N(s) becomes well damped systems, which is utilized for
conventional controller design.

Figure 3 shows their frequency responses and it is shown that the notch filter suppresses a
frequency peak of H(s). Now, H(s) · N(s) is identified and modeled by new second order systems.
Zero order hold discrete time equivalent models of the two actuators in the state space are given by

Px,y =

{
xx,y(k + 1) = Ax,yxx,y(k) + Bx,yux,y(k)

yx,y(k) = Cx,yxx,y(k)
(3)

where Ax,y ∈ <2×2, Bx,y ∈ <2×1, Cx,y ∈ <1×2 and both (Ax, Bx, Cx) and
(

Ay, By, Cy
)

are stabilizable
and detectable and

Ax,y =

[
0.9315 0.0009
−133.6772 0.8606

]
, Bx,y =

[
0.0122

23.7715

]
, Cx,y =

[
1 0

]
, Dx,y = 0.

Since OIS systems are two-input and two-output systems, augmented systems P and
corresponding controllers C could be described as follows.

P =

[
Px 0
0 Py

]
, C =

[
Cx 0
0 Cy

]
(4)

Cx and Cy are controllers for X/Y axes respectively.
As conventional controllers, lead-lag, PID, pole placement, and current estimator based pole

placement were developed. However, these controllers take limited shapes to the given second order
systems, Px,y as follows.
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Figure 3. Models for optical image stabilization (OIS) systems.

In the controllers, there may be one or two slopes in the frequency responses as shown in Figure 4.
The slope in the high frequency affords stability margins whereas the slope in the low frequency plays
a role in command tracking performances. Therefore, in order to obtain better performances in OIS
systems, the slope in the low frequency should be steep or the command tracking area should move
to the right-side more. However, in that case, stability might be easily broken because the moving
slope encroaches on stability area. As an alternative, steeper slope in the low frequency, such as
−40 dB/decade, might be considered, but in the conventional controller it is nearly impossible because
the slopes should be a fixed value of ±20 dB/decade.

Electronics 2018, 7, x FOR PEER REVIEW  6 of 22 

 

 

Figure 3. Models for optical image stabilization (OIS) systems. 

In the controllers, there may be one or two slopes in the frequency responses as shown in 

Figure 4. The slope in the high frequency affords stability margins whereas the slope in the low 

frequency plays a role in command tracking performances. Therefore, in order to obtain better 

performances in OIS systems, the slope in the low frequency should be steep or the command 

tracking area should move to the right-side more. However, in that case, stability might be easily 

broken because the moving slope encroaches on stability area. As an alternative, steeper slope in 

the low frequency, such as −40 dB/decade, might be considered, but in the conventional controller it 

is nearly impossible because the slopes should be a fixed value of ±20 dB/decade. 

f

 Mag 

PID, lead-lag

lead, PD
Pole placement

PI

command tracking stability

-20dB/decade +20dB/decade

 

Figure 4. Frequency responses of conventional controllers. 

This limitation is caused by frequency responses of a plant and a controller. The plant (1) is a 

spring-mass-damper typed second order system, and this means slope of the low frequency gain is 

0 dB/decade. With the given plant, conventional controller cannot make the open loop function 

with −40 dB/decade. Figure 5 explains the characteristics. 

Figure 4. Frequency responses of conventional controllers.

This limitation is caused by frequency responses of a plant and a controller. The plant (1) is a
spring-mass-damper typed second order system, and this means slope of the low frequency gain is
0 dB/decade. With the given plant, conventional controller cannot make the open loop function with
−40 dB/decade. Figure 5 explains the characteristics.
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lead-lag controllers.

With lead or pole placement control, low frequency slopes of the open loop function is
0 dB/decade. If PID or lead-lag control is used, the low frequency slope would be −20 dB/decade.
Thus, with the conventional controllers, the maximally achievable slope is −20 dB/decade. The gentle
slope of the open loop transfer function limits the performance of command tracking. In this note, as a
conventional controller Cconv, current estimator based pole placement control is used.

Note Figure 6. For good command tracking, sensitivity function should move to the right-side.
However, if the slope of the open loop function is slow, sensitivity function cannot move to the
right-side, and therefore, wide bandwidth closed loop function cannot be obtained. Therefore, since
conventional controllers (PID or lead-lag case) have a maximum of−20 dB/decade in the low frequency
range, such wide band closed loop systems cannot be designed.
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4. Proposed Optimal Control

In order to obtain good image quality, command tracking performance is critical. For the good
command tracking, a wide closed loop transfer function, i.e., scaled complementary sensitivity function
T, should be designed and it can be obtained by a narrow sensitivity function S.

T + S = 1 (5)

Equation (5) implies that T and S cannot be made small simultaneously. Therefore, if S could
be smaller, then T could be larger [4]. Additionally, this means that influences induced from hand
vibrations can be reduced and accordingly sharp images can be obtained.

To design wide bandwidth closed loop systems, S should be narrow without destroying stability
and it is obtained by considering closed loop systems with fictitious output vibrations dx as shown
in Figure 7. Note that dx is not a real hand vibration but a virtual vibration defined to enlarge a
bandwidth of the closed loop systems.
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Figure 7. Closed loop systems with fictitious vibrations.

In addition, transfer functions are represented as follows.

T = yx
rx

= PxCx
1+PxCx

S = yx
dx

= 1
1+PxCx

zx
dx

= yx
dx
· zx

yx
= yx

dx
·W−1

x = S ·W−1
x

(6)

Equation (6) means that Equation (5) holds and S could take the form of W−1
x [17,18],

and additional features, such as special band disturbance rejection and DC bias rejection, W−1
x,i

could be added in W−1
x by simply multiplying corresponding functions [19], which affords flexible

design. Composite W−1
x is designed as follows. First of all, desired frequency responses are collected

independently, and the features are described by mathematical representations, W−1
x,i . Accordingly,

desired sensitivity function could be designed by

W−1
x = W−1

base ·
N

∏
i=1

W−1
x,i (7)

where W−1
base is for base line design of sensitivity function. In this note, since only closed loop systems

design with a wide bandwidth is addressed, the additional features are omitted.
To design such closed loop systems, W−1

x is written by

W−1
x = D


(

s/M1/n + ω∗B

)n

(
s + ω∗B · A1/n

)2

 (8)
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where D(·) is a discretization operator with 1 kHz sample frequency. M and A are upper and lower
bound of W−1

x and ω∗B is a zero dB cross over frequency [4]. In addition, a detailed illustration is given
in Figure 8.
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Figure 8. Design specification of W−1
x .

With u(k) = ux(k), y(k) = yx(k) and z(k) = zx(k), state space representations of Px, W−1
x are

defined by

Px =

{
xP(k + 1) = APxP(k) + BPu(k)

yp(k) = Cpxp(k) + Dpu(k)

W−1
x =

{
xW(k + 1) = AW xW(k) + BWuW(k)

yW(k) = CW xW(k) + DWuW(k)

(9)

where state space parameter of W−1
x ,AW , BW , CW , DW is determined during design of W−1

x , and plant
parameter is given by

AP =

[
0.9315 0.0009
−133.6772 0.8606

]
, BP =

[
0.0122

23.7715

]
, Cp =

[
1 0

]
, Dp = 0.

Then, zx(k) depicted in Figure 7 is calculated by

zx(k) = CW xW(k) + DWuW(k)
= CW xW(k) + DW(y(k) + dx(k))
= CW xW(k) + DW

(
Cpxp(k) + Dpux(k) + dx(k)

)
= DWCpxp(k) + CW xW(k) + CW xW(k) + dx(k) + DW Dpux(k)

(10)

yx(k) and xP(k + 1) are also captured by

yx(k) = Cpxp(k) + Dpux(k) + dx(k)
xP(k + 1) = APxP(k) + BPux(k)

(11)
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Finally, xW(k + 1) is calculated as follows.

xW(k + 1) = AW xW(k) + BWuW(k)
= AW xW(k) + BW(yx(k) + dx(k))
= AW xW(k) + BW

(
Cpxp(k) + Dpux(k) + dx(k)

)
= BWCpxp(k) + AW xW(k) + BWdx(k) + BW Dpux(k)

(12)

Using Equations (10), (11), and (12), augmented systems are represented by

x(k + 1) = Ax(k) + B1dx(k) + B2ux(k)
zx(k) = C1x(k) + D11dx(k) + D12ux(k)
yx(k) = C2x(k) + D21dx(k) + D22ux(k)

where x(k) =
[

xT
P(k) xT

W (k)
]T

and

A =

[
Ap 0
BWCP AW

]
, B1 =

[
0

BW

]
, B2 =

[
BP

BW DP

]
,

C1 =
[

DWCP CW

]
, D11 = DW , D12 = DW DP,

C2 = −
[

CP 0
]
, D21 = −1, D22 = −DP.

(13)

For designing Cx, Lyapunov stability based convex optimization is used. Thus, Cx always
stabilizes the closed loop systems.

Using Equation (13) and a linear program, an optimal controller is calculated as shown in Figure 9.
In the low frequency range, a gain is sufficiently high, which means designed controller yields good
command tracking performances. In the high frequency range, features of the phase-lead control
are observed, which affords stability margins, resulting in stable closed loop systems. The other
feature is also observed at 60 Hz. That is a typical form of the notch filter. However, throughout the
note, no notch filer has been designed in the proposed method. These positive features have been
simultaneously obtained in the proposed framework as shown in Equation (13).
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Compared conventional design methods, these characteristics are more obvious.
In the conventional controller design, a notch filter is firstly applied to the plant to suppress

a frequency peak and then feedback control is secondly designed. Therefore, the finally designed
controller is composed of the notch filter and the feedback controller. Figure 10 displays the composite
frequency responses. The composite controller Notch · Cconv yields stability margins in the high
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frequency range, and it takes the form of a notch filter at the resonance frequency of the plant.
However, the gain in the low frequency is still low and this incurs performance degradation on the
command tracking, but the proposed method affords all these features at once.
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5. Numerical Example and Discussions

In this simulation, an ideal pinhole camera model was used. As simulation parameters, object
distance defined by a distance between an object and a pinhole was 1 m and focal length defined
by a distance between the pinhole and an image sensor was 1.9 mm because a mobile phone was
considered. In addition, rotational vibration of hands is defined by 1 degree, which was measured
from lab tests. Then, the deviation from the optimal optical path ∆ was calculated by 1.9 mm/180 =
10.6 µm. For numerical example, Equation (3) is used for plants for both x- and y-direction control,
i.e., Px = Py. Additionally, for two-dimensional movements, the plants were augmented as shown in
Equation (4). Similarly, the corresponding controller was independently designed and augmented as
shown in Equation (4). In this example, two controllers have same frequency responses, i.e., Cx = Cy.

To design wide bandwidth closed loop systems, equivalently, narrow bandwidth sensitivity
function, desired sensitivity function was designed by using Equation (8). In this application, n = 4,
M = 10(−5/20), A = 10(30/20), ω∗B = 2π · 17 were selected to obtain high gain open loop function and
a narrow band sensitivity function and designed parameters are shown in Equation (14). The designed
weighting function and its state space representation of Equation (9) are as follows. For discretization
operator, matlab command ‘c2d’ was used.

W−1
x = D

(
(s/M1/n+ω∗B)

n

(s+ω∗B ·A1/n)
n

)
= D

(
s4+370s3+5.133×104s2+3.166×106s+7.32×107

0.5623s4+569.8s3+2.165×105s2+3.655×107s+2.315×109

)
= 1.778z4−6.419z3+8.689z2−5.228z+1.18

z4−3.105z3+3.615z2−1.871z+0.3631 ,

AW =


0.6703 −0.1717 −0.0810 −0.0289
0.2121 0.9768 −0.0110 −0.0039
0.0145 0.1270 0.9995 −0.0002
0.0003 0.0041 0.0640 1.0000

, BW ==


0.0530
0.0072
0.0003
0.0000

,

CW =
[

5.6515 11.4507 16.5819 16.9400
]
, DW = 0.5623.

(14)
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As n = 4, more steep slope could be obtained in the sensitivity function, and finally more wide
closed loop systems could be designed. With W−1

x , Cx is calculated using Equation (13) and it is
represented by

Cx =
56.24z6 − 278z5 + 578.4z4 − 647.1z3 + 409.7z2 − 138.9z + 19.63
z6 − 3.315z5 + 3.169z4 + 0.8439z3 − 3.353z2 + 2.077z− 0.4212

. (15)

In Figure 11, the designed controller suppresses the resonance peak of the plant and yields stability
margins, gain margin = 10 dB at 475 Hz and phase margin = 58.6 degree at 108 Hz. Note that the feature
of notch filter is observed in the finally designed controller Copt. This means that this flexible loop
shaping controller implicitly suppresses the plant resonance so that the finally designed sensitivity
function is not affected by the resonance. This feature makes controller design easy because we no
longer need additional notch filter design.
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Compared controller dynamics are shown in Figure 12. In the low frequency range, the gain of
the proposed method is higher than that of usual pole placement method. This feature makes desirable
high gain of open loop transfer function.
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Compared open loop transfer functions are shown in Figure 13. With the proposed controller
Copt, low frequency gain of the open loop function is higher than that of conventional method. This
implies that sensitivity function move to right-side and therefore wide command tracking is achieved.
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Closed loop systems are compared in Figure 14. Considering Figure 6, a command tracking
performance of the systems using the proposed method is improved and therefore the bandwidth of
the closed loop systems also increases.
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5.1. Vibrations Reduction Test: Quantitative Test

For tests in the time domain, the hand vibration signal dx,y was modeled and applied to OIS
systems. The hand vibrations were measured and analyzed in the previous study [16]. In general, dx,y
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is located at a low frequency range below 20 Hz. Thus, as hand vibrations, the following signals are
introduced with considering each magnitude.

d(t) = (sin(2π · 1 · t + θ1) + 0.8 sin(2π · 5 · t + θ2) + 0.6 sin(2π · 10 · t + θ3)

+0.4 · sin(2π · 15 · t + θ4) + 0.2 · sin(2π · 20 · t + θ5)) · 10.6× 10−6 (16)

where phase θi, i = 1, 2, 3, 4, 5 are all zero in the quantitative tests and random in the qualitative tests.
Figure 15 depicts performance comparisons in the time domain. In the low frequency range, vibrations
in both conventional and proposed methods are removed with similar attenuation rates. However,
in the high frequency range, attenuation rates are quite different.
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Summarized test results are shown in Table 1. In the very low frequency range below, performance
of the conventional method and the proposed method are almost the same because the two band
widths are enough to cancel out such low frequency vibrations. As the frequency increases, the gap
between two controllers increases because the bandwidths are different to each other. As the frequency
increases more, the gap decreases and the attenuation rate also decreases because the both methods
cannot reduce the vibrations anymore.

Table 1. Performance of vibration reduction.

Frequency of External
Vibration (Hz)

Attenuation Rate (%) Improved Rate (%)
Without S With S

1 97 97.2 0.2
5 91.9 95.5 3.6
10 85.6 92.3 6.7
15 77.2 88.5 11.3
20 67.4 78.5 11.1

Even though performance of single tone test result is good, random signal test would not be good
because the magnitude of the sum of the random phase vibrations can be larger than that of single tone
test. With setting random phases in Equation (16), deviations from the optimal optical path (∆) shown
in Figure 1 are measured. A histogram of the measured deviation is shown in Figure 16. In the test,
as the frame rate, 4 fps is used. External vibrations perturb the optical path and, accordingly, blurred
images are obtained. Thus, to obtain sharp images, the deviation should be minimized in the presence
of external vibrations. The proposed controller has narrower deviation, and this means a clear image
can be obtained.
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Figure 16. Histogram of distance deviations from optical center to actual optical path, ∆.

In Figure 14, the zero dB crossover frequencies of the conventional and the proposed closed loop
systems are 65 Hz and 105 Hz respectively and the two frequencies seem to be good enough to remove
low frequency vibrations located at 20 Hz. But, attenuation rates as shown in Table 1 are not so high.
This phenomenon is caused by a phase.

As show in Figure 17, in the low frequency range below 5 Hz, only small phase-lags are observed
in both systems. However, in the high frequency range over 5 Hz, phase lags are definitely different and



Electronics 2018, 7, 437 17 of 22

the proposed systems has a smaller phase-lag. In OIS systems, a reference signal is used to counteract
induced hand vibrations. However, as such phase-lags generate delayed reactions, accordingly,
the vibration rejection performance is degraded.
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5.2. Image Resolution Test: Qualitative Test

For the image quality test, the proposed controller was applied to ISO 12233 resolution test
chart, which is the ISO standard for measuring resolution of electronic still imaging cameras. In this
subsection, image quality tests were performed by bare eyes. After zooming Figure 18c,d, similar
blurring points were investigated. In the figure, red arrows indicate the similar burring points.
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Figure 18. (a) Original image; (b) In the presence of vibrations, OIS disabled; (c) In the presence
of vibrations, compensated image with the conventional method; (d). In the presence of vibrations,
compensated image with the proposed method.
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Additionally, as another high resolution test pattern, zone 720 hard edge pattern B was also tested.
In the same way, after zooming Figure 19c,d, similar blurring points were searched as well.
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Figure 19. (a). Original image; (b). In the presence of vibrations, OIS disabled. (c). In the presence
of vibrations, compensated image with the conventional method. (d). In the presence of vibrations,
compensated image with the proposed method.

In the above qualitative image tests, conventional methods can of course partially compensate
image blurring effectively, but the proposed method corrects the image blurring more precisely.

In addition, the proposed method could be applied to reject external vibrations induced
from unevenness of the road in automotive application, such as advanced driver assistance
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systems/autonomous driving (ADAS/AD). In the automotive application, stabilized vision images
are crucial to safety of drivers and pedestrians because recognition rate of traffic signs and citizens is
highly dependent on image quality [30].

6. Conclusions

This note presents performance limitations of the conventional method, and proposes a new
optimal design method for OIS systems. Firstly, performance limitations of the conventional methods
were addressed, and secondly a flexible control method was suggested. From the image quality tests,
it was verified that the proposed method precisely compensates the influences of the hand vibration.
This method is also applicable to low-light shooting (LLS) because exposure time at night should
be longer than in daylight, and the longer exposure time is more susceptible to external vibrations.
Thus, this method would be effective in robot vision and traffic sign and pedestrian detections in
automotive applications.

This note affords three main research results different from the previous results. First, in the
conventional control method, performance limitations were presented. And using relation between
sensitivity and complementary sensitivity functions, new optimal design without notch filters was
proposed. Unlike previous research, phase of the closed loop systems was highlighted, and it
was shown that the phase is more important in counteracting systems to external vibrations and
disturbances like the OIS system.
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