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Abstract: A nuclear fusion reactor requires a radiation-hardened sensor readout integrated circuit (IC),
whose operation should be tolerant against harsh radiation effects up to MGy or higher. This paper
proposes radiation-hardening circuit design techniques for an instrumentation amplifier (IA), which is
one of the most sensitive circuits in the sensor readout IC. The paper studied design considerations
for choosing the IA topology for radiation environments and proposes a radiation-hardened IA
structure with total-ionizing-dose (TID) effect monitoring and adaptive reference control functions.
The radiation-hardened performance of the proposed IA was verified through model-based circuit
simulations by using compact transistor models that reflected the TID effects into complementary
metal–oxide–semiconductor (CMOS) parameters. The proposed IA was designed with the 65 nm
standard CMOS process and provides adjustable voltage gain between 3 and 15, bandwidth up to
400 kHz, and power consumption of 34.6 µW, while maintaining a stable performance over TID effects
up to 1 MGy.

Keywords: radiation-hardened; instrumentation amplifier; sensor readout IC; total ionizing dose;
nuclear fusion

1. Introduction

Radiation effects on electronic components are critical issues in various fields, such as space,
medical imaging, and nuclear applications. Among them, nuclear fusion has been considered a safe and
effective solution to generate massive energy, while requiring accurate sensing systems to precisely control
environmental parameters in the nuclear fusion reactor, such as temperature, pressure, electromagnetic field,
etc. [1–3]. Thus, a sensor readout system, which amplifies sensor signals and provides digitized codes
to the back-end control system, plays an important role to guarantee reliability and safety of the nuclear
fusion system.

The sensor readout integrated circuit (IC) typically consists of four circuit blocks as shown in
Figure 1: instrumentation amplifier (IA), filter, analog-to-digital converter (ADC), and multiplexer
(MUX). The IA amplifies the small sensor signals, and the filter passes the signals in the frequency
band of interest. Then, the ADC converts the analog signals to digital codes, which are serialized
through the MUX and provided to the back-end control system. The IA is one of the most critical
circuits that needs to amplify the sensor signal accurately at the first stage of the sensor readout IC.
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However, the IA typically consists of variation-sensitive analog circuits, and its performance easily
suffers from parameter variations under radiation effects.Electronics 2018, 7, x FOR PEER REVIEW  2 of 10 
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Figure 1. Block diagram of the sensor readout integrated circuit (IC) system. IA: instrumentation
amplifier; ADC: analog-to-digital converter.

To reduce the radiation effects on the electronic components, three radiation-hardening methods
have been widely considered: radiation hardening by process (RHBP), radiation hardening by shielding
(RHBS), and radiation hardening by design (RHBD) [4–6]. While RHBP and RHBS, which improve the
radiation tolerance by enhancing the process parameters and using shielded packages, respectively,
have been effective ways for space and medical imaging applications, the nuclear fusion reactor suffers
from more harsh radiation environments with high integral dose of MGy or higher [2,3]. Therefore,
RHBD, which utilizes the optimized circuit structure against radiation effects, should also be considered
for the sensor readout IC, especially, sensitive analog circuits, in nuclear fusion systems [6–12].

Silicon-based transistors in ICs, such as CMOS and bipolar junction transistor (BJT), can be affected
by electrons, protons, and neutrons in radiation environments, which change the transistor parameters
and degrade the circuit performance. These radiation effects on transistors can be categorized into
three effects, i.e., total ionizing dose (TID), single event effect (SEE), and displacement damage (DD),
as summarized in Table 1 [11–15]. The analog circuits with CMOS transistors mainly suffer from TID
effects, which change the transistor parameters over time and are less vulnerable to SEE and DD effects.
Thus, the proposed IA focuses on improving the radiation tolerance against the TID effects.

Table 1. Radiation effects to silicon-based transistors in ICs.

Radiation Effects Cause Effects to Analog Circuits

Total ionizing dose (TID)
- High-energy particles get through

devices and produce electron–hole pair
- The holes are trapped in gate oxide

- Changes threshold voltages
- Increases leakage currents
- Changes transconductance
- Increases 1/f noise

Single event effect (SEE)
- High-energy particles impact a device

in a moment and change the voltage in
a device

- Changes voltages in capacitors
- Upsets data in memory or flip-flop

Displacement damage (DD)
- Silicon ions are deviated from crystal

lattice by high-energy particles.

- Critical in BJTs and Diodes
- Increases leakage current
- Less effects to CMOS

In addition, it is important to estimate the IA performance against TID effects during the design
stage. To accurately reproduce radiation effects on CMOS transistors, we utilized the compact transistor
models, whose parameters were degraded by TID and applied those compact models to SPICE circuit
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simulations. This compact model-based simulation methodology enables the precise estimation of the
IA performance before conducting experiments in actual radiation environments.

The rest of this paper focuses on detailed techniques for the radiation-hardened IA design and
performance verification through the compact model-based circuit simulation. Section 2 explains
design considerations for choosing the IA topology for radiation environments. Section 3 proposes
circuit techniques to improve the radiation tolerance in IAs. Section 4 describes how to use the compact
transistor models for SPICE circuit simulations with radiation effects. Section 5 shows model-based
simulation results, followed by concluding remarks in Section 6.

2. Radiation-Hardened IA Design

2.1. IA Topology Comparison

There is a variety of topologies of instrumentation amplifiers (IA) for sensor readout front-end
ICs, such as capacitive-feedback IA, current-feedback IA, and three-op-amp IA, depending on users’
requirements [16]. To design a radiation-hardened IA, it is essential to compare the performances in
radiation environments and choose the optimum IA topology that is robust against TID and SEE effects.

The capacitive-feedback IA uses a couple of capacitors in the feedback loop, and the voltage gain
is determined by the ratio between the capacitors. However, the voltage values across the capacitors
can vary because of unwanted charge injection by SEE, which results in inaccurate output voltages.
The current-feedback IA utilizes transconductance amplifiers at input and feedback paths to define its
voltage gain with the ratio of transconductance (Gm). The current-feedback IA has the advantages of
high common-mode rejection ratio (CMRR) and large input range, but the gain accuracy suffers from
TID effects, which change the transconductance values.

Compared to those IAs, the three-op-amp IA enables relatively stable voltage gain against TID
effects, since the gain is determined by the ratio between feedback resistors. While the three-op-amp
IA has the advantages of high-input impedance and good linearity over wide input–output ranges,
it is also less affected by SEE because the DC bias current flowing through the feedback loop keeps the
voltage values across resistors from instantaneous charge injection by SEE. Therefore, the three-op-amp
IA can be used as the radiation-hardened IA topology, which is less affected by both TID and SEE,
compared to other IAs. Table 2 compares the performance of various IA topologies against TID
and SEE.

Table 2. Performance comparison of IA topologies against total ionizing dose (TID) and single event
effect (SEE). Gm: transconductance.

IA Topologies Capacitive-Feedback IA Current-Feedback IA Three-op-amp IA

TID tolerance O
(Gain ∝ capacitor ratio)

X
(Gain ∝ CMOS Gm ratio)

O
(Gain ∝ resistor ratio)

SEE tolerance X
(Capacitor voltage changes)

O
(DC bias on feedback)

O
(DC bias on feedback)

2.2. Radiation-Hardened IA Structure

For the radiation-hardened IA, the op-amp circuits in the three-op-amp IA topology should also
operate properly against radiation effects. For accurate readout of sensor signals, the two-stage op-amp
with p-type metal–oxide–semiconductor (PMOS) input stages has been widely used thanks to its low
noise, high gain, and wide output range [16]. However, the op-amp performance, such as voltage gain,
bandwidth, and power consumption, can be degraded due to TID effects as follows: (1) threshold
voltage (Vth) variation due to TID effects leads the transistors to operate in improper triode regions
instead of saturation regions, especially, a tail current transistor in the input stage, and (2) bias currents
flowing through the op-amp vary by TID effects, affecting the amplifier performance.
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To overcome these limitations, we propose a radiation-hardened IA structure, which adopts
the three-op-amp topology and fully-differential structure, while employing TID effect monitoring,
Vth-insensitive current generator, and adaptive reference control. Figure 2 shows the conceptual
block diagram of the proposed radiation-hardened IA. The TID effect monitoring circuit, which is
reliably biased by the Vth-insensitive current generator, senses the Vth variation due to TID effects.
Then, the adaptive reference control circuit automatically adjusts the sensor reference voltage, VREF,
keeping the tail current transistors in op-amps, A1 and A2, to operate in saturation regions regardless
of Vth variation in the transistors. The voltage gain, which is defined as AV = [(R1 + Rsel + R1)/Rsel]
× [R3/R2], can be adjusted by digitally tuning the Rsel value, and the op-amp, A3, provides fully
differential output voltages, VOUTP and VOUTN, to the following ADC for accurate signal digitization.
The Vth-insensitive current generator also supplies the bias currents not only to the op-amps, A1–A3,
but also to the ADC for robust DC biasing against TID effects.
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Figure 2. Conceptual block diagram of the proposed radiation-hardened IA.

3. Circuit Details for Radiation-Hardened IA

3.1. TID Effect Monitoring

Figure 3 shows the conceptual and schematic diagrams of the TID effect monitoring circuit,
which can monitor the Vth variation of the CMOS transistor depending on the integral amount of
TID effects. In Figure 3a, the TID effect monitoring consists of the PMOS monitoring transistor, MM,
and the current source, IREF. Then, the monitoring voltage, VM, can be expressed as follows:

VM = VDD −VSG,MM = VDD −Vov,MM −Vth,MM (1)

where VDD is the supply voltage, and Vov,MM and Vth,MM are the overdrive and threshold voltages
of MM, respectively. If IREF has little variation against TID, then Vov,MM can be relatively constant,
and Vth,MM variation can be observed by monitoring VM, which changes as TID increases.

To generate a constant IREF against Vth variation by TID, we adopted a beta multiplier structure
to implement the TID effect monitoring circuit, as shown in Figure 3b. The n-type metal–oxide–
semiconductor (NMOS) transistors, M6 and M7, have different size ratio of 1:K, and the amplifier,
which consists of M1–M4, ensures that drain and gate voltages of M6 and M7 are the same. MM and M5

have the same size ratio, flowing the same bias current of IREF to M6 and M7, respectively. Then, IREF,
which flows through MM, can be defined relatively constant, regardless of Vth variation as follows:

VGS6 = VGS7 + IREFR2 =

√
2IREF

βN
+ Vth,M6 =

√
2IREF
KβN

+ Vth,M7 + IREFR2 (2)
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IREF =
1

βN

(
2

R22

)(
1− 1√

K

)2
(3)

where βN is µnCox(W/L), which are the NMOS transistor parameters, and assuming NMOS threshold
voltages, Vth,M6 and Vth,M7, are affected by TID in the same way. Therefore, Vth variation of the
monitoring transistor, MM, which depends on TID over time, can be monitored by observing VM.
The bias current, IBIAS, which supplies the op-amps in the IA, can be generated through M10.
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Figure 3. (a) Conceptual diagram and (b) schematic diagram of the TID effect monitoring circuit with
the Vth-insensitive current generator.

3.2. Adaptive Reference Control

The maximum input voltage level of the op-amps with PMOS input transistors, such as A1

and A2 in Figure 2, is limited as VDD − VSG,in − Vov,tail, where VSG,in is the source-gate voltage of
the PMOS input transistor, and Vov,tail is the overdrive voltage of the tail current source transistor.
However, the TID effects can change Vth of the transistors (typically increase Vth of PMOS transistors),
decreasing the maximum input levels, leading the tail current transistor to operate in the triode region
and finally degrading the op-amp performance.

To circumvent this situation, the adaptive reference control was utilized to automatically adjust
the sensor reference voltage, VREF, which is the common-mode input level of A1 and A2, as shown in
Figure 4. The adaptive reference control utilizes the TID effect monitoring and the additional resistor
R1 to generate VREF as VDD − VSG,MM − IREFR1. For example, if Vth of PMOS transistors increases due
to TID, which decreases the maximum input level of the op-amps, VREF (i.e., op-amp input levels) also
adaptively decrease to ensure that op-amp input stages are operating properly in saturation regions.
The detailed circuit to generate VREF is shown in Figure 3b, and the buffer amplifier, A4, drives the
sensor reference node with VREF.
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4. Compact Transistor Modeling with Radiation Effects

In order to observe the circuit performance with the TID effects, the Berkeley short-channel IGFET
Model (BSIM) 4 SPICE model was used in this work. The BSIM4 model is widely used as a standard
compact model in the industry and has been developed for silicon-based MOS transistors [17,18].
Figure 5a shows a 65 nm device structure using a 3D technology computer-aided design (TCAD)
simulation with the Silvaco Victory Device software. We evaluated the electrical characteristics considering
various channel widths (W) and channel lengths (L) of the device structure. Figure 5b shows VGS versus
ID characteristics with W = 1 µm and L = 65 nm. The TCAD simulation (circle symbols) showed excellent
agreement with the circuit simulation (lines). This indicates that our TCAD simulation exactly reflected
the devices used in the 65 nm CMOS process.
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Figure 6 shows the electrical characteristics of the device with TID effects for each Gy level.
Figure 6a shows VGS versus ID, and Figure 6b shows VDS versus ID. To obtain compact models for
each TID quantity, several levels of TID effects were applied to CMOS transistors through the TCAD
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simulation with the Silvaco Victory Device software, which generated corresponding I-V curves.
Then, BSIM parameters, such as VTH0 (long channel threshold voltage), VFB (flatband voltage),
VSAT (saturation velocity), CIT (interface trap capacitance), etc., which affect the threshold voltage,
subthreshold swing, and leakage current, were extracted from those I-V curves and utilized to develop
the compact models for each TID. The Vth shift phenomenon and the off-current increase, which were
caused by the TID effects, were confirmed. The I-V curve in Figure 6 was used for compact modeling
in the BSIM4 parameter extraction process for each cumulative dose. The BSIM4 parameters were
extracted by using Silvaco Utmost IV software. The flow chart of BSIM4 model parameter extraction
was detailed in a previous work [18]. In order to extract the BSIM4 parameters, the VGS versus ID curve
in linear and log scales and the VDS versus ID curve in linear scale were simultaneously considered.
The BSIM4 parameters were extracted by matching the linear and saturation regions of the I-V curve
by adjusting parameters such as Vth0, Vsat. [19,20].
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5. Simulation Results with Compact Transistor Models

The radiation-hardened IA in Figure 2 was designed in a 65 nm standard CMOS process with
a supply voltage, VDD, of 1.2 V and verified through the SPICE simulation. To emulate the TID
effects on circuit simulation, we also utilized the compact transistor models described in Section 4.
Each compact model included the TID effects of 1 kGy, 10 kGy, 100 kGy, and 1 MGy.

Figure 7 shows the reference current (IREF), monitoring voltage (VM), and sensor reference voltage
(VREF) of Figure 3 against the TID effects. While IREF was relatively constant at higher TID, VM showed
the Vth variation of the TID-monitoring PMOS transistor (MM in Figure 3). Then, VREF, which also
decreased at higher TID, could adaptively control the sensor reference level, ensuring TID-tolerant
IA operation. Figure 8 shows the voltage gain of the radiation-hardened IA against the TID effects.
In Figure 8a, the voltage gain of the radiation-hardened IA was set to 5 and showed a little variation
as TID increased. However, the conventional IA, which also had the three-op-amp structure but its
sensor reference level (VREF) was fixed to half VDD, had a significant drop of the voltage gain with TID
above 10 kGy, because some transistors in the op-amps could operate in triode regions, and their bias
currents significantly changed. On the contrary, the radiation-hardened IA could provide an adjustable
voltage gain between 3 and 15 over high TID effects, as shown in Figure 8b.
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The proposed IA aims for magnetic sensor signals in nuclear fusion reactors, in which the amplitude
can be up to 100 mV, so that the IA adopts the adjustable voltage gain range between 3 and 15.
Table 3 summarizes the overall performance of the radiation-hardened IA when the voltage gain was
set to 5 and TID was 0 and 1 MGy. While the proposed IA maintained similar levels of voltage gains
at the high TID of 1 MGy, the power consumption of the IA increased mainly as a consequence of Vth
variations and leakage currents of the transistors. The bandwidth of the IA decreased to 80 kHz at
TID of 1 MGy, but the proposed IA could still operate properly with sensor signals, whose frequencies
were typically of the kHz order or lower. Also, the proposed IA provides fully differential output
voltages, i.e., VOUTP and VOUTN, as in Figure 2, which enables a high power supply rejection ratio
(PSRR). When intended offsets of 5 mV were applied to the amplifiers in experimental practical cases,
the proposed IA achieved the PSRR of 81 dB, which could be maintained to 77.7 dB at TID up to 1 MGy.

Table 3. Overall performance of the radiation-hardened IA.

Specification TID = 0 Gy TID = 1 MGy

Process 65-nm standard CMOS
Supply voltage (V) 1.2

Voltage gain (V/V) * 5.008 4.812
Bandwidth (kHz) ** 240 80

Power consumption (µW) ** 34.6 98.3
Input referred noise (µV/

√
Hz) ** 0.94 1.12

Power supply rejection ratio (dB) *** 81 77.7

* Adjustable between 3 and 15, ** model-simulated when the voltage gain was set to 5. *** Intended offsets of 5 mV
were applied to the amplifiers in experimental practical cases.
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While there have been few previous studies about radiation-hardened IAs, the radiation-hardening
performance can be roughly compared with that of other analog circuits in sensor front-end systems,
such as ADCs and voltage references. The radiation-hardened delta-sigma ADC in reference [11]
showed 2.8% degradation (from 109 to 106 dB) in signal-to-noise-distortion ratio (SNDR) at TID up
to 1.36 MGy. In radiation-hardened voltage references, the bandgap reference as reported [7] showed
±0.8% variation (±1.5 mV) in reference voltages at TID up to 0.44 MGy, and the bandgap reference
reported in another study [12] achieved about ±3% variation (±18 mV) in reference voltages at TID
up to 4.5 MGy. Compared to those performances, the proposed radiation-hardened IA achieved 3.9%
degradation (from 5.008 to 4.812) in voltage gain at TID up to 1 MGy, showing competitive performance
of the circuit design techniques for radiation hardening. Also, it should be noted that the proposed
radiation hardening by design (RHBD) can be used along with RHBP and RHBS to further improve the
radiation tolerance of the electronic components.

6. Conclusions

A radiation-hardened instrumentation amplifier (IA), which needs to ensure a robust operation
against radiation effects such as TID and SEE, is an essential component of sensor readout systems in
harsh radiation environments such as nuclear fusion reactors. This paper studied design considerations
for choosing the IA topology for radiation environments and proposed the radiation-hardened IA
circuit with TID effect monitoring and adaptive reference control functions. The radiation tolerance of
the proposed IA was verified through the SPICE circuit simulations by adopting compact transistor
models that reflected the TID effects into CMOS parameters.
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