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Abstract: The performance of a direction-finding system is significantly degraded by the imperfection
of an array. In this paper, the direction-of-arrival (DOA) estimation problem is investigated in the
uniform linear array (ULA) system with the unknown mutual coupling (MC) effect. The system
model with MC effect is formulated. Then, by exploiting the signal sparsity in the spatial domain,
a compressed-sensing (CS)-based system model is proposed with the MC coefficients, and the problem
of DOA estimation is converted into that of a sparse reconstruction. To solve the reconstruction
problem efficiently, a novel DOA estimation method, named sparse-based DOA estimation with
unknown MC effect (SDMC), is proposed, where both the sparse signal and the MC coefficients
are estimated iteratively. Simulation results show that the proposed method can achieve better
performance of DOA estimation in the scenario with MC effect than the state-of-the-art methods, and
improve the DOA estimation performance about 31.64% by reducing the MC effect by about 4 dB.

Keywords: compressed-sensing; DOA estimation; sparse reconstruction; mutual coupling effect

1. Introduction

In array systems, the direction-of-arrival (DOA) estimation problems have been widely
investigated. A basic DOA estimation method is based on the discrete Fourier transform (DFT)
of the received signal in the spatial domain [1,2], but the resolution of such technique is limited,
and cannot estimate multiple signals in one beam-width. Usually, if one can distinguish two signals
within a beam-width (as defined by half the distance between the nulls of the central maximum),
this is defined as super-resolution [3]. To improve the performance of DOA estimation, methods
based on the maximum likelihood and the subspace have been proposed, such as the multiple signal
classification (MUSIC) method [4–6], the Root-MUSIC method [7], and the estimating signal parameters
via rotational invariance techniques (ESPRIT) method [8]. To estimate the DOA, the beamspace-based
methods have also been proposed [9]. The beamspace-based methods can design the beamspace matrix
to achieve a spatial beampattern that is as close as possible to a certain desired one. For example, tensor
modeling is adopted for the mono-static MIMO radar in [10] to design the transmit array interpolation
and the beamspace jointly. In the colocated multiple-input and multiple-output (MIMO) radar system,
Ref. [11] proposed a beamspace design method to estimate the DOA. A direction finding problem
is invested in [12], and an energy-focusing method is given. However, the subspace-based methods
for DOA estimation only consider the subspaces of signals and noise, and the signal sparsity has not
been considered.
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The robust beamformer algorithms dealing with possible mismatches have also been proposed.
For example, the worst-case performance is optimized in [13] with an arbitrary unknown
signal-steering vector mismatch. The extension of the Capon beamformer with uncertain steering
vectors and diagonal loading approaches is proposed in [14]. The doubly constrained robust Capon
beamformer with ellipsoid uncertainty set is proposed in [15]. The robust filters for radar pulse-Doppler
processing is proposed in [16], where the constraints of Doppler filter sidelobes and the uncertainties
are considered. The robustness of Capon beamformer against array steering vector errors and
noise is improved in [17] by the covariance matrix fitting. A robust beamforming via worst-case
signal-to-interference-plus-noise ratio (SINR) maximization with uncertainty model is proposed in [18],
where the maximization problem is solved by convex optimization.

The compressed-sensing (CS)-based methods have been proposed to exploit the sparsity of signals
in the spatial domain [19–27]. Ref. [9] proposes the iterative adaptive approach (IAA), multi-snapshot
sparse Bayesian learning (M-SBL) and maximum likelihood-based IAA (IAA-ML) to exploit the
sparsity in beamforming design. The Bayesian compressive sensing (BCS) is proposed in [28–30]
and used to reconstruct the sparse signals developed for the sparse signal reconstruction with the CS
measurements. an off-grid sparse Bayesian inference (OGSBI) method is proposed in [31] to improve
the sparse-based DOA estimation.

However, in a practical array system, we cannot ignore the mutual coupling (MC) effect between
antennas and the performance of DOA estimation is degraded significantly [32–34]. The methods
considering the unknown MC effect are proposed in [35–37]. Traditionally, the MC effects among the
antennas can be described by a symmetric Toeplitz matrix [38–40]. However, in the present papers,
the signal sparsity and the MC effect have not been considered simultaneously.

In this paper, the problem of DOA estimation is investigated in the scenario with an unknown
MC effect. By exploiting the signal sparsity in the spatial domain, compressed-sensing (CS)-based
system model with the additional MC coefficients is formulated. Then, the problem of DOA estimation
is converted into that of sparse reconstruction. A novel reconstruction method named unknown MC
effect (SDMC) is proposed and estimating the MC coefficients and the sparse signals iteratively. The
DOA estimation performance of the proposed method is compared with the state-of-the-art methods
in the uniform linear array (ULA) system. To summarize, we make the contributions as follows:

• The CS-based system model with unknown MC effect: A system model considering both the MC
effect and the signal sparsity is proposed and converts the DOA estimation problem into a sparse
reconstruction problem.

• The CS-based DOA estimation method with unknown MC coefficients: With the CS-based system
model, a novel CS-based method (SDMC) is proposed and estimates both the DOA and the MC
coefficient iteratively.

• The theoretical expressions of the gradient descent method: In the proposed SDMC method,
the MC coefficients are estimated by the gradient descent method, and the corresponding
expressions for the unknown parameters are derived theoretically.

The remainder of this paper is organized as follows. The ULA system model with MC effect is
elaborated in Section 2. The proposed method (SDMC) with unknown MC s presented in Section 3.
Simulation results are given in Section 4. Finally, Section 5 concludes the paper.

Notations: Matrices are denoted by capital letters in boldface (e.g., A), and vectors are denoted by
lowercase letters in boldface (e.g., a). CN (a, b) denotes the complex Gaussian distribution with the
mean being a and the variance being b. ‖ · ‖F, ‖ · ‖1, ⊗, Tr {·}, (·)∗, (·)T and (·)H denote the Frobenius
norm, the `1 norm, the Kronecker product, the trace of a matrix, the conjugate, the matrix transpose
and the Hermitian transpose, respectively. CM×N denotes the set of M× N matrices with the entries
being complex numbers. For a vector a, [a]n denotes the n-th entry of a.
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2. ULA System for DOA Estimation with MC Effect

2.1. System Model without MC Effect

In this paper, a uniform linear array (ULA) system is adopted to estimate the direction-of-arrival
(DOA), and the number of antennas is N with the inter-antenna element spacing being d. As shown
in Figure 1, the K unknown signals are received by the ULA system, and we denote the direction of
the k-th signal (k = 0, 1, . . . , K − 1) as θk. Then, the received signals are sampled with the sampling
frequency being fs, and the sampled signal during the mTs sampling time (Ts = 1/ fs denotes the
sampling interval) at the n-th antenna (n = 0, 1, . . . , N − 1) can be expressed as

yn,m =
K−1

∑
k=0

sk,mej2π nd
λ sin θk + wn,m, (1)

where sk,m denotes the k-th unknown signal during the mTs sampling time, λ denotes the wavelength,
and wn,m ∼ CN

(
0, σ2

n
)

denotes the additive white Gaussian noise (AWGN) with the variance being σ2
n

during the mTs sampling time.
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Figure 1. The ULA system for DOA estimation.

To simplify the expression of received signals, with an(θ) , ej2π nd
λ sin θ , we can define the following

steering vector

a(θ) ,
[
1, ej2π d

λ sin θ , . . . , ej2π
(N−1)d

λ sin θ
]T

, (2)

and collect the received signals from all antennas as

ym ,
[
y0,m, y1,m, . . . , yN−1,m

]T
. (3)

Then, we can have the following vector form of received signals during the mTs sampling time

ym =
K−1

∑
k=0

sk,ma(θk) + wm (4)

= A(θ)sm + wm

where we define A(θ) ,
[

a(θ0), a(θ1), . . . , aθK−1

]
, θ ,

[
θ0, θ1, . . . , θK−1

]T
, the noise vector is defined

as wm ,
[
w0,m, w1,m, . . . , wN−1,m

]T
, and the signal vector is sm ,

[
s0,m, s1,m, . . . , sK−1,m

]T
.
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When M samples are used to estimate the DOA, the received signals can be expressed as

Y = A(θ)S + W (5)

where Y ,
[
y0, y1, . . . , yM−1

]
, S ,

[
s0, s1, . . . , sM−1

]
, and W ,

[
w0, w1, . . . , wM−1

]
.

2.2. System Model with MC Effect

The system model in (5) has not considered the unknown MC effect between the antennas. When
we use the parameter cn to describe the MC coefficient between the n1-th (n1 ∈ {0, 1, . . . , N − 1}) and
n2-th (n2 ∈ {0, 1, . . . , N − 1}) antennas (|n1 − n2| = n, n ∈ {0, 1, . . . , N − 1}), the received signal in (5)
can be rewritten as

Y = CA(θ)S + W , (6)

where we define c ,
[
c0, c1, . . . , cN−1

]T
(c0 = 1). Usually, the MC effect can be described by a

symmetric Toeplitz matrix [32,38–40], so C denotes the Toeplitz matrix of MC effect

C , Toep{c} =


c0 c1 . . . cN−1

c1 c0 . . . cN−2
...

...
. . .

...
cN−1 cN−2 . . . c0

 . (7)

Finally, we obtain the system model of DOA estimation with unknown MC effect in (6). The DOA
vector θ will be estimated with the unknown parameters C and signals S in the following sections.

3. Sparse-Based DOA Estimation Method

3.1. Sparse System Model

By exploiting the signal sparsity in the spatial domain, a sparse-based DOA estimation method
is proposed to estimate the DOA with unknown parameters C and signals S. First, we discretize the

spatial angle into Q grids ζ ,
[
ζ0, ζ1, . . . , ζQ−1

]T
, and the corresponding dictionary matrix can be

formulated as

D ,
[
d0, d1, . . . , dQ−1

]
, (8)

where dq , a(ζq). Therefore, the received signals in (6) can be expressed as

Y = CDX + W (Mutual Coupling Matrix), (9)

where X is a sparse matrix. During the DOA estimation, we assume that the DOAs stay the same, so
the non-zero positions among the columns of X are the same. Therefore, the columns of X have the
same support set. The positions of non-zero entries in X indicate the corresponding DOA.

Then, the DOA estimation problem is converted into the sparse reconstruction problem (9). In the
traditionally sparse reconstruction problems, we usually have the following form

Y = Φ′Ψ′X + W (10)

where Φ′ and Ψ′ denote the measurement matrix and the dictionary matrix, respectively. Φ′ and Ψ′

are both known in the traditional CS problems. However, compare (9) and (10), and we can see that
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these two problems are different with the unknown MC matrix C. Therefore, the traditional methods
for the sparse reconstruction cannot be adopted directly.

With the matrix operations, the matrix D in (9) can be rewritten as G ,[
G(ζ0), G(ζ1), . . . , G(ζQ−1)

]
, where G(ζ) is defined as G(ζ) , G0(ζ) + G1(ζ). G0(ζ) and

G1(ζ) are respectively defined as

G1(ζ) ,


a0(ζ) a1(ζ) . . . aN−1(ζ)

a1(ζ) a2(ζ) . . . 0
...

...
. . .

...
aN−2(ζ) aN−1(ζ) . . . 0
aN−1(ζ) 0 . . . 0

 , (11)

G2(ζ) ,


0 0 . . . 0 0
0 a0(ζ) . . . 0 0
...

...
. . .

...
...

0 aN−3(ζ) . . . a0(ζ) 0
0 aN−2(ζ) . . . a1(ζ) a0(ζ)

 . (12)

Therefore, we can use the vector c to describe the mutual coupling effect, and the sparse-based
system model in (9) can be also rewritten by the following equation with a vector form of mutual
coupling effect

Y = G(X ⊗ c) + W (Mutual Coupling Vector). (13)

Finally, we can formulate two sparse-based system models for DOA estimation in (9) and (13),
where the DOA will be estimated with the unknown MC vector c and the unknown received signals X.
We will propose a novel DOA estimation based on the sparse reconstruction with unknown MC effect.

3.2. DOA Estimation with Unknown MC Effect

In this subsection, the sparse-based DOA estimation method will be proposed in the scenario
with unknown MC effect. Usually, the MC effect between antennas is much smaller than 1, i.e.,

|cn| � 1 (n ≥ 1). Therefore, the initial value of c can be chosen as
[
1, 01×N−1

]T
. Then, with the initial

value of MC vector, the sparse-based system model (9) can be used to reconstruct the sparse matrix
X. With the reconstructed X, we use the system model (13) to update the MC vector c, where the
gradient descent-based method is proposed. The details about the proposed DOA estimation method
with unknown MC effect is given in Algorithm 1, and the proposed algorithm is named as SDMC
(Sparse-based DOA estimation with unknown Mutual Coupling effect). In Algorithm 1, the sparse
reconstruction for DOA estimation in the scenario with unknown mutual coupling. The proposed
algorithm is based on the simultaneous orthogonal matching pursuit (SOMP) algorithm with multiple
measurement vectors (MMVs). The SOMP algorithm has been developed in [41–43] to show the
performance of sparse reconstruction. Therefore, with estimating the mutual coupling coefficients,
the proposed algorithm can achieve better estimation performance than SOMP algorithm.

At Step 14 of Algorithm 1, the gradient descent method is adopted to update the MC vector
iteratively. The gradient descent method is proposed in Algorithm 2. We use the following Lemma to
derive the gradient descent method.
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Algorithm 1 DOA estimation with unknown MC effect (SDMC algorithm).

1: Input: received signal Y , the dictionary matrix D, the number of signals K, the matrix G, and the

number of iterations Nite.

2: Initialization: the iteration indices i1 = 1 and i2 = 1, support set S = ∅, and the MC vector

ĉ =

[
1, 01×N−1

]T
.

3: while i1 ≤ Nite do

4: Obtain the MC matrix Ĉ = Toep{ĉ}.
5: Set i2 = 1, the support set S = ∅, and the residual matrix Zi2 = Y .

6: while i2 ≤ K do

7: I = arg maxq ‖ZH
i2 Ĉdq‖1.

8: S← S∪ I .

9: X̂ = 0Q×M.

10: X̂S,: = (ĈDS)
†Y

11: Zi+1 = Y − ĈDSX̂S,:

12: i2 ← i2 + 1.

13: end while
14: The gradient descent method is adopted to estimate the MC vector ĉ.

15: end while
16: Output: the estimated support set S, and the esitmated sparse matrix X̂.

Algorithm 2 MC effect estimation.

1: Input: received signal Y , the dictionary matrix D, the first order derivative of dictionary matrix Ξ,

the off-grid vector ν, iteration number Nite.

2: Initialization: i = 1, MC vector Ĉ = [1, 0T
1×(N−1)], step ι = 0.01δ.

3: while i ≤ Nite do

4: ei = g(ĉ).
5: if i >= 2 and ei > ei−1 then

6: ι← ι
2 .

7: end if
8: Obtain ∂g(c)

∂c from (18).

9: ĉ← ĉ− ι
∂g(c)

∂c

10: i← i + 1.

11: end while
12: Output: the estimated MC vector ĉ.
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Lemma 1. The complex vectors u ∈ CP×1 and v ∈ CP×1 are the functions of complex vector x ∈ CN×1, and
the derivation of uHv can be expressed as

∂uHv
∂x

= vT ∂(u*)

∂x
+ uH ∂v

∂x
. (14)

Additionally, when A ∈ CM×P is also a function of x, the derivation of Au is

∂Au
∂x

=
[

∂A
∂x0

u + A ∂u
∂x0

, . . . , ∂A
∂xn

u + A ∂u
∂xn

, . . .
]

. (15)

Proof. See Appendix A.

With the MC vector c, we define the objective function of gradient descent method from (13) as

g(c) = ‖Y −G(X ⊗ c)‖2
F , (16)

where g(c) is a real function. Then, the derivation of objective function subject to the MC vector c can
be obtained as

∂g(c)
∂c* =

∂ Tr
{
[Y −G(X ⊗ c)] [Y −G(X ⊗ c)]H

}
∂c* , (17)

where ∂g(c)
∂c* can be written as a vector. Therefore, the n-th entry of ∂g(c)

∂c* is[
∂g(c)

∂c*

]
n
=

∂g(c)
∂c*

n
(18)

= Tr

{
∂ [Y −G(X ⊗ c)] [Y −G(X ⊗ c)]H

∂c*
n

}

= Tr
{
−Y

∂(X ⊗ c)H

∂c*
n

GH + G(X ⊗ c)
∂(X ⊗ c)H

∂c*
n

GH
}

= Tr
{
−Y (X ⊗ en

N)
H GH + G(X ⊗ c) (X ⊗ en

N)
H GH

}
= Tr

{
GH [G(X ⊗ c)− Y ] (X ⊗ en

N)
H
}

.

Therefore, we can obtain ∂g(c)
∂c* , and realize the gradient descent method. We give

an example to estimate the MC coefficient. In the scenario with 4 antennas and one
signal, the MC vector is c =

[
1,−0.29074 + 0.090316i, 0.074697 + 0.067692i, 0.014648− 0.028532i

]
.

Figure 2 shows the mean square error (MSE) in estimating the MC coefficients with the
proposed iterative algorithm. After the 20 iterations, the estimated MC is estimated as
ĉ =

[
1,−0.22928 + 0.097898i, 0.00077922 + 0.016609i, 0.0078645− 0.0023455i

]
, and the corresponding

MSE is 0.0126. Therefore, the proposed method can be used to estimate MC coefficients, and improve
the DOA estimation performance.
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Figure 2. The estimation performance for mutual coupling coefficients.

4. Simulation Results

In this section, the simulation results about the DOA estimation in the uniform linear array (ULA)
system with unknown MC effect are given, and the simulation parameters are given in Table 1. All
experiments are carried out in Matlab R2017b on a PC with a 2.9 GHz Intel Core i5 and 8 GB of RAM.
The Matlab codes of SDMC algorithm have been available online at https://drive.google.com/drive/
folders/1SaWqd6TaHVCPxsD9gjXHgRjR2Pq7wHYH?usp=sharing. The DOA estimation performance
of the proposed method is compared the following methods

• MUSIC-like method proposed in [40] is a MUSIC-based method considering the MC effect.
• OGSBI method proposed in [31] is the method for DOA estimation based on the sparse

Bayesian inference.
• SOMP method proposed in [44] is a sparse reconstruction method and can be used in the DOA

estimation with multiple measurements.

Table 1. Simulation Parameters.

Parameter Value

The signal-to-noise ratio (SNR) of received signal 20 dB
The number of samples M 100
The number of antennas N 25

The number of antennas with MC effect N 8
The number of signals K 3

The space between antennas d 0.5 wavelength
The grid space 0.05◦

The direction range [−20◦, 20◦]
The minimum DOA space between signals 10◦

For three signals, we show the histogram bar chart of DOA estimation results in Figure 3, where
the ground-truth DOAs of three signals are −15.35◦, −1.9◦ and 12.95◦, respectively. 5000 Monte Carlo
experiments are carried out to show the estimated DOAs. The SNR of the received signal is 10 dB, and
the MC effect between adjacent antennas is −10 dB. In the simulations, the MC coefficient is generated
by the following expression

cn =

{
1, n = 0

(1 + αc)10
nβc
20 ejφc , n = 1, 2, . . .

(19)

https://drive.google.com/drive/folders/1SaWqd6TaHVCPxsD9gjXHgRjR2Pq7wHYH?usp=sharing
https://drive.google.com/drive/folders/1SaWqd6TaHVCPxsD9gjXHgRjR2Pq7wHYH?usp=sharing
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where αc and φc follow the uniform distribution in [−0.05, 0.05] and [0, 2π], respectively. βc is the
MC effect in dB between adjacent antennas. As shown in Table 2, the proposed method (SDMC)
can achieve much better performance of DOA estimation than the traditional method based on
SOMP. The successful ratio is defined as the probability of estimation error that is less than 0.1◦,
i.e., p(|θ̂ − θ| ≤ 0.1◦), where θ denotes the ground-truth DOA and θ̂ is the estimated DOA. Therefore,
by estimating the MC coefficients, the better DOA estimation performance can be improved using the
proposed method (SDMC).
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Figure 3. The histogram bar chart of DOA estimation results.

Table 2. DOA estimation results.

Ground-Truth SOMP Method Proposed Method

DOA Mean Variance Successful Ratio Mean Variance Successful Ratio

−15.35◦ −15.362◦ 7.2464× 10−3 87.74% −15.363◦ 2.3801× 10−3 98.76%

−1.9◦ −1.906◦ 3.0415× 10−3 97.62% −1.9178◦ 3.2941× 10−3 96.44%

12.95◦ 12.938◦ 8.3775× 10−3 83.68% 12.942◦ 2.0618× 10−3 99.36%

For different MC effect, Figure 4 shows the corresponding performance of DOA estimation using
the proposed method and the SOMP method. The DOA estimation performance is measured by the
root-mean-square error (RMSE)

RMSE ,

√
∑Ni−1

i=0 ‖θ̂i − θi‖2
2

KNi
, (20)

where with the i-th experiment, θi is vector with the ground-truth DOA and θ̂i is that with estimated
DOA, and Ni denotes the number of Monte Carlo experiments. As shown in this figure, the better
estimation performance can be achieved by the proposed method, and the effect of MC is reduced by
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about 4 dB using the additional estimation of MC coefficients. Moreover, the proposed method is more
efficient when the MC effect is from −8 dB to −12 dB.
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Figure 4. DOA estimation performance with different MC effect.

With the MC effect being −10 dB, the DOA estimation performance with different SNRs is given
in Figure 5. The curves “with perfect MC” are the DOA estimation performance with the perfect MC
information and are the best performance that can be achieved using the corresponding methods.
When the MC coefficients are unknown, and SNR is 20 dB, the RMSE of OGSBI method is 0.760◦, that of
the MUSIC-like method is 0.0629◦, that of SOMP method is 0.0761◦, and that of the proposed method is
0.043◦. Therefore, compared with MUSIC-like and SOMP methods, the DOA estimation performance
is improved about 31.64% and 43.50% by the proposed method. Moreover, with performance MC
information, the RMSE of SOMP method is 0.0352◦, so the gap between the proposed method and the
one with perfect MC information is about 18.13%.
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A
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���Ao��n
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Figure 5. DOA estimation performance with different SNRs.

We show the DOA estimation performance with different numbers of antennas in Figure 6.
As shown in this figure, by increasing the number of antennas, the DOA estimation performance
is improved. When we have more than 20 antennas, the proposed method achieves the best
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performance of DOA estimation. Since the more antennas can have better resolution in DOA estimation,
the proposed method is more efficient in the scenario with better resolution. Additionally, with more
antennas, the performance improvement by the proposed method is also more significant.
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Figure 6. DOA estimation performance with different numbers of antennas.

In Figure 7, the DOA estimation performance with different numbers of samples is shown, and
the number of samples is from 10 to 100. As shown in this figure, increasing the number of samples
can improve the DOA estimation performance. For the proposed method, the estimation error is
decreased from 0.0766◦ to 0.0435◦ (43.21%) with increasing the number of samples from 10 to 100.
When the number of samples is greater than 20, the proposed method can achieve the best estimation
performance than other methods including the OGSBI method, the MUSIC-like method and the
SOMP method. Therefore, the proposed method is efficient in the scenario with an unknown mutual
coupling effect.
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5. Conclusions

In this paper, the DOA estimation problem in the ULA system has been investigated with an
unknown MC effect. The system model with MC effect has been formulated. To exploit the signal
sparsity in the spatial domain, a CS-based method has been proposed to convert the problem of
DOA estimation into that of sparse reconstruction. Then, a novel method named SDMC is proposed
to estimate DOA by updating the sparse signals and the MC coefficients iteratively. Simulation
results show that the proposed method can improve the performance of DOA estimation significantly,
outperform the state-of-the-art methods, and reduce the MC effect about 4 dB. Future work will
probably focus on the DOA estimation problem in the scenario with moving platforms.
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Appendix A. Proof of Lemma 1

When the complex vectors u and v are the functions of x, we can obtain

∂uHv
∂x

=
[

∂uHv
∂x0

, ∂uHv
∂x1

, . . . , ∂uHv
∂xN−1

]
=
[

∂ ∑M−1
m=0 u*

mvm
∂x0

, . . . , ∂ ∑M−1
m=0 u*

mvm
∂xn

, . . .
]

=
[
. . . , ∑M−1

m=0
∂u*

m
∂xn

vm + u*
m

∂vm
∂xn

, . . .
]

=

[
. . . ,

(
∂u*

∂xn

)T
v + uH ∂v

∂xn
, . . .

]
= vT

[
∂u*

∂x0
, . . . , ∂u*

∂xn
, . . .

]
+ uH

[
∂v
∂x0

, . . . , ∂v
∂xn

, . . .
]

= vT ∂(u*)

∂x
+ uH ∂v

∂x
. (A1)

With A and u being the function of x, we can obtain the entry in m-th row and n-th column of
∂Au
∂x as

∂ [Au]m
∂xn

=
∂ ∑P−1

p=0 Am,pup

∂xn
(A2)

=
P−1

∑
p=0

∂Am,p

∂xn
up + Am,p

∂up

∂xn

= uT ∂[AT]m
∂xn

+ [AT]Tm
∂u
∂xn

=

[
∂A
∂xn

u + A
∂u
∂xn

]
m

,

so the n-th column of ∂Au
∂x is [

∂Au
∂x

]
n
=

∂A
∂xn

u + A
∂u
∂xn

, (A3)
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and

∂Au
∂x

=
[

∂A
∂x0

u + A ∂u
∂x0

, . . . , ∂A
∂xn

u + A ∂u
∂xn

, . . .
]

. (A4)
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