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Abstract: In this paper, we propose a Charuco board-based omnidirectional camera calibration
method to solve the problem of conventional methods requiring overly complicated calibration
procedures. Specifically, the proposed method can easily and precisely provide two-dimensional and
three-dimensional coordinates of patterned feature points by arranging the omnidirectional camera in
the Charuco board-based cube structure. Then, using the coordinate information of the feature points,
an intrinsic calibration of each camera constituting the omnidirectional camera can be performed
by estimating the perspective projection matrix. Furthermore, without an additional calibration
structure, an extrinsic calibration of each camera can be performed, even though only part of the
calibration structure is included in the captured image. Compared to conventional methods, the
proposed method exhibits increased reliability, because it does not require additional adjustments to
the mirror angle or the positions of several pattern boards. Moreover, the proposed method calibrates
independently, regardless of the number of cameras comprising the omnidirectional camera or the
camera rig structure. In the experimental results, for the intrinsic parameters, the proposed method
yielded an average reprojection error of 0.37 pixels, which was better than that of conventional
methods. For the extrinsic parameters, the proposed method had a mean absolute error of 0.90◦ for
rotation displacement and a mean absolute error of 1.32 mm for translation displacement.

Keywords: camera calibration; omnidirectional camera; virtual reality

1. Introduction

Recently, with the development of head-mounted displays, it has become possible to provide
users with immersive virtual reality (VR). In addition to computer graphics, capturing a real scene
with a camera and transferring it to a VR space has become imperative to providing VR content.
Moreover, to further increase the user’s degree of freedom (DoF) and immersion in the VR space,
various omnidirectional cameras, such as a dioptric camera [1], catadioptric camera [2–5], and
polydioptric camera [6–9], have been proposed. In this paper, we deal with the polydioptric camera
such as Facebook Surround 360 [10], Google Jump [11], Richo Theta [12], and Samsung Gear 360 [13].
These omnidirectional cameras are divergent structures and capture surrounding image information
simultaneously through overlapping the images from multiple cameras. To create real-world quality
VR content, since we need to extract the depth information instead of simply stitching the images, we
have to understand the internal characteristics and the geometric positions of the installed cameras.

For this purpose, two essential calibrations [14] must be performed. First, there is an intrinsic
calibration for measuring the sensor characteristic and lens distortion between cameras constituting
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the omnidirectional camera. Then, there is an extrinsic calibration for measuring the relative
three-dimensional (3D) positional difference (rotation and translation) among the cameras. Generally,
to find these calibrated parameters for a single camera, conventional methods artificially provide
planar feature points such as a chessboard. However, when applying these conventional calibration
methods to the omnidirectional calibration method, it is difficult for the cameras to share the same 3D
world coordinate system and the same method has to be repeated several times for each camera.

Whereas, a self-calibration is also well-studied after Duane [15] and Kenefick et al. [16] proposed
a bundle adjustment concept for lens distortion [17–19]. The self-calibration can estimate the intrinsic
parameters and the relative position from relative orientation through the bundle adjustment of
correspondence pairs extracted from captured multi-view images [20]. It has advantages that both
intrinsic and extrinsic calibrations can be performed at once without a calibration structure, and
absolute distance can also be estimated if there is an object (e.g., encoded marker) that tells the scale of
the real world in the image. However, this method has drawbacks that it depends on the quality of
correspondence pairs, and needs wide overlapped area so that the feature points of the images can be
shared. Therefore, it is difficult to apply it to our target omnidirectional camera, especially in case of
the divergent type.

We herein propose a new Charuco board-based omnidirectional camera calibration structure and
method for solving the problems of conventional camera calibration methods, which require overly
complicated procedures to accurately calibrate the omnidirectional camera. The proposed method is
based on the Aruco marker and a Charuco board [21] to perform the intrinsic calibration and extrinsic
calibration of multiple cameras comprising the omnidirectional camera. Specifically, the Charuco board
pattern is placed inside a cube structure so that it can easily and precisely provide two-dimensional
(2D) and 3D coordinates for the patterned feature points. Through the proposed method, it is possible
that multiple cameras can share the same 3D world coordinate system by utilizing feature point
information from the Charuco board pattern, even if the image captured by a given camera does not
overlap with the other images captured by the opposite camera. Additionally, the proposed structure
allows both intrinsic and extrinsic calibrations, eliminating the necessity for additional structures in
the overall calibration process. If only a part of the calibration structure is included in the captured
image (i.e., at least one Aruco marker is in the captured image) [22,23], it is possible to calibrate the
omnidirectional camera. Moreover, via the proposed calibration method, the camera position can be
visualized on the virtual 3D space using the obtained rotation and translation information.

This paper is organized as follows. Section 2 introduces the concepts of camera calibration and
its existing methods. Section 3 explains the proposed calibration structure and the procedure of the
proposed calibration method. In Section 4, we introduce the experimental setting and results obtained
by the proposed method, compared to the conventional method. Finally, in Section 5, we conclude
the paper.

2. Related Works

2.1. Single Camera Calibration

Based on the pinhole camera model, a camera captures an image by mapping a one-to-one
relationship between a point Q = (X, Y, Z) in a 3D world coordinate system and a pixel q = (x, y) in
a 2D image coordinate system, as shown in Figure 1. This mapping is called a perspective projection
transformation, which can be easily expressed with homogeneous coordinates [14]. Figure 1 shows
homogeneous coordinates that can represent multiple 3D points projected at the same position on
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the image plane as a single coordinate. Perspective projection transformation on the homogeneous
coordinates can be expressed as follows:
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where s is a nonzero scale factor, fx and fy are indices of x and y axes for a focal length between a
pinhole and an image sensor in pixels, skew_c is a skew coefficient of the image sensor array, and cx

and cy are indices of x and y axes for a principal point on image coordinate system. A, R, and t are a
camera matrix, a rotation matrix, and a translation matrix, respectively. P is a projection matrix.
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Figure 1. Pinhole camera model and perspective projection transformation. 

The parameters representing the characteristics of the camera (e.g., focal length, skew coefficient, 
and principal point) are intrinsic parameters, represented by the camera matrix, A . The parameters 
related to geometric relations, such as rotation and translation between the 3D camera coordinate 
system and the 3D world coordinate system, are extrinsic parameters. R  and t  are rotation and 
translation matrices, respectively, for transforming the world coordinate system into the camera 
coordinate system. Therefore, intrinsic and extrinsic parameters are essential when calculating an 
image coordinate of the projected 3D points, or vice versa. The overall process of estimating these 
parameters is the camera calibration. 

Conventional camera calibration methods mainly focus on estimating intrinsic parameters of a 
single camera. After Tsai [24] first performed a calibration using a 3D object, to simplify it, Zhang [25] 
used a 2D chessboard for finding optimal parameters through the least-squares approximation. The 
chessboard helps to detect the invariant feature points (i.e., corner points) in the captured image, so 
that it can easily find corresponding coordinates (2D chessboard coordinate and 2D image 
coordinate) of feature points. Then, as an optimal solution, it selected parameters that minimized the 
average reprojection error for all feature corner points in images that captured from various angles. 

Thereafter, several methods for estimating extrinsic parameters of the camera (i.e., camera pose 
estimation) were proposed using a strong invariance feature points in addition to the existing chess 
board [26-28]. Tang et al. [26] proposed a method estimating the extrinsic parameters of the camera 
based on the array plane, using the robust and flexible characteristics of AprilTag [29]. Dong et al. 
[27] proposed arbitrarily distributed encoded targets, based on close-range photogrammetry to 
provide indices to feature points. Even if a small part of the target plane is captured by a camera, it 
can perform the extrinsic calibration. Carrera et al. [28] proposed an extrinsic calibration that 
combines camera motion through a robot and a visual simultaneous localization and mapping 
algorithm [30] without a calibration pattern. 

Additionally, methods for calibrating both intrinsic and extrinsic parameters were proposed [31-
35]. Li et al. [31] proposed a method of creating a random pattern by reverse-engineered scale-
invariant feature transform [36], which detects feature points that are highly invariant to various 
distortions. Strauß et al. [32] proposed a method combining the advantages of existing intrinsic and 

Figure 1. Pinhole camera model and perspective projection transformation.

The parameters representing the characteristics of the camera (e.g., focal length, skew coefficient,
and principal point) are intrinsic parameters, represented by the camera matrix, A. The parameters
related to geometric relations, such as rotation and translation between the 3D camera coordinate
system and the 3D world coordinate system, are extrinsic parameters. R and t are rotation and
translation matrices, respectively, for transforming the world coordinate system into the camera
coordinate system. Therefore, intrinsic and extrinsic parameters are essential when calculating an
image coordinate of the projected 3D points, or vice versa. The overall process of estimating these
parameters is the camera calibration.

Conventional camera calibration methods mainly focus on estimating intrinsic parameters of a
single camera. After Tsai [24] first performed a calibration using a 3D object, to simplify it, Zhang [25]
used a 2D chessboard for finding optimal parameters through the least-squares approximation.
The chessboard helps to detect the invariant feature points (i.e., corner points) in the captured
image, so that it can easily find corresponding coordinates (2D chessboard coordinate and 2D image
coordinate) of feature points. Then, as an optimal solution, it selected parameters that minimized the
average reprojection error for all feature corner points in images that captured from various angles.

Thereafter, several methods for estimating extrinsic parameters of the camera (i.e., camera pose
estimation) were proposed using a strong invariance feature points in addition to the existing chess
board [26–28]. Tang et al. [26] proposed a method estimating the extrinsic parameters of the camera
based on the array plane, using the robust and flexible characteristics of AprilTag [29]. Dong et al. [27]
proposed arbitrarily distributed encoded targets, based on close-range photogrammetry to provide
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indices to feature points. Even if a small part of the target plane is captured by a camera, it can perform
the extrinsic calibration. Carrera et al. [28] proposed an extrinsic calibration that combines camera
motion through a robot and a visual simultaneous localization and mapping algorithm [30] without a
calibration pattern.

Additionally, methods for calibrating both intrinsic and extrinsic parameters were proposed [31–35].
Li et al. [31] proposed a method of creating a random pattern by reverse-engineered scale-invariant
feature transform [36], which detects feature points that are highly invariant to various distortions.
Strauß et al. [32] proposed a method combining the advantages of existing intrinsic and extrinsic
calibration methods using a coded checkerboard. Yu et al. [33] proposed a camera calibration using
a virtual large planar target for a camera with a large field of view (FoV). Fraser [34,35] proposed the
different distribution coded targets to automate process of calibration.

2.2. Omnidirectional Camera Calibration

Unlike the single camera calibration, multi-camera calibration requires that two or more cameras
share the same coordinate space. In the case of stereo camera calibration, the relationship between two
camera coordinates sharing the same object is estimated through epipolar geometry [20]. As shown in
Figure 2a, for a point in the world coordinate system, Q, the points projected on the image plane
of the left and right cameras are qL and qR, respectively. Additionally, we can use the fundamental
relationship, qRFqL = 0, to estimate the parameters of the fundamental matrix, F [20]. However,
in the case of a divergent structure, such as a polydioptric omnidirectional camera as shown in
Figure 2b, there is a limitation to applying an epipolar geometry, because acquiring the same feature
point from the opposite directions is impossible. To overcome these problems, methods using mirrors
and reflected images [37,38] have been proposed. However, there are disadvantages that the size
of a mirror and the distance from the camera must be accurately calculated. Additionally, angle
calculation of the mirror plane is complicated, because all pattern information must be provided
to each camera constituting the omnidirectional camera. Furthermore, as the number of individual
cameras increases, the number of calibration structures must increase. Zhu et al. [39] also proposed
omnidirectional camera calibration combined with conventional methods [25,31], but it was difficult to
provide accurate world coordinate systems, because it irregularly arranged patterns in a space rather
than using a single structure. Tommaselli et al. [40,41] proposed a catadioptric omnidirectional camera
calibration with the Aruco [21] 3D terrestrial calibration field. Campos et al. [42], Khoramshahi and
Honkavaara [43] proposed a polydioptric omnidirectional camera calibration with the coded target
surface room. However, these methods [40–43] are difficult to maintain the illumination condition of
room which has to be uniform to detect the coded feature points, and need a large amount of space to
calibrate the target camera structures.
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3. Proposed Method

3.1. Proposed Calibration Structure

We herein propose a Charuco board-based cube structure and a method to perform both intrinsic
and extrinsic calibrations of the omnidirectional camera as shown in Figure 3. We designed the
proposed structure placing four different 10× 10 grid Charuco board patterns [21] on the each face
(front, back, left, and right) of the 60× 60× 60 cm3 acrylic material cube. The length and orthogonality
were obtained using an accuracy of 0.02 mm Vernier calipers and 0.0573◦ vertical meter, respectively.
The Charuco board is a combination of Aruco markers [21] and a chess board, where the Aruco markers
can support the distinction of the designated 3D coordinates of corner points on the chessboard via their
marker identification (ID). Therefore, if only a part of the calibration structure (e.g., an Aruco marker) is
included in the captured image, it becomes possible to calibrate the intrinsic parameters. Furthermore,
without an additional calibration structure, extrinsic calibration can be performed to estimate the
absolute 3D position difference (rotation and translation). Compared to the conventional methods, the
proposed method increases reliability, because it does not require the additional adjustments to the
angle of the mirror or the positions of several pattern boards. Additionally, the proposed method can
calibrate the omnidirectional camera independently regardless of the number of cameras constituting
the omnidirectional camera or the camera rig structure. Moreover, with applying the cube structure,
calculating the rotation and the translation between the world coordinate system and the camera
coordinate system is less complicated than conventional methods, because it can provide a Cartesian
coordinate with the high reliability. The overall process of the proposed method is shown as Figure 4
and Algorithm 1. Proposed method consists of three steps: (1) intrinsic calibration, (2) extrinsic
calibration, and (3) visualization of the camera position. Our algorithm searches Aruco markers
and corner points in the given input images to identify the 2D board coordinate and the 3D world
coordinate of the corner points. Then, it finds the matching pair and solves the non-linear least-squares
problems to estimate the optimal parameters. A detailed description of the algorithm is given in the
next section.
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3.2. Intrinsic Parameters Estimation of the Omnidirectional Camera

The principle of estimating intrinsic parameters is as follows. By considering the actual
board–square length and the ratio of the Aruco marker and the Charuco board, we can designate the
world coordinates of each corner point in advance. For the individual camera calibration, we place the
omnidirectional camera inside the proposed calibration structure, as shown in Figure 5. Regardless
of the center of the structure, the omnidirectional camera can be positioned where it can capture at
least one Aruco marker in the pattern, considering the focal length and illuminance conditions. Then,
the inside of the structure is captured by rotating the rig around the center of the tripod. In this
case, at least two images having a common feature point must be captured to estimate the intrinsic
parameters. From the captured images, we proceed corner-point detection and designate the 2D
board coordinate of the detected corner point by using the near-marker ID information. Then, we
match the 2D board coordinate and the image coordinate of the same corner point and estimate the
intrinsic parameters. Specifically, let CAMi be the individual camera, and Ij, j = 1, . . . , N be the
one of N images captured by CAMi. The detection processes for the corner points and the Aruco
marker ID are performed on Ij, and the 2D board coordinate of the corner point, P, is designated as
shown in Figure 5. (Refer to Garrido-Jurado et al. [21] for more details on marker detection.) For
the Aruco marker ID, k, the top-left corner point’s board coordinate is designated as (k, 1), and the
top-right corner point’s board coordinate is designated as (k, 2), and so on. Additionally, considering
the lens distortion model, the relationship between the image coordinate, P = (x, y), normalized image
coordinate, Pn = (xn, yn), and distorted normalized image coordinate, Pdn = (xdn, ydn), of the corner
point can be expressed in Equations (2) and (3). Based on the pinhole camera model, normalized
image coordinate point, Pn = (xn, yn), is distorted by the lens before projection to the image sensor.
We only consider the radial and tangential distortion of the lens, approximated through Taylor series
as in Equation (2). And we do not consider the fisheye lens distortion model which covers up to 180◦.
Then, the distorted normalized image coordinate point, Pdn = (xdn, ydn), is multiplied by the camera
matrix, A, to obtain the image coordinate point, P = (x, y), as in Equation (3). After detecting M corner
points in image Ij, for the paired image coordinate Pm = (xm, ym) and the distorted normalized image
coordinate Pm_dn = (xm_dn, ym_dn) of each corner point Pm,m=1,...,M, we set the optimal camera matrix,
Ai∗, of CAMi to minimize the reprojection error in Equation (4). In the proposed method, we use the
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Levenberg–Marquardt method [44] to find the optimal parameters. And we set a skew coefficient,
skew_c, as zero since the image sensor array is solid state.

D(xn, yn) =

[
xdn
ydn

]
= (1 + k1(rn)

2 + k2(rn)
4 + k3(rn)

6)

[
xn

yn

]
+

[
2p1xnyn + p2{(rn)

2 + 2(xn)
2}

p1{(rn)
2 + 2(yn)

2}+ 2p2xnyn

]
((rn)

2 = (xn)
2 + (yn)

2)

(2)

 x
y
1

 =

 fx skew_c cx

0 fy cy

0 0 1


 xdn

ydn
1

 = A

 xdn
ydn
1

 = AD(xn, yn, 1) (3)

where D is a lens distortion model, k1, k2, and k3 are radial distortion coefficients, p1 and p2 are
tangential distortion coefficients, and rn is the Euclidean distance from a principal point on the
normalized image coordinate.
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Figure 5. Acquisition of corner point coordinates from omnidirectional camera images and the
Aruco marker.

After detecting M corner points in image Ij, for the paired image coordinate Pm = (xm, ym) and
the normalized image coordinate Pm_n = (xm_n, ym_n) of each corner point Pm,m=1,...,M, we set the
optimal camera matrix Ai∗ and the optimal lens distortion Di∗ of CAMi to minimize the reprojection
error in Equation (4). In the proposed method, we use the Levenberg-Marquardt method [44] to find
the optimal parameters.

Ai*, Di* = argminA,D[
M

∑
m=1

Erep{Pm, AD(Pm_n)}2] (4)

where Erep is a reprojection error between two points, Pm and AD(Pm_n).

3.3. Estimation of Extrinsic Parameters Using Estimated Intrinsic Parameters

For omnidirectional camera extrinsic calibration, we fix the camera rig and arrange the proposed
calibration structure to capture the images one-by-one for each camera. After finding the corner points
of the Charuco board from the captured images, we find the mapping relation between the 2D image
coordinate and the 3D world coordinate of the corner points. For the image coordinate and 3D world
coordinate of the specific corner point, the relationship between these coordinates can also be expressed
as in Equation (1).

Specifically, for the camera CAMi, after detecting M corner points in the image, the paired
image coordinate Pm = (xm, ym) and the 3D world coordinate Pm_world = (Xm_world, Ym_world, Zm_world)

of each corner point Pm,m=1,...,M, is set as the extrinsic parameters of CAMi, which minimizes the
Euclidean distance in Equation (5). Here, we use the camera matrix Ai∗ and the lens distortion Di∗,
estimated in Section 3.2. Then, we use the Levenberg-Marquardt method [44] to find the optimal
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solution, Ri∗ and ti∗, to map the image coordinate and 3D world coordinate pairs. Finally, we obtain
the rotation and translation information of each camera:

Ri*, ti* = argminR,t[
M

∑
m=1

d{Pm, Ai*Di*([R|t]Pm_world)}2] (5)

where d is a Euclidean distance between two points, Pm and Ai*Di*([R|t]Pm_world).

4. Experimental Setting and Result

4.1. Experiment on Proper Size of Calibration Pattern Unit

Before executing a proposed calibration experiment, we conducted the experiment on the proper
size of the used pattern unit to improve the detection of the marker in the proposed calibration
structure. The pattern unit means one white square containing the Aruco marker on the Charuco board.
Since the resolution, FoV, and distance from the pattern of the camera are changed every time, it is
difficult to derive the physical scale (mm) for the proper size of the pattern unit in the captured image.

Therefore, we derived the appropriate size of pattern unit on pixel scale. For the experiment, the
distance between the camera and the pattern, and the size of the Charuco board were kept constant
as shown in Figure 6a. The size of the pattern unit was adjusted and captured as shown in Figure 6b.
Also, as the main purpose of the Charuco board is to provide the feature points, the accuracy was
derived from the correctly detected number of corner points compared to the actual number of corner
points in the captured image. Additionally, the camera was rotated and 10 images were taken for each
pattern at various angles. The experimental results are shown in Table 1. The accuracy of the detected
corner point was 97% or more when the length of one pattern unit in the captured image exceeds
about 100 pixels. As a result, without the consideration for camera resolution, FoV, and distance from
the pattern, we required the length occupying more than 100 pixels in the captured image for the
accurate calibration.
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Figure 6. (a) Experimental setting to find proper size of calibration pattern unit and (b) the Charuco
board with various sizes.

Table 1. Corner points detection accuracy of various sized Charuco boards.

The Total Number of Patterns in the
Given Area

5× 5 10× 10 15× 15 20× 20 25× 25

Pattern unit length (Unit: pixel) 370 190 130 100 80

The number of actual corner points in
the captured image

16 81 196 361 576

The number of correctly detected
corner points in the captured image

16 78.91 194.64 353.82 524.27

Accuracy (%) 100.0 97.42 99.30 98.01 91.02
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4.2. Experimental Setting and Process

We experimented with the proposed omnidirectional camera calibration structure. In the experiment,
we used a camera rig with 360◦ horizontal coverage. Additionally, we used a pentagonal rig as a target
omnidirectional camera rig to combine with the five-stereo shape. Compared to the circular rig with
overlapping regions, the pentagonal rig has large overlapping regions where the cameras are parallel and
few overlapping regions where the cameras diverge. With the target rig, we used 10 GoPro Hero4 Blacks
(GoPro Inc., San Mateo, CA, USA) [45]. The resolution of each camera was 2250× 3000 pixels, vertical FoV
was 94.4◦, and horizontal FoV was 72.2◦. The structure of the target rig and the overlapping area between
the cameras are shown in Figure 7. During the experiment, 10 cameras were captured simultaneously
using the remote controller provided by GoPro. For the proposed calibration and the visualization of the
calibration results, OpenCV camera calibration example code [46], Charuco library [47], and the camera
calibration toolbox for Matlab [48] were used, respectively.
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Figure 7. Target omnidirectional camera rig structure and field of view coverage.

For the intrinsic calibration of the omnidirectional camera, the camera rig was placed in the
proposed calibration structure. By rotating the rig, 20 images were obtained for each camera, as shown
in Figure 8a. Then, we obtained the intrinsic parameters of each camera that minimized the reprojection
error for the 20 images of that camera. Next, for the extrinsic calibration, the camera rig was fixed in
the proposed structure. We then captured one image for each camera, as shown in Figure 8b. For the
captured images, we obtained the extrinsic parameters of each camera to minimize the Euclidean
distance. Then, based on the estimated rotation and translation information, the position of the
individual camera constituting the rig was visualized in a 3D space.
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4.3. Experimental Results

The performance evaluation of the proposed calibration method was divided into two parts:
(i) accuracy of the intrinsic parameters and (ii) accuracy of the extrinsic parameters. First, the accuracy
of the intrinsic parameters of the individual cameras constituting the omnidirectional camera were
evaluated. After detecting the feature points for 20 images of 10 cameras, we calculated the average
reprojection error for each camera through the estimated intrinsic parameters of (4). Additionally, we
compared the proposed method with Zhang’s method [25] which is the one of the commonly-used
conventional camera calibration methods, and with the method of Li et al. [31] which uses a random
pattern as an invariant feature to calibrate even if the image is partially captured. Using Zhang’s and
Li et al.’s methods, we captured 20 images of their pattern, and we compared the average reprojection
error, as shown in Table 2 and Figure 9a. For 10 cameras, the average reprojection error of the proposed
method was 0.37 pixels: 0.2 pixels fewer than Zhang’s method, and 0.3 pixels fewer than Li et al.’s
method. Additionally, unlike Zhang’s method, it was possible to calibrate, even if the entire pattern
board had not been captured at the image. Therefore, it was confirmed that intrinsic calibration of the
omnidirectional camera is possible without the problems of the conventional method, where the same
procedure must be repeated for each camera.

Table 2. The reprojection error of proposed method and conventional method.

(Unit: pixel) CAM1 CAM2 CAM3 CAM4 CAM5 CAM6 CAM7 CAM8 CAM9 CAM10 m σ

Proposed 0.31 0.44 0.36 0.36 0.36 0.48 0.42 0.47 0.23 0.29 0.37 0.08

Zhang [25] 0.48 0.44 0.47 0.46 0.50 0.51 0.64 0.62 0.54 0.51 0.52 0.07

Li et al. [31] 0.59 0.79 0.57 0.61 0.61 0.59 0.61 0.68 0.58 0.54 0.62 0.07
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absolute error; and (c) translation mean absolute error.

Second, the accuracy of the estimated extrinsic parameters was evaluated. Because obtaining the
ground truth of the 3D world coordinate system of the camera is difficult, we rotated and translated
the camera rig, as in Figure 10. We compared it with the calculated displacement via estimated
extrinsic calibration. The rig was rotated in 60◦ increments and translated at 30-mm increments.
The result of extrinsic calibration is more accurate when the mean absolute error is closer to zero.
The experimental results for each of the rotations and translations are shown in Tables 3 and 4, and
Figure 9b,c, respectively. From the results, we can see that the rotation error and the translation error
were about 0.90◦ and 1.32 mm, respectively. Additionally, we confirmed the visualization results.
The posture of multiple cameras can be easily confirmed by visualizing the estimated pose of each
camera in three dimensions. We used the estimated extrinsic parameters (e.g., translation and rotation
vectors) to allow for additional alignments (e.g., pan and tilt) of the individual camera constituting
the omnidirectional camera. For the given position of the omnidirectional camera, as Figure 11a, we
visualized the calibration results of the proposed method as in Figure 11b. To compare the proposed
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calibration method, we proceeded with a chain-wise stereo camera calibration and visualized the
result using relative rotation and translation information of the adjacent camera, such as CAM1-CAM2,
CAM2-CAM3, CAM3-CAM4, etc. The proposed method visualized the shape of the pentagon more
clearly, as shown in Figure 11c. When using the chain-wise method, the positional error increased,
because errors accumulated, as shown in the circles of Figure 11c. However, because the proposed
method estimated the rotation and translation independently for each camera, the positional error is
relatively smaller.
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Figure 10. Rotation and translation movement for evaluation of extrinsic calibration accuracy.

Table 3. The rotation mean absolute error of measurement results.

Rotation Displacement Value (Degree) 60 120 180 240 300

Measurement results

CAM1 59.81 119.48 180.47 240.79 299.30
CAM2 61.56 119.57 181.06 242.66 299.18
CAM3 60.12 121.10 180.43 241.21 300.73
CAM4 60.23 121.11 180.44 241.22 300.82
CAM5 59.78 120.94 180.51 240.74 300.52
CAM6 62.25 120.25 180.43 243.28 299.67
CAM7 59.34 120.87 180.38 240.08 300.45
CAM8 59.35 120.91 180.82 240.21 300.51
CAM9 61.65 121.51 180.09 242.28 301.39
CAM10 61.44 121.39 180.00 242.27 301.20

Mean absolute error 0.90 0.90 0.46 1.48 0.75

Standard deviation 0.76 0.41 0.31 1.09 0.33

Table 4. The translation mean absolute error of measurement results.

Translation Displacement Value (mm) 30 60 90 120 150 180 210

Measurement results

CAM1 33.16 60.98 90.90 121.61 151.32 181.14 211.59
CAM2 30.62 61.56 90.86 121.78 151.07 181.27 212.17
CAM3 31.24 62.64 90.71 121.46 151.97 181.75 211.63
CAM4 31.11 61.19 91.23 121.11 151.41 181.27 211.86
CAM5 29.03 63.61 90.92 121.64 151.47 181.32 212.24
CAM6 30.90 60.54 91.17 117.24 151.38 179.90 210.37
CAM7 31.10 61.12 90.73 121.42 151.44 181.02 211.89
CAM8 30.83 60.79 91.32 121.57 151.24 181.65 210.17
CAM9 30.83 60.79 91.32 121.57 151.24 181.65 210.17
CAM10 31.74 61.30 91.07 122.02 150.31 181.61 211.62

Mean absolute error 1.25 1.45 1.02 1.69 1.28 1.18 1.37

Standard deviation 0.74 0.95 0.23 0.44 0.41 0.47 0.81
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chain-wise method.

To show the validity of the proposed method on the VR application, we used Autopano
Giga 4.4 [49] which mainly aims to the omnidirectional image stitching. Image stitching needs
not only extrinsic parameters of each camera, but also additional warping to get the result without
cognitive distortion. However, we applied the result of our method only using the extrinsic parameter
results without any additional processing as shown in Figure 12. To visualization, we only contain
the result images of the odd-numbered cameras among 10 cameras. The blue circles shows the
images are well-connected, and the red circles shows the images are disconnected which causes
cognitive distortion.
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5. Conclusions

A Charuco board-based omnidirectional camera calibration method and structure is herein
proposed to solve the problem where conventional camera calibration methods require too many
complicated procedures. In the case of the omnidirectional camera, it must be comprised of several
cameras to collect 360◦ information around the rig. Additionally, the calibration among these cameras
should be preceded. Accurate calibration is essential to increase that of omnidirectional image
processing, such as extracting depth information from captured images. An omnidirectional camera
structure has a form in which the center line of each camera diverges. Therefore, it is difficult to share
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one another’s coordinate space. Additionally, because calibration must be repeated according to the
number of individual cameras comprising the omnidirectional camera, it takes a long time. To solve
these problems, we proposed an omnidirectional camera calibration method and structure that can
provide distinguishable 3D world coordinates and 2D board coordinates. From the experimental
results, for the intrinsic parameters, the proposed method yielded an average reprojection error
of 0.37 pixels, higher than the conventional method. For the extrinsic parameters, the proposed
method had a mean absolute error of 0.90◦ for the rotation displacement and a mean absolute error of
1.32 mm for the translation displacement. We expect that the proposed method could be the basis of
omnidirectional image processing for acquiring 6-DoF in the future.

Author Contributions: G.H.A., S.L., M.-W.S. and S.-J.K. conceived and designed the experiments; G.H.A., S.L.,
and S.-J.K. performed the experiments, and analyzed the data; G.H.A., S.L., M.-W.S., K.Y., W.-S.C. and S.-J.K.
contributed the equipment development; G.H.A. and S.-J.K. wrote the paper.

Acknowledgments: This work was supported by Institute for Information and communications Technology
Promotion (IITP) grant funded by the Korea government (MSIT) (No. 2017-0-00072, Development of Audio/Video
Coding and Light Field Media Fundamental Technologies for Ultra Realistic Tera-media), and supported
by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (no.
2018R1D1A1B07048421).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Agrawal, A.; Taguchi, Y.; Ramalingam, S. Analytical forward projection for axial non-central dioptric and
catadioptric cameras. In Proceedings of the European Conference on Computer Vision, Crete, Greece,
5–11 September 2010; pp. 129–143.

2. Scaramuzza, D. Omnidirectional camera. In Computer Vision; Springer: Berlin, Germany, 2014; pp. 552–560.
3. Xiang, Z.; Sun, B.; Dai, X. The camera itself as a calibration pattern: A novel self-calibration method for

non-central catadioptric cameras. Sensors 2012, 12, 7299–7317. [PubMed]
4. Valiente, D.; Payá, L.; Jiménez, L.; Sebastián, J.; Reinoso, Ó. Visual information fusion through bayesian

inference for adaptive probability-oriented feature matching. Sensors 2018, 18, 2041. [CrossRef]
5. Junior, J.M.; Tommaselli, A.M.G.; Moraes, M.V.A. Calibration of a catadioptric omnidirectional vision system

with conic mirror. ISPRS J. Photogramm. Remote Sens. 2016, 113, 97–105. [CrossRef]
6. Neumann, J.; Fermuller, C.; Aloimonos, Y. Polydioptric camera design and 3D motion estimation.

In Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
Madison, WI, USA, 18–20 June 2003; Volume 2.

7. Yin, L.; Wang, X.; Ni, Y.; Zhou, K.; Zhang, J. Extrinsic Parameters Calibration Method of Cameras with
Non-Overlapping Fields of View in Airborne Remote Sensing. Remote Sens. 2018, 10, 1298. [CrossRef]

8. Nuger, E.; Benhabib, B. A Methodology for Multi-Camera Surface-Shape Estimation of Deformable Unknown
Objects. Robotics 2018, 7, 69.

9. Chen, J.; Benzeroual, K.; Allison, R.S. Calibration for high-definition camera rigs with marker chessboard.
In Proceedings of the 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), Providence, RI, USA, 16–21 June 2012; pp. 29–36.

10. Facebook Surround 360. Available online: https://developers.facebook.com/videos/f8-2017/surround-360-
beyond-stereo-360-cameras/ (accessed on 7 November 2018).

11. Jump-Google VR. Available online: https://vr.google.com/jump/ (accessed on 7 November 2018).
12. Ricoh Theta. Available online: https://theta360.com/ (accessed on 7 November 2018).
13. Samsung Gear 360. Available online: http://www.samsung.com/global/galaxy/gear-360/ (accessed on

7 November 2018).
14. Sonka, M.; Hlavac, V.; Boyle, R. Image Processing, Analysis, and Machine Vision; Cengage Learning: Boston,

MA, USA, 2014.
15. Duane, C.B. Close-range camera calibration. Photogramm. Eng. 1971, 37, 855–866.
16. Kenefick, J.F.; Gyer, M.S.; Harp, B.F. Analytical self-calibration. Photogramm. Eng. 1972, 38, 1117–1126.
17. Clarke, T.A.; Fryer, J.G. The development of camera calibration methods and models. Photogramm. Rec. 1998,

16, 51–66. [CrossRef]

http://www.ncbi.nlm.nih.gov/pubmed/22969346
http://dx.doi.org/10.3390/s18072041
http://dx.doi.org/10.1016/j.isprsjprs.2015.10.008
http://dx.doi.org/10.3390/rs10081298
https://developers.facebook.com/videos/f8-2017/surround-360-beyond-stereo-360-cameras/
https://developers.facebook.com/videos/f8-2017/surround-360-beyond-stereo-360-cameras/
https://vr.google.com/jump/
https://theta360.com/
http://www.samsung.com/global/galaxy/gear-360/
http://dx.doi.org/10.1111/0031-868X.00113


Electronics 2018, 7, 421 14 of 15

18. Habib, A.; Detchev, I.; Kwak, E. Stability analysis for a multi-camera photogrammetric system. Sensors 2014,
14, 15084–15112. [CrossRef]

19. Detchev, I.; Habib, A.; Mazaheri, M.; Lichti, D. Practical in situ Implementation of a Multicamera Multisystem
Calibration. J. Sens. 2018, 2018. [CrossRef]

20. Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision; Cambridge University Press: Cambridge,
UK, 2003.

21. Garrido-Jurado, S.; Muñoz-Salinas, R.; Madrid-Cuevas, F.J.; Marin-Jiménez, M.J. Automatic generation
and detection of highly reliable fiducial markers under occlusion. Pattern Recognit. 2014, 47, 2280–2292.
[CrossRef]

22. Muñoz-Salinas, R.; Marin-Jimenez, M.J.; Yeguas-Bolivar, E.; Medina-Carnicer, R. Mapping and localization
from planar markers. Pattern Recognit. 2018, 73, 158–171. [CrossRef]

23. Germanese, D.; Leone, G.; Moroni, D.; Pascali, M.; Tampucci, M. Long-Term Monitoring of Crack Patterns in
Historic Structures Using UAVs and Planar Markers: A Preliminary Study. J. Imaging 2018, 4, 99. [CrossRef]

24. Tsai, R.Y. An efficient and accurate camera calibration technique for 3D machine vision. Proc. Comp. Vis. Patt.
Recog. 1986, 364–374.

25. Zhang, Z. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22,
1330–1334. [CrossRef]

26. Tang, D.; Hu, T.; Shen, L.; Ma, Z.; Pan, C. AprilTag array-aided extrinsic calibration of camera–laser
multi-sensor system. Robot. Biomim. 2016, 3, 13. [CrossRef] [PubMed]

27. Dong, S.; Shao, X.; Kang, X.; Yang, F.; He, X. Extrinsic calibration of a non-overlapping camera network
based on close-range photogrammetry. Appl. Opt. 2016, 55, 6363–6370. [CrossRef] [PubMed]

28. Carrera, G.; Angeli, A.; Davison, A.J. SLAM-based automatic extrinsic calibration of a multi-camera rig.
In Proceedings of the 2011 IEEE International Conference on Robotics and Automation (ICRA), Shanghai,
China, 9–13 May 2011; pp. 2652–2659.

29. Olson, E. AprilTag: A robust and flexible visual fiducial system. In Proceedings of the 2011 IEEE International
Conference on Robotics and Automation (ICRA), Shanghai, China, 9–13 May 2011; pp. 3400–3407.

30. Davison, A.J.; Reid, I.D.; Molton, N.D.; Stasse, O. MonoSLAM: Real-time single camera SLAM. IEEE Trans.
Pattern Anal. Mach. Intell. 2007, 1052–1067. [CrossRef]

31. Li, B.; Heng, L.; Koser, K.; Pollefeys, M. A multiple-camera system calibration toolbox using a feature
descriptor-based calibration pattern. In Proceedings of the 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Tokyo, Japan, 3–7 November 2013; pp. 1301–1307.

32. Strauß, T.; Ziegler, J.; Beck, J. Calibrating multiple cameras with non-overlapping views using coded
checkerboard targets. In Proceedings of the 2014 IEEE 17th International Conference on Intelligent
Transportation Systems (ITSC), Qingdao, China, 8–11 October 2014; pp. 2623–2628.

33. Yu, L.; Han, Y.; Nie, H.; Ou, Q.; Xiong, B. A calibration method based on virtual large planar target for
cameras with large FOV. Opt. Lasers Eng. 2018, 101, 67–77. [CrossRef]

34. Fraser, C.S. Automated processes in digital photogrammetric calibration, orientation, and triangulation.
Digit. Signal Process. 1998, 8, 277–283. [CrossRef]

35. Fraser, C.S. Automatic camera calibration in close range photogrammetry. Photogramm. Eng. Remote Sens.
2013, 79, 381–388. [CrossRef]

36. Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110.
[CrossRef]

37. Kumar, R.K.; Ilie, A.; Frahm, J.-M.; Pollefeys, M. Simple calibration of non-overlapping cameras with a
mirror. In Proceedings of the IEEE Conference on CVPR 2008 Computer Vision and Pattern Recognition,
Anchorage, AK, USA, 23–28 June 2008; pp. 1–7.

38. Miyata, S.; Saito, H.; Takahashi, K.; Mikami, D.; Isogawa, M.; Kojima, A. Extrinsic camera calibration without
visible corresponding points using omnidirectional cameras. IEEE Trans. Circuits Syst. Video Technol. 2018,
28, 2210–2219. [CrossRef]

39. Zhu, C.; Zhou, Z.; Xing, Z.; Dong, Y.; Ma, Y.; Yu, J. Robust plane-based calibration of multiple non-overlapping
cameras. In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA,
USA, 25–28 October 2016; pp. 658–666.

40. Tommaselli, A.M.G.; Galo, M.; De Moraes, M.V.A.; Marcato, J.; Caldeira, C.R.T.; Lopes, R.F. Generating
virtual images from oblique frames. Remote Sens. 2013, 5, 1875–1893. [CrossRef]

http://dx.doi.org/10.3390/s140815084
http://dx.doi.org/10.1155/2018/5351863
http://dx.doi.org/10.1016/j.patcog.2014.01.005
http://dx.doi.org/10.1016/j.patcog.2017.08.010
http://dx.doi.org/10.3390/jimaging4080099
http://dx.doi.org/10.1109/34.888718
http://dx.doi.org/10.1186/s40638-016-0044-0
http://www.ncbi.nlm.nih.gov/pubmed/27512645
http://dx.doi.org/10.1364/AO.55.006363
http://www.ncbi.nlm.nih.gov/pubmed/27534480
http://dx.doi.org/10.1109/TPAMI.2007.1049
http://dx.doi.org/10.1016/j.optlaseng.2017.10.003
http://dx.doi.org/10.1006/dspr.1998.0321
http://dx.doi.org/10.14358/PERS.79.4.381
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1109/TCSVT.2017.2731792
http://dx.doi.org/10.3390/rs5041875


Electronics 2018, 7, 421 15 of 15

41. Tommaselli, A.M.G.; Marcato, J., Jr.; Moraes, M.V.A.; Silva, S.L.A.; Artero, A.O. Calibration of panoramic
cameras with coded targets and a 3D calibration field. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
2014, 40, 137–142. [CrossRef]

42. Campos, M.B.; Tommaselli, A.M.G.; Marcato Junior, J.; Honkavaara, E. Geometric model and assessment of
a dual-fisheye imaging system. Photogramm. Rec. 2018, 33, 243–263. [CrossRef]

43. Khoramshahi, E.; Honkavaara, E. Modelling and automated calibration of a general multi-projective camera.
Photogramm. Rec. 2018, 33, 86–112. [CrossRef]

44. Marquardt, D.W. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math.
1963, 11, 431–441. [CrossRef]

45. GoPro Hero4 Black. Available online: https://gopro.com/ (accessed on 7 November 2018).
46. Camera Calibration with OpenCV. Available online: https://docs.opencv.org/3.4.0/d4/d94/tutorial_

camera_calibration.html (accessed on 7 November 2018).
47. Calibration with ArUco and ChArUco. Available online: https://docs.opencv.org/3.4/da/d13/tutorial_

aruco_calibration.html (accessed on 7 November 2018).
48. Camera Calibration Toolbox for Matlab. Available online: http://www.vision.caltech.edu/bouguetj/calib_

doc/ (accessed on 7 November 2018).
49. Kolor Autopano. Available online: http://www.kolor.com/ (accessed on 29 November 2018).

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.5194/isprsarchives-XL-3-W1-137-2014
http://dx.doi.org/10.1111/phor.12240
http://dx.doi.org/10.1111/phor.12230
http://dx.doi.org/10.1137/0111030
https://gopro.com/
https://docs.opencv.org/3.4.0/d4/d94/tutorial_camera_calibration.html
https://docs.opencv.org/3.4.0/d4/d94/tutorial_camera_calibration.html
https://docs.opencv.org/3.4/da/d13/tutorial_aruco_calibration.html
https://docs.opencv.org/3.4/da/d13/tutorial_aruco_calibration.html
http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.kolor.com/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Works 
	Single Camera Calibration 
	Omnidirectional Camera Calibration 

	Proposed Method 
	Proposed Calibration Structure 
	Intrinsic Parameters Estimation of the Omnidirectional Camera 
	Estimation of Extrinsic Parameters Using Estimated Intrinsic Parameters 

	Experimental Setting and Result 
	Experiment on Proper Size of Calibration Pattern Unit 
	Experimental Setting and Process 
	Experimental Results 

	Conclusions 
	References

