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Abstract: In this paper, a nonlinear least squares optimization method is employed to optimize
the performance of pole-zero-cancellation (PZC)-based digital controllers applied to a switching
converter. An extensively used step-down converter operating at 1000 kHz is considered as a plant.
In the PZC technique, the adverse effect of the (unwanted) poles of the buck converter power
stage is diminished by the complex or real zeros of the compensator. Various combinations of
the placement of the compensator zeros and poles can be considered. The compensator zeros and
poles are nominally/roughly placed while attempting to cancel the converter poles. Although PZC
techniques exhibit satisfactory performance to some extent, there is still room for improvement
of the controller performance by readjusting its poles and zeros. The (nominal) digital controller
coefficients thus obtained through PZC techniques are retuned intelligently through a nonlinear
least squares (NLS) method using the Levenberg-Marquardt (LM) algorithm to ameliorate the
static and dynamic performance while minimizing the sum of squares of the error in a quicker
way. Effects of nonlinear components such as delay, ADC/DAC quantization error, and so forth
contained in the digital control loop on performance and loop stability are also investigated. In
order to validate the effectiveness of the optimized PZC techniques and show their supremacy over
the traditional PZC techniques and the ones optimized by genetic algorithms (GAs), simulation
results based on a MATLAB/Simulink environment are provided. For experimental validation,
rapid hardware-in-the-loop (HiL) implementation of the compensated buck converter system is
also performed.

Keywords: Levenberg-Marquardt (LM) algorithm; nonlinear least squares (NLS) method; optimized
digital controllers; pole-zero-cancellation technique; switching converter

1. Introduction

Modern-day digital devices such as cellular phones, camcorders, calculators, digital cameras,
portable electronic devices, microprocessors, DSP core, handheld computers and PDAs, MP3 personal
players, and so on utilize switch-mode power supplies (SMPSs). The devices need to have regulated
output voltages irrespective of the perturbation in the input voltage or load current. For this purpose,
traditionally, analog controllers have been applied to SMPSs to ensure regulated voltages for the digital
devices. Analog controllers, however, show limitations in the form of poor design portability, large
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size, low reliability, and low flexibility. Digital controllers, on the other hand, offer advantages in the
form of high flexibility and programmability, competency to implement complex control strategies,
no need to alter hardware upon changing algorithms, high performance/cost ratio, and excellent
dynamic performance, among others [1]. Consequently, SMPS designers are more interested in
developing efficient and optimized digital controllers as compared to the predominately used analog
controllers. In this paper, well-recognized PZC techniques-based optimized digital controllers are
designed for buck converters to display much-improved performance. One of the optimization
techniques, named the nonlinear least squares technique, is employed to optimize the performance of
PZC-based digital controllers.

As far as the literature review is concerned, in [2], a pole-zero-cancellation technique-based digital
controller for a buck converter was suggested by Abe et al. to improve the performance characteristics.
The effect of the resonance peak and ESR-zero is nullified by completely cancelling the poles and
the zero of the buck converter with the help of the complex zeros and the pole of the compensator,
respectively. An additional pole representing a simple low-pass filter is introduced to gain control of
the characteristics of the composite buck converter system. A two-pole two-zero analog controller is
mapped into the digital controller using bilinear transformation. In [3], the same authors (Abe et al.)
applied successfully the two-pole two-zero analog compensator to the buck and boost converters to
ensure superior performance, yet without cancelling the RHP-zero in the case of the boost converter.
The effect of change in the capacitance of the output capacitor in a PZC-based digitally controlled buck
converter on the stability margin, and thus the performance, was investigated in [4]. Reference [5]
also suggested the application of a three-pole two-zero (analog) compensator with complex as well as
real zeros to a switching converter exhibiting nonminimum phase characteristics. Such a converter
possesses RHP-zero in its transfer function, which limits the bandwidth, thus causing the response to
be slow and sluggish. Reference [6] suggested a slightly different approach for designing a PZC-based
digital controller for the step-down converter. Rather than using the real or complex zeros by the
compensator close to the resonant frequency of the converter’s power stage, the compensator zeros
are selected on the basis of the quality factor and output impedance of the plant. The effect of the
quality factor on compensator design is also investigated efficiently. In [7], the task of providing
feedback compensation to the relatively complicated switching converters (as they involve RHP-zero),
namely boost and flyback working in continuous conduction mode, was efficiently performed through
various combinations of PZC-based controllers. The PZC-based digital controllers mentioned in the
aforementioned references show somewhat satisfactory performance. Their performance may even be
improved by retuning their coefficients through some optimization techniques.

Many researchers successfully applied advanced numerically based or metaheuristic optimization
techniques to tune the compensator parameters to ameliorate performance. Reference [8] suggested
the tuning of the parameters of the digital controller designed on the basis of a Chebyshev polynomial
approach for the fifth-order boost converter through a genetic algorithm (GA). The problem with
the GA is that it has to employ its three operators, namely selection, crossover, and mutation, at
each iteration, thus resulting in slower responses. In addition, it shows enhanced sensitivity to the
initial population and does not use gradients. In [9], although metaheuristic techniques such as
particle swarm optimization (PSO) and the gravitational search algorithm (GSA) were successfully
employed for the fine-tuning of parameters of Type II and Type III compensators applied to a step-up
converter, but they may converge prematurely. Mercader et al. in [10] tried to overcome the problem of
convergence to the local minimum of convex optimization and proposed a convex-concave procedure
(CCP) for the fine-tuning of PID controller coefficients that controlled the loop shape efficiently to
ensure better dynamic performance. On the other hand, the NLS method capitalizes on the structure
of the Hessian, which can be attained through the computation of Jacobian (first-order derivatives
only) and minimizes the errors (residuals) quickly, and thus ensures better set-point tracking.

In addition, many instances in the literature have been reported where the nonlinear least squares
(NLS) method has been successfully employed to optimize the performance of various types of
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compensators used for various applications. In [11], optimization of the discrete root locus-based
discrete-time controller applied to a buck converter was accomplished through the NLS method.
In [12], tuning of the PID-based track-keeping controllers of a remotely controlled autonomous
in-scale fast-ferry model was carried out through the NLS method and a genetic algorithm (GA),
where the former showed superiority over the latter one while doing sea trials. Reference [13]
suggested the use of the NLS method for the optimization of offline pulse patterns for arbitrary
modulation indices and arbitrary numbers of modules per branch, while minimizing the harmonic
content of the load current (specifically measured in the total demand distortion (TDD)), instead
of using selective harmonic elimination, in the case of the indirect modular multilevel converter
(MMC). In [14], a Levenberg-Marquardt (LM) and quasi-Newton (QN)-based NLS hybrid method
was used efficiently to improve the performance of the designed linear-phase quadrature mirror
filter (QFM) bank in the form of mean squares error in passband and stopband regions, as well as
peak reconstruction error (PRE) and error in the transition band at quadrature frequency. This was
accomplished by optimizing the quadratic measure of the ideal characteristics of the prototype filter
and filter bank at quadrature frequency. In [15], a predictive current controller with an extended-state
observer (ESO), suggested for the grid integration of wind energy systems, utilized the NLS method
to minimize a cost function, defined as a sum of the squared values of d-axis and q-axis current
errors, while computing the optimal converter switching time. In [16], calibration of the roadside
camera employed in traffic surveillance systems was accomplished on the basis of the least squares
optimization method, which involved camera-intrinsic parameters and rotation angles. In [17], for
anticipating the epileptic seizure via EEG signals in epileptic individuals suffering from unexpected
and momentary electrical deterioration in the brain, fitting of the EEG signals filtered through singular
spectrum analysis into the exponential curve was carried out using the NLS method. Statistical
examination of the features extracted from exponential curves assists in diagnosis. In [18], nonlinear
rational systems were identified using an NLS-based, globally consistent two-step estimator. In [19],
a high face recognition rate was achieved by performing NLS computations, while taking into account
the ‘holistic’ and ‘detailed’ features of the face.

Although enormous numbers of examples of the application of the NLS method to control plants
of various types are found in the literature, to the best knowledge of the authors, very limited instances
are found in the literature where pole-zero-cancellation-based digital controllers have been optimized
through the NLS method. In this paper, PZC-based optimized digital controllers are, thus, suggested
for the buck converter to achieve much-improved performance.

The paper is formulated in the following way. Section 2 describes the dynamics of the buck
converter, which is considered to be the plant in the paper. Three types of pole-zero-cancellation (with
complex and real zeros)-based digital controllers are designed in Section 3. The digital controller
design techniques are essentially of the types digital redesign or emulation. The NLS method involving
the LM algorithm to optimize the digital controllers is detailed in Section 4. Nonlinearities involved in
the digital control loop are modelled in Section 5. Section 6 involves the redesigning and reoptimizing
of the digital controllers when the nonlinear effects in the digital control loop are considered. Section 7
is dedicated to additional simulation results. HiL implementation is described in Section 8. Concluding
remarks are given in Section 9.

2. Buck Converter Modelling

For the sake of reducing higher unregulated DC input voltage, Vin, to lower regulated DC output
voltage, Vout, a realistic buck converter circuit (see Figure 1) is used, as it takes into consideration
the parasitic resistances, i.e., capacitor equivalent series resistance (ESR) and inductor direct current
resistance (DCR), denoted explicitly by rC and rL, respectively. Owing to capacitor ESR, a zero is
introduced into the buck converter transfer function [20]. The component values to be considered for
the converter throughout the paper are the following: Vin = 3.6 V, Vout = 2.0 V, L = 4.7 µH, C = 4.7 µF,
rL = 505 mΩ, rC = 5 mΩ, f s = 1000 kHz, and Ts = 1/f s = 1 µs. The block diagram of the closed-loop
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(digital) control system containing the buck converter power stage, ADC and DAC converters, and the
digital controller is shown in Figure 1.Electronics 2018, 7, x FOR PEER REVIEW  4 of 25 
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Figure 1. Closed-loop (digital) control system block diagram.

The buck converter’s dynamics (transfer function) imperative for the controller design can be
derived through its small-signal AC-equivalent circuit model (see Figure 2), where the nonlinear
power switches Q1 and Q2 are replaced by their equivalent linear small-signal models [21]. By
applying the averaging and linearization technique adopted in [22] to the small-signal model, the
small-signal transfer functions, such as duty cycle-to-output voltage Gvd(s), input voltage-to-output
voltage Gvg(s), and load current-to-output voltage (loaded power converter output impedance Zo(s)),
can be computed and are described by Equations (1)–(3), respectively [22,23].
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ωZERO =
1

rCC
(6)

and
ωL = rL/L (7)
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Here ω0, ωZERO, and Q represent the filter resonance frequency, capacitor zero frequency, and the
quality factor of the filter, respectively.

Among the transfer functions, the one described in Equation (1), i.e., duty cycle-to-output
voltage, is controlled through the controller for output voltage regulation. To achieve the closed-loop
characteristics, and thus required performance, a controller is applied to it as it behaves as a plant. The
Gvd(s) contains a complex conjugate pair whose effect can be nullified by the complex or real zeros of
the compensator.

In order to design the digital controller, the continuous-time converter transfer function Gvd(s) is
discretized using zero-order-hold (ZOH) with a sampling period Ts, as follows:

Gp(z) = Z
{

1− e−sTs

s
· Gvd(s)

}
=
(

1− z−1
)
· Z
{

Gvd(s)
s

}
(8)

For the component values mentioned above, the transfer function in the analog and digital form
of the buck converter with a short description is presented in Table 1.

Table 1. Buck converter transfer function.

Converter Transfer Function Description

Analog 7.606×10−8s+3.237
1.988×10−11s2+3.097×10−6s+1

A two-pole, one-zero converter, having complex conjugate poles
at 105 × (−0.7787 ± j2.1031) with Q = 1.44

Digital 0.07288 z+0.06332
z2−1.827z+0.8692 Discretized form obtained using ZOH with Ts = 1 µs

3. PZC-Based Digital Controllers

The buck converter power stage contains two complex conjugate poles occurring at the LC filter’s
resonant frequency, which results in phase reduction, thus making the system unstable. In order to meet
the required specifications, such as bandwidth, steady-state accuracy (ensured through static-error
constant/DC gain of the system), robust relative stability, reduced sensitivity to parameter changes,
superior transient response, and so on, appropriate gain and phase margins at a specific 0-dB crossover
frequency and loop gain should be ensured. This can be accomplished by placing the compensation
zeros, real or complex, near the LC filter’s resonant frequency. Such a pole-zero-cancellation (PZC)
technique in analog form is employed in the paper for designing the digital controllers (emulation
technique), which are then optimized using the NLS method. Three types of PZC techniques, designed
for a 100 kHz, 0-dB crossover frequency (10 times below the switching frequency, to satisfy the Nyquist
criterion), unless otherwise stated, distinguished on the basis of placement of compensator’s zeros
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and poles, are designed to ensure better static and transient responses. All the cases involve the same
method of computing the compensator gain. For the design of PZC techniques, the same procedure is
adopted, which is outlined in the flow chart shown in Figure 3.
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3.1. A Three-Pole Two-Zero Compensator—Case 1

3.1.1. Using Complex Zeros

In this type of PZC technique, the effect of a pair of complex poles of the converter is nullified by
placing the two complex zeros of the compensator at the LC resonant frequency (ω0). This actually
adds to the phase to boost the phase margin. One of the compensator poles is placed at the ESR
zero (ωZERO) to keep the gain of the open-loop transfer function at a slope of −1. For the rejection
of high-frequency noises, the second high-frequency pole is moved from approximately 0.2 to 0.7 of
the switching frequency. This additionally incorporated high-frequency pole not only makes the
compensator less sensitive to high-frequency noise phenomena, but also assists in smoothing the
quantization error in the compensator output. To achieve zero steady-state error, an integrator (a pole
at origin) is also introduced.

With the mentioned placement of the compensator poles and zeros, the compensator transfer
function takes the form

Gc(s) = Kc

(
s2

ωz2 +
s

QCωz
+ 1
)

s
(

s
k·ωs

+ 1
)(

s
ωZERO

+ 1
) (9)

where parameter k, ranging from 0.2 to 0.7, controls the location of the high-frequency pole; ωz = ω0

designates the compensator complex zero frequencies, numerically equivalent to the plant poles’
resonance frequencies; the dimensionless Q-factor, QC, of the compensator is selected close to the
power stage, Q; and the DC gain, Kc, of the compensator is adjusted to meet the required 0-dB crossover
frequency (100 kHz) denoted by ωx. Then, sx = jωx = j2π fx.

Assuming the condition that the compensated system’s gain plot crosses 0-dB at a −1 slope, i.e.,
Gp(s)

∣∣
s=sx
· Gc(s)|s=sx

= 1, Kc is then calculated by

Kc =
s
(

s
k·ωs

+ 1
)(

s
ωZERO

+ 1
)

(
s2

ωz2 +
s

QCωz
+ 1
)

∣∣∣∣∣∣
s=sx

· 1
Gp(s)

∣∣
s=sx

(10)

With the placement of poles and zeros and calculation of the DC gain, the analog controller
transfer function is given, numerically, by:

Gc(s) =
4.309× 10−6s2 + 0.6041s + 1.951× 105

3.74× 10−15s3 + 1.827× 10−7s2 + s
(11)

The continuous-time compensator can be mapped into its discrete-time counterpart using one
of the transformation techniques, such as ‘Tustin’ (in our case), expressed mathematically by s =
2
Ts

(
1−z−1

1+z−1

)
, with the sampling time equivalent Ts = 1 µs. The corresponding discrete-time compensator

is given by:
Gc(z) = 6.753z3−5.595z2−6.47z+5.877

z3+0.4273z2−0.9566z−0.4707
= 6.753−5.595z−1−6.47z−2+5.877z−3

1+0.4273z−1−0.9566z−2−0.4707z−3

(12)

With the help of an inverse z-transform, the compensator discrete-time transfer function can be
translated into the difference equation given by

u[n] = −0.4273u[n− 1] + 0.9566u[n− 2] + 0.4707u[n− 3]
+6.753e[n]− 5.595e[n− 1]− 6.47e[n− 2] + 5.877e[n− 3]

(13)

where e[n], e[n − 1], e[n − 2], and e[n − 3] designate the current, one sample period, two sample period,
and three sample period delayed values of the error signals, respectively, whereas u[n], u[n− 1], u[n − 2],
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and u[n − 3] represent the present, one sample period, two sample period, and three sample period
delayed values of the duty ratio, respectively.

3.1.2. Using Real Zeros

A compensator with three poles and two real zeros can also be realized and is expressed by

Gc(s) = Kc

(
s

ωz1
+ 1
)(

s
ωz1

+ 1
)

s
(

s
k.ωs

+ 1
)(

s
ωZERO

+ 1
) (14)

Usually, the real zeros ωz1 and ωz2 are placed close to the resonant frequency, ω0. Their positions
can be controlled using the relationships: ωz1 = m1ω0 and ωz2 = m2ω0, where the coefficients m1 and
m2 describe the deviation of the zeros from ω0. Here, in our case, it is observed that placement of one
of the zeros at ω0, i.e., m1 = 1, and the other slightly below ω0, i.e., m2 = 0.8, ensures the increase in
phase margin, thus the better performance. The compensator’s three poles are placed in the same way
as described in the complex zeros case.

With such an arrangement of poles and real zeros, the analog controller, numerically, takes
the form

Gc(s) =
3.597× 10−6s2 + 1.378s + 1.303× 105

3.74× 10−15s3 + 1.827× 10−7s2 + s
(15)

The digital controller obtained from the analog controller using the bilinear mapping technique is
then described by

Gc(z) =
6.257z3 − 4.072z2 − 6.069z + 4.261
z3 + 0.4273z2 − 0.9566z− 0.4707

(16)

When comparing the analog compensators with real and complex zeros and the digital
compensators, the following corollaries can be deduced.

• It is revealed from the inspection of the Bode plots (see Figure 4) of the open-loop compensated
buck converter system that the compensator using the complex zeros at the resonance frequency
achieves a phase margin of 84.3◦, as compared to the one with real zeros, which attains a phase
margin of 64.6◦. Both the compensators are designed for 100-kHz bandwidth (0-dB crossover
frequency). This suggests that complex-zero compensation offers larger stability margins and
reduced amplitude of the resonance peak, in comparison to that of the real-zero compensation.
Consequently, complex-zero compensation displays excellent static properties.

• Unlike the excellent static properties, complex-zero compensation shows poor dynamic properties.
In order to check the dynamicity, the load is changed from 4.5 Ω to 9 Ω and then from 9 Ω to
4.5 Ω. Although the output voltage settles to its steady-state value of 2 V for both compensators,
the compensator with complex zeros shows more recovery time and spike voltage peak at the
load transient as compared to that of the one with real zeros. This is due to the fact that a change
in load displaces the converter poles from their original positions. Thus, the predetermined
compensator zeros are not able to perfectly annul the effects of the converter’s complex poles. If
the compensator zeros are made adaptive according to the perturbation in the load current, then
the complete cancellation effect can be ensured. MATLAB/Simulink-based simulation results
shown in Figure 5 highlight this fact.

Transformation of the continuous-time controller into the discrete-time controller results in
frequency distortions. Consequently, the discrete-time controller shows a slightly deviated behavior
from its analog counterpart at frequencies close to the Nyquist frequency. The Bode plot of the analog
and digital compensators (see Figure 6) pinpoints the phenomenon of frequency distortions.
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3.2. A Two-Pole (with One Pole at the Origin) Two-Zero Compensator—Case 2

3.2.1. Using Complex Zeros

Reasonable compensation can also be achieved using two poles (with two complex zeros), rather
than using three poles. The poles and the (complex) zeros are placed in the same way as described in
case 1. For example, in a two-pole two-zero compensator, a pair of matching complex zeros is placed
exactly at the resonance frequency to nullify the effects of a pair of complex conjugate poles introduced
by the converter power stage. In order to avoid undesirable ripples in the output voltage introduced
by the output capacitor ESR, one of the compensator poles is placed at the ESR zero frequency to
compensate for the capacitor ESR zero. For the sake of ensuring high low-frequency gain to achieve
low static error and good input rejection, a pole (an integrator) is placed at the origin. Such a two-pole
two-zero compensator, in transfer function form, is described by [24] as follows:

Gc(s) = Kc

(
s2

ωz2 +
s

QCωz
+ 1
)

s
(

s
ωZERO

+ 1
) (17)

With Kc computed from the condition Gp(s)
∣∣
s=sx
· Gc(s)|s=sx

= 1, the compensator’s transfer
function in the s-domain, numerically, takes the form as follows:

Gc(s) =
4.288× 10−6s2 + 0.6011s + 1.941× 105

2.35× 10−8s2 + s
(18)

The analog controller is mapped into the digital one with the help of the Tustin mapping technique
using a sampling time of 1 µs, as follows:

Gc(z) =
8.858z2 − 16.2z + 7.71
z2 − 0.08978z− 0.9102

(19)

3.2.2. Using Real Zeros

With the real zeros replacing the complex zeros, the transfer function of a two-pole two-zero
compensator is then described by

Gc(s) = Kc

(
s

ωz1
+ 1
)(

s
ωz2

+ 1
)

s
(

s
ωZERO

+ 1
) (20)

Regarding the placement of the zeros, one of the real zeros is placed at ω0, i.e., m1 = 1, and the
other slightly below ω0, i.e., m2 = 0.8. This combination ensures the increase in phase margin, thus
better response characteristics. With the placement of compensator poles and zeros and the adjustment
of gain Kc to achieve the desired crossover frequency, the analog controller reduces to

Gc(s) =
3.512× 10−6s2 + 1.495s + 1.59× 105

2.35× 10−8s2 + s
(21)

Using the bilinear transformation with 1 µs, the discrete controller, equivalently, is expressed by

Gc(z) =
8.213z2 − 13.27z + 5.358
z2 − 0.08978z− 0.9102

(22)
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3.3. A Two-Pole Two-Zero Compensator—Case 3

3.3.1. Using Complex Zeros

Another type of a two-pole two-zero compensator can be achieved by placing a pole at the origin
with a low-frequency pole. In such a compensator, the buck converter transfer function is completely
cancelled with the complex zeros (occurring at resonance frequency) and a pole (placed at the ESR zero
frequency) of the compensator. Thus, the phase shift introduced by an LC filter complex double pole
and output capacitor ESR zero is annulled by making the converter characteristics ineffective. Through
the remaining part of the compensator (gain and a low-frequency pole), which is essentially a low-pass
filter, the composite system’s response is thus controlled. Mathematically, the transfer function of the
compensator is given by

Gc(s) =
Kc(

s
ωp

+ 1
)
 s2

ωz2 +
s

QCωz
+ 1

s
ωZERO

+ 1

 (23)

With the low-frequency pole placed far below (approximately 103 times) fs, the compensator is
described, numerically, by

Gc(s) =
6.825× 10−10s2 + 9.567× 10−5s + 30.9

3.74× 10−12s2 + 1.592× 10−4s + 1
(24)

Using the Tustin mapping technique, the analog controller is mapped in to the digital controller
as follows:

Gc(z) =
8.831z2 − 16.15z + 7.686
z2 − 0.08352z− 0.9045

(25)

For the controllers designed for the 100-kHz crossover frequency, the analog control system
offers a phase margin of about 90.6◦, whereas the digital control system provides a phase margin
of 72.7◦ (see Figure 7). Frequency distortion due to the mapping from the s-plane to z-plane
deteriorates the performance of the digital controller. This requires the retuning of the coefficients of
the digital controller.Electronics 2018, 7, x FOR PEER REVIEW  12 of 25 
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3.3.2. Using Real Zeros

A two-pole two-zero compensator with one of the poles lying at low frequency and real zeros
lying in the vicinity of the resonance frequency is characterized by the transfer function as follows:

Gc(s) = Kc

(
s

ωz1
+ 1
)(

s
ωz2

+ 1
)

(
s

ωp
+ 1
)(

s
ωZERO

+ 1
) (26)

Numerically, the analog controller is given by

Gc(s) =
3.512× 10−6s2 + 1.495s + 1.59× 105

2.35× 10−8s2 + s
(27)

The equivalent discrete-time controller using the bilinear transformation is expressed by

Gc(z) =
8.213z2 − 13.27z + 5.358
z2 − 0.08978z− 0.9102

(28)

4. NLS Method-Based Optimized Digital Controllers

In the context of optimization, the nonlinear least squares (NLS) method bears a tempting structure
that can be exploited with great effectiveness in algorithm design. Regarding the compensated buck
converter system, minimization of the voltage error signal essentially constitutes the NLS problem.
Specifically, the NLS technique can be employed to retune the discrete-time controller coefficients for
fast setpoint tracking. This is accomplished by adjusting the controller coefficients to speedily reduce
the error e(t) = Vout − Vref at all steps of the simulation time. As the minimization of the sum of squares
of the error functions is carried out by the algorithm at each step, this constitutes the multiobjective
optimization problem.

In the paper, for calculating the sum of error squares, among the different large-scale
algorithms [25], such as the trust-region-reflective (TRR), variable projection (VP), and
Levenberg–Marquardt (LM) algorithms, LM is employed. Linear algebra is exploited in large-scale
algorithms which do not require or store full matrices for its operation. It is a well-established fact that
the LM algorithm performs better when bound constraints are not considered in the problem.

The algorithm starts with the initial design vector, x0, indicating the initial design variables in the
form of coefficients of the digital controller computed through the pole-zero-cancellation techniques.
For the considered cases, no restriction has been imposed on the lower and upper bounds of the
design variables.

Mathematically speaking, the NLS method using the LM algorithm involves minimizing the sum
of squares of the error signal, i.e.,

min
x⊂<n

f (x) = min
x⊂<n
‖e(x)‖2

2

= min
x⊂<n

(
e2

1(x) + e2
2(x) + . . . + e2

m(x)
)

= min
x⊂<n

m
∑

i=1
e2

i (x)

(29)

subject to the constraints: 

Aeq · x = beq linear equality
A.x ≤ b linear inequality
l ≤ x ≤ u bounds
C(x) = 0 nonlinear equality
Ceq(x) ≤ 0 nonlinear inequality

(30)
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where x = (x1, x2, . . . , xn) ⊂ <n, l ⊂ (< ∪ (−∞))n, and u ⊂ (< ∪ (∞))n. Here, A and Aeq, and C
and Ceq are the matrices of doubles for linear inequalities and equalities, and nonlinear inequalities
and equalities, respectively. Similarly, b and beq are the vectors of doubles for linear inequalities
and equalities, respectively, and l and u represent the lower and upper bounds, respectively, on
each x component. In our case, since no restriction is imposed on the bounds of design variables
for the unconstrained multiobjective optimization problem, all matrices and vectors are empty sets.
Here, the function to be minimized, f (x) = ‖e(x)‖2

2, representing the l2-norm of error, is assumed
to be continuously differentiable at point x0. It is assumed that m ≥ n. As remarked, the vector
x represents the number of design/decision variables, which are specifically the coefficients of the
digital controllers.

In the compensated control systems, in order to achieve the targeted trajectories realistically, the
residual ‖e(x)‖, being a function from <n to <m, described in Equation (31)

‖e(x)‖ = ei(x)

=


e1(x)
e2(x)
. . .
em(x)

 =


vo(x, t1)− vre f (t1)

vo(x, t2)− vre f (t2)

. . .
vo(x, tm)− vre f (tm)

 (31)

is made small optimally and converged speedily. Rapidly converged minimum residuals result in
better set-point tracking. A unique solution is guaranteed due to the convex nature of the minimizer.

In order to get deep mathematical insight, the algorithm forces the output vo(x, t) to track the
continuous required trajectory vre f (t) for the decision vector x and scaler t. That is to say,

min
x⊂<n

t2∫
t1

(
vo(x, t)− vre f (t)

)2
(32)

Discretization of the integral through an appropriate quadrature formula reduces Equation (32)
to the least squares problem:

min
x⊂<n
‖e(x)‖2

2 = min
x⊂<n

m

∑
i=1

(
vo(x, ti)− vre f (ti)

)2
(33)

A m-by-n-sized Jacobian matrix J(x) of the residual ‖e(x)‖ of n variables is computed by

J(x) =
δei(x)

δxk
, 1 ≤ i ≤ m, 1 ≤ k ≤ n (34)

On the basis of J(x), the specially structured gradient vector G(x) and Hessian matrix H(x) of
the NLS method are calculated by Equations (35) and (36), respectively.

G(x) = ∇‖e(x)‖2
2

=
m
∑

i=1
ei(x)∇ei(x) = 2

(
J(x)Te(x)

) (35)

H(x) = ∇2‖e(x)‖2
2

= 2
(

J(x)T J(x) +
m
∑

i=1
ei(x)∇2ei(x)

)
= 2

(
J(x)T J(x) + Q(x)

) (36)
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where

Q(x) =
m

∑
i=1

(ei(x)× Hi(x)) (37)

The matrix Q(x) comes with the property that it tends to approach zero as the residual ‖e(x)‖
approaches zero on the occasion the decision variables xk, finally settling to optimal values. In other
words, the matrix Q(x) gives an indication of how fast the minimization of the error is accomplished.

By amalgamating the salient characteristics of the Gauss–Newton (GN) and steepest descent (SD)
algorithms, the LM method computes the search direction on the basis of a solution of the linear set of
equations [26], i.e., (

J(xk)
T J(xk) + λk I

)
dk = −J(xk)

Te(xk) (38)

More precisely, the LM method modifies the GN search direction by altering J(xk)
T J(xk) with

J(xk)
T J(xk) + λk I. By replacing the identity matrix with the diagonal of the Hessian, Equation (38) can

be expressed alternatively as (
J(xk)

T J(xk) + λkdiag
(

J(xk)
T J(xk)

))
dk

= −J(xk)
Te(xk)

(39)

Or, equivalently, in terms of the least squares problem, Equation (39) takes the form

min
dk
‖
(

J(xk)√
λkdiag

(
J(xk)

T J(xk)
) )−( −e(xk)

0

)
‖

2

2

(40)

The magnitude and direction of dk is controlled through the scalar λk, whose initial value λ0 is
set empirically, perhaps, as 100. The LM method therefore uses a search direction that falls within the
directions calculated by the GN and SD methods. The LM algorithm, thus, essentially is an aggregation
of the SD and GN algorithms. For example, when λk is zero, the direction dk refers to the direction of
the GN method, whereas when λk tends to infinity, dk assumes the direction of SD, with its magnitude
tending to zero. This comes with the observation that the term e(xk + dk) < e(xk) holds true for some
adequately large values of λk. Through the control of the term λk, descent can be ensured even when
second-order terms, which limit the GN method’s efficiency, are experienced. The algorithm adjusts
the value of λk during each of the step as follows:

λk+1 =

{
λk
10 , when the move passes
λk × 10, when the move fails

(41)

In a nutshell, the LM algorithm works in the following way:

• It starts with an initial guess x0 and iterates for k = 1, 2, . . . , n.
• The Lagrange multiplier λk is then selected for each step k.
• Equation (39) or (40) is solved for determining dk.
• For the next iteration, k + 1, dk+1 = dk + ∆dk is calculated.
• At the end, the solution is checked for convergence.

Although several stopping criteria, such as absolute function criterion, sequence convergence
criterion, maximum iteration count criterion, and so on, can be adopted, here, the algorithm stops
when the final change in the sum of squares relative to its initial value is less than the default value of
the function tolerance. One must remember that although the algorithm ensures optimal performance,
convergence to the global minimum of the objective function cannot be guaranteed. To realize the
LM algorithm based on the NLS method, a MATLAB/Simulink environment is used. Termination
tolerance for both the objective function and the parameter estimation is appropriately selected.
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When the NLS method is applied to retune the coefficients of the digital controllers, tremendous
improvement in performance is observed. All the controllers, traditional and optimized, in transfer
function form, are summarized in Table 2. Correspondingly, step response characteristics displayed
by all the controllers, traditional and optimized, are shown in Figure 8. The performance parameters
in the form of maximum overshoot, settling time, and rise time, computed from the step response
characteristics, are summarized and compared in Table 3. From Table 3, it is inferred that the optimized
digital controllers offer much-improved performance as compared to their traditional counterparts.
This validates the applicability and workability of the NLS method.

Table 2. Controllers’ transfer functions.

Case
No.

Compensator
Zeros Analog Controller Gc(s) Digital Controller Gc(z) Optimized Digital

Controller Gc(z)

1
Complex 4.309×10−6s2+0.6041s+1.951×105

3.74×10−15s3+1.827×10−7s2+s
6.753z3−5.595z2−6.47z+5.877
z3+0.4273z2−0.9566z−0.4707

6.8515z3−5.5501z2−6.625z+5.8584
0.5529z3+0.4746z2−0.5528z−0.4707

Real 3.597×10−6s2+1.378s+1.303×105

3.74×10−15s3+1.827×10−7s2+s
6.257z3−4.072z2−6.069z+4.261
z3+0.4273z2−0.9566z−0.4707

5.7210z3−4.3870z2−5.8969z+5.1035
0.4617z3+0.4163z2−0.4644z−0.4135

2
Complex 4.288×10−6s2+0.6011s+1.941×105

2.35×10−8s2+s
8.858z2−16.2z+7.71
z2−0.08978z−0.9102

8.9562z2−16.2048z+7.6637
0.7227z2−0.1018z−0.6209

Real 3.512×10−6s2+1.495s+1.59×105

2.35×10−8s2+s
8.213z2−13.27z+5.358
z2−0.08978z−0.9102

7.4178z2−13.4213z+6.3473
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Table 3. Comparative analysis of controllers’ performance characteristics.

Case
No. Controller

Performance Parameters

Max. Overshoot (%) Rise Time (µs) Settling Time (µs)

1

Traditional, Complex Zeros 1.7789 1.5674 8.5697
Traditional, Real Zeros 14.9854 1.5228 25.322

Optimized, Complex Zeros 0.0536 0.80 0.98
Optimized, Real Zeros 0.000004 0.80 0.98

2

Traditional, Complex Zeros 1.5949 2.1813 12.02
Traditional, Real Zeros 14.7028 1.5953 22.31

Optimized, Complex Zeros 0.0055 0.79 0.97
Optimized, Real Zeros 0.00005 0.80 0.98

3

Traditional, Complex Zeros 0.5560 2.2435 14.103
Traditional, Real Zeros 13.8212 1.6108 24.22

Optimized, Complex Zeros 0.0029 0.799 0.979
Optimized, Real Zeros 4.1280 × 10−10 0.80 0.98

Like the step response characteristics, the optimized controllers also offer superior transient
behavior. A three-pole two-zero (complex)-based optimized digital controller offers reduced recovery
time and peak-to-peak spike voltage at the time of load transient as compared to its traditional form
(see Figure 9). In the same way, other optimized controllers also show fast transient response with
regard to their unoptimized counterparts.
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Figure 9. Load transient response.

The optimized controller not only offers excellent set-point tracking and load regulation
characteristics, but also exhibits improved disturbance rejection abilities against the disturbance
(due to variations in the converter power-stage parameters because of aging or model uncertainties)
injected at the converter input (see Figure 10).

To gain more insight into the performance in terms of frequency-domain characteristics, the Bode
plot of the unoptimized and optimized Gp(z).Gc(z) of case 1 shown in Figure 11 clearly depicts that
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the optimized digital controller assists in ensuring more phase margin (and thus system stability) for
all the frequencies, as compared to the unoptimized digital controller.Electronics 2018, 7, x FOR PEER REVIEW  17 of 25 
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In order to validate the superiority of the proposed NLS method over the other optimization
techniques, such as a genetic algorithm (GA), a comparison of the voltage response of the two-pole
two-zero (complex)-based optimized digital controllers obtained through NLS and GA is presented in
Figure 12. For the typical design example, the NLS method completely outshines GA performance-wise
(overshoots, steady-state error, etc.). The GA parameters considered are the following: objective
function = Integral Time Absolute Error (ITAE), population size = 200, generations = 25, crossover
fraction = 0.65, and function tolerance = 1 × 10−6.
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5. Digital Control Loop Elements Modelling

A digital control loop involves mixed signals. A continuous-time error signal digitized through
the ADC is processed by the digital controller. The discrete-time controller output signal is then
converted into the analog one through the DAC/DPWM to apply on–off pulses to the switching circuit.
For the more realistic digitally compensated buck converter system, inherently existing nonlinearities
occurring in the digital control loop should be modelled and considered.

5.1. Loop Delay

The digital control loop suffers from the delay introduced by various elements in the loop. The
delay due to the ADC conversion time tADC, the digital controller processing time tP, the DAC
conversion time tDAC, the gate-driver propagation delay tGD, and so forth constitutes the total loop
delay td, which adversely limits the loop bandwidth, thus resulting in deteriorated performance.
However, the effect becomes less prominent if the loop delay remains within the one sampling period
Ts. With the availability of high-speed ADCs, DACs, processors, and FPGAs, the total loop delay can
be reduced. A delay of half the period, i.e., td = 0.5 µs, is considered in the design examples. The delay
can be modelled mathematically by e−std ≈ 1 + (1 + std), where the first-order lag approximation has
been used to make the calculations simpler.

5.2. ADC and DAC Resolutions

In order to avoid unwanted oscillations, called limit cycle oscillations (LCOs), and thus to ensure
steady-state behavior, ADC and DAC resolutions should be selected with care. Regarding the ADC
resolution, LCOs can be avoided if the output error voltage is restricted within the allowed output
voltage variation ∆Vout. Alternatively, the ADC quantization step calculated by qv,ADC = Vmax/2nADC

should be lesser in value than ∆Vout, i.e.,(
1
H

)
·
(

Vmax
2nADC

)
≤ ∆Vout

⇒
(

Vmax
2nADC · 1

Vout

)
≤
(

∆Vout
Vout
· Vre f

Vout

)
, with H =

Vre f
Vout

(42)



Electronics 2018, 7, 412 19 of 25

Manipulation of Equation (42) gives the formula for ADC resolution nADC as follows [27]:

nADC ≥ int[log2

(
Vmax

Vre f
· Vout

∆Vout

)
] (43)

where Vmax, Vout, and Vre f represent the maximum output, output, and reference voltages, respectively;
H signifies the scaling factor for the sensed output voltage and is set to one for concerned design
examples; the function int [] refers to the upper rounded integer value of the argument.

Without going into the mathematical detail, it has been observed experimentally that the DPWM
resolution, nDPWM, should be finer than that of the ADC, nADC. Mathematically,

nDPWM ≥ int[nADC + log2

( Vre f

Vmax · D

)
] (44)

In Equation (44), addition of the term log2

(
Vre f /Vmax · D

)
to nADC indicates that nDPWM should

at least be set one bit larger than nADC in the steady state. This corresponds two DPWM levels to one
ADC level.

Numerically, assuming the maximum ripples do not exceed 1% of the output voltage (the design
specification considered for the design example) and Vre f to be 80% of Vmax, the minimum resolution
required by the ADC is 7 bits. The quantization step qv,ADC for the error signal ranging from −1 to
+1 (ADC’s dynamic range), thus, is calculated to be 2/27 = 0.0156. The nDPWM is, then, 8 bits. ADC
and DPWM gains, being dependent on their resolutions, computed through KADC = 2nADC and
KDPWM = 1/(2nDPWM − 1) respectively, are calculated to be 128 and 1/255, respectively.

6. Redesigning and Optimizing the Digital Controller

In order to compensate all the additionally incorporated effects in the digital control loop due
to the inclusion of delay and ADC and DAC gains, the digital controller has to be resigned. More
specifically, the controller has to be redesigned for the modified plant described by

Gp(s) = e−std · Gvd(s) · KADC · KDPWM (45)

Following the same procedure as described above, a three-pole two-zero (complex)-based digital
controller (instead of using all the controllers for saving space) for the modified plant Gp(s) is given by

Gc(z) =
14.1z3 − 11.68z2 − 13.51z + 12.27
z3 + 0.4273z2 − 0.9566z− 0.4707

(46)

On the optimization of this digital controller through the nonlinear least squares method,
somewhat deviated coefficients are observed this time. The optimized digital controller for the
modified plant comes out to be

Gc(z) =
16.7824z3 − 25.6728z2 + 9.2157z− 0.0464

0.3731z3 + 0.0796z2 − 0.4081z− 0.0446
(47)

Once the algorithm is run, as can be seen from Figure 13, with the progression of iterations,
the residual decreases monotonically, thus ensuring the better set-point tracking. This certifies the
fine-tuning of the digital controller coefficients by the NLS method. The algorithm stops when the
final change in the sum of squares relative to its initial value is less than the default value of the
function tolerance.
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7. Additional Numerical Simulations

For the sake of investigating the effectiveness of the proposed optimized digital controllers, some
additional simulation results for the digital control loop incorporating the delay and ADC and DAC
gains using the MATLAB/Simulink environment are presented. A solver of the fixed-step type is
used. The loop delay is considered to be half the switching period. ADC and DPWM gains are set to
128 and 0.0039, respectively. The step response offered by the three-pole two-zero (complex)-based
unoptimized and optimized digital controllers described in Equations (46) and (47), respectively, for
the modified plant described in Equation (45) is shown in Figure 14.Electronics 2018, 7, x FOR PEER REVIEW  21 of 25 
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From the step response offered by the controllers, it is depicted that the optimized controller
offers better static performance characteristics as compared to its unoptimized form (see Table 4).
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Table 4. Comparison of performance characteristics.

Performance Characteristics Digital Controller Optimized Digital Controller

Rise Time (s) 4.5888 × 10−6 7.8825 × 10−7

Settling Time (s) 4.7043 × 10−5 5.0295 × 10−6

Overshoot (%) 21.6457 5.3088
(First) Peak (V) 2.4329 2.1062
Peak Time (s) 1.30 × 10−5 2.00 × 10−6

In addition, at the time of transient, the response takes much less time to recover to its steady-state
value with a controlled peak spike. For example, for a load current change of 0.44 A to 0.22 A and
then from 0.22 A to 0.44 A, the optimized controller shows less recovery time as well as reduced
voltage peak-to-peak spike with regard to its traditional form (see Figure 15). Simulation results
reveal that the digital controllers are well-retuned by the NLS method and offer superior static and
dynamic performance.
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Figure 15. Response of the controllers against the changes in load current.

8. Rapid Hardware-in-the-Loop (HiL) Implementation

The Simulink plugged-in architecture-level design tool named Xilinx System Generator (XSG), for
DSP from Xilinx, is employed for the implementation of a digital control algorithm on a high-speed,
high-end, and high-density Basys 3 Artix-7 FPGA board after automatically generating portable,
synthesizable, and vendor-neutral VHDL code. XSG automatically invokes both the Core Generator
and ChipScope generator to construct the netlist and cores, and thus the configuration bitstream, once
the target device/FPGA XC7A35T-1CPG236C from Xilinx, Inc. (an American technology company) and
the compilation target (Hardware Co-Simulation JTAG) are set in its settings. High-level abstractions
produced by a control design engineer in the Simulink model are translated into the low-level and
executable VHDL code through the bitstream. FPGAs can be easily interfaced with Simulink through
the XSG environment. This enables control design engineers to build sophisticated digital control
algorithms quickly, with respect to the traditional Resistor-Transistor Logic (RTL) development times
without having the knowledge of VHDL language, and then implement it on an FPGA, thus shortening
the design and testing time.
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The optimized digital controller described in Equation (47) can be expressed equivalently in the
standard form as follows:

Gc(z) =
44.9810− 68.8094z−1 + 24.7003z−2 − 0.1244z−3

1 + 0.2133z−1 − 1.0938z−2 − 0.1195z−3 (48)

Equation (48) can be translated into the difference equation through the inverse Z-transform
as follows:

u(k) = 44.9810e(k)− 68.8094e(k− 1) + 24.7003e(k− 2)− 0.1244e(k− 3)− 0.2133u(k− 1)
+1.0938u(k− 2) + 0.1195u(k− 3)

(49)

The above controller difference equation realized using hardware-realizable blocks from the
XSG library is shown in Figure 16. The controller coefficients are realized using a single precision
floating-point data type characterized by the word lengths of 32 bits. A new hardware cosimulation
library and thus a synthesizable block (which is to be downloaded into the Artix-7 board) are
automatically generated (see Figure 16) on the successful generation of VHDL code. The JTAG
cosimulation block is the equivalent representation of the previously used XSG simulation blocks,
including the gateway-in and gateway-out blocks used for the realization of digital control algorithms.
JTAG communication between a hardware platform (Artix-7 FPGA board) and Simulink (on PC) for a
supported board is carried out for downloading the bitstream. In this way, a JTAG-based hardware
cosimulation is performed by downloading the Vivado program-based generated bit file into the
FPGA, thereby closing the loop.
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Figure 16. Hardware-in-the-loop (HiL) implementation of the compensated buck converter system.

Careful analysis of the step response shown in Figure 17 depicts that the XSG-based compensated
system displays almost the same performance as the Simulink-based compensated system. This
is due to the fact that XSG uses the floating-point data format for the realization of controller
coefficients, just like Simulink, which utilizes ‘double’ type data. Set time-steps for the hardware
implementation, rounding and truncation errors, and the sampling issues associated with the digital
systems may cause slight performance deterioration in the XSG-based system. The bit-true and
cycle-true characteristic of the XSG makes the numerical simulations such as if they were attained
through the real hardware implementation.
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9. Conclusions

In this paper, optimization of the PZC technique-based digital controllers through the NLS method
is performed to enhance the static and dynamic performance. In the proposed control methodology,
which is essentially a digital redesign or emulation technique, the analog compensators with complex
and real zeros designed on the basis of the PZC technique are mapped into the digital compensators
by using a bilinear transformation technique with an appropriate sampling period. Discrete-time
approximation of continuous-time controllers, even when accomplished through using the ‘best’
Tustin transformation, introduces frequency distortion. Although low analog frequencies are relatively
well-mapped into the same digital frequencies, high frequencies result in highly nonlinear mapping. As
a result, the performance of the digital controllers deteriorates. The coefficients of the digital controllers
are retuned through the NLS optimization method to enhance their performance. There occur also
opportunities for improvement in compensator performance, as the placing of the compensator’s real or
complex zeros in the vicinity of the plant’s poles ensures only nominal performance. Numerical results
reveal that NLS-based optimized digital controllers exhibit superior static and dynamic performance
as compared to the conventional (unoptimized) digital controllers, thus validating the effectiveness
of the NLS optimization method. When comparing their performance, the NLS method outshines
metaheuristic techniques such as GA. Rapid HiL implementation of the compensated buck converter
system is also successfully performed.
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