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Abstract: Finding feasible motion for robots with high-dimensional configuration space is a
fundamental problem in robotics. Sampling-based motion planning algorithms have been shown
to be effective for these high-dimensional systems. However, robots are often subject to task
constraints (e.g., keeping a glass of water upright, opening doors and coordinating operation with
dual manipulators), which introduce significant challenges to sampling-based motion planners.
In this work, we introduce a method to establish approximate model for constraint manifolds, and
to compute an approximate metric for constraint manifolds. The manifold metric is combined with
motion planning methods based on projection operations, which greatly improves the efficiency
and success rate of motion planning tasks under constraints. The proposed method Approximate
Graph-based Constrained Bi-direction Rapidly Exploring Tree (AG-CBiRRT), which improves upon
CBiRRT, and CBiRRT were tested on several task constraints, highlighting the benefits of our approach
for constrained motion planning tasks.

Keywords: motion planning; constraint manifolds; approximate metric; projection

1. Introduction

Since multi-degree-of-freedom (multi-DOF) robots are often subject to some hard kinematic
constraints in real tasks, each constraint forms a low-dimensional manifold embedded in
high-dimensional space, which poses a great challenge to traditional sampling-based motion planning
techniques. For example, a robot may need to keep the orientation fixed when carrying an object,
a robot may form a closed kinematic chain with the environment (when opening a door or pulling a
drawer), or some tasks require cooperation of multiple manipulators. Due to task constraints, robots
cannot move freely in the original configuration space.

Compared with artificial potential field methods [1], heuristic search techniques [2] and
optimization-based methods [3,4], sampling-based motion planning algorithms such as RRT [5],
PRM [6] and RRT∗ [7] have been shown to be effective for high-dimensional robots, and become
the standard for industrial solutions [8]. They rely on the feasibility information of configurations
provided by the collision query module, and connect a series of collision-free configurations to generate
a feasible path from the starting point to the target region, which avoids explicit description of obstacles
in high-dimensional space. However, the manifold generated by hard kinematic constraints introduces
several challenges to the sampling-based motion planners. First, it is almost impossible to obtain
configurations satisfying the constraints by direct sampling, because the constraint manifold has zero
measure with respect to the ambient space metric, as shown in Figure 1. Second, the manifold is

Electronics 2018, 7, 395; doi:10.3390/electronics7120395 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0001-9695-1940
https://orcid.org/0000-0001-5327-9496
https://orcid.org/0000-0002-3061-9897
https://orcid.org/0000-0003-2659-6677
https://orcid.org/0000-0003-2659-6677
http://www.mdpi.com/2079-9292/7/12/395?type=check_update&version=1
http://dx.doi.org/10.3390/electronics7120395
http://www.mdpi.com/journal/electronics


Electronics 2018, 7, 395 2 of 18

implicitly defined by constraints in robot’s workspace, and the mapping between the workspace and
the configuration space is nonlinear, which means that the constraint manifolds cannot be explicitly
described by an analytic formula. Third, sampling-based motion planners cannot interpolate locally
under task constraints to form a continuous path on manifolds.

(a) 3-DOF robot (b) Constraint manifold

Figure 1. (a) The end effector of a three-DOF robot is constrained on the black line, which means that
the robot has only two-DOF in the workspace. (b) The configurations satisfying the constraint form a
two-dimensional manifold in the C-space. Obviously, This manifold has zero measure with respect to
ambient space metric and can not be expressed by an analytic formula, because the mapping between
configuration space and workspace is nonlinear.

To solve the above-mentioned problems, various methods of motion planning on constraint
manifold are widely proposed, including relaxation [9,10], projection [11–13], tangent-space [14] and
atlas [15,16]. The characteristics of these methods are summarized and compared in [17]. Relaxation is
to relax the surface of the constraint manifold by increasing the allowed tolerance of the constraint
function so that the sampling-based planners can handle the constraints without additional machinery.
However, relaxation transmutes task constraint into narrow passage problem, which poses a challenge
to the efficiency of constrained motion planning. Tangent space and atlas both create a piece-wise
linear approximation of the manifold, which can then be used for generating satisfying configurations
or local motion. However, the piece-wise linear approximation of the manifold breaks down when the
manifold becomes highly curved, as tangent movement rapidly drifts away from the surface of the
manifold. Additionally, the two methods also break down near singularity points, due to the Jacobian
losing rank and no longer maintaining a surjective mapping to the ambient configuration space. By
comparison, projection is easier to implement and captures the structure of the constraint function
within the planning process, which is the most widely implemented methodology. The projection
process is introduced in Section 3.5.

Constrained Bi-direction Rapidly-Exploring Random (CBiRRT) [11,18] is a typical projection-based
constrained motion planning method. Based on the bidirectional extension of BiRRT, the configurations
which are sampled uniformly in ambient space are projected on constraint manifold step by step,
and the continuous path satisfying the task constraints is obtained. Because the process of sampling
and projection is online, the method lacks the prior knowledge of constraint manifold, which leads
to its blind expansion. The failure of the projection process and the exploration of invalid regions
in the C-space greatly limits the efficiency and the success rate of the planning algorithm within the
allowed time.

In recent years, many successful applications of machine learning methods in the field of robot
motion planning show that effective utilization of prior knowledge of the C-space can greatly improve
the efficiency of various planners [19–22]. Therefore, this paper obtains the approximate model of
high dimensional constraint manifolds by machine learning methods and selects the ideal extension
direction based on the approximate metric for random tree. This process avoids the exploration of the
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invalid region in C-space, thus greatly improving the efficiency of the constrained motion planning
algorithm. The proposed framework, which is developed from CBiRRT, and CBiRRT itself were
applied to the motion planning of single-arm robot and dual-arm robot under task constraints.

The main contributions of this paper is to learn an approximate metric for constraint manifolds.
The paper is organized as follows: Section 2 introduces the existing work related to the framework
of the article. In Section 3, the construction and metric learning methods of approximate model for
constraint manifold are introduced, and a motion planning framework under constraints is proposed.
In Section 4, AG-CBiRRT and CBiRRT are applied to deal with the task constraints, including keeping
a cup upright, dual-arm cooperation and the closed passive chains. The results and analysis of
many performance indicators including the planning time, the success rate, the path length and the
number of extended nodes are provided. In Section 5, we make conclusions and provide directions for
future work.

2. Background and Related Work

In this paper, the problem is to find a collision-free path in configuration space, satisfying the
task constraints of the end effectors. Because of the existence of hard kinematic constraints, the
valid configuration set is restricted to a manifold embedded in C-space. Because the constraint
manifold has zero measure with respect to the ambient space metric, the probability of generating
valid configurations by direct sampling method is very low. A commonly used method to solve this
problem is a projection operator, which can be realized by a Gauss–Newton process based on Jacobian
pseudo inverse J(q)+ [23].

The projection operator is used in the process of sampling and local extension. This process
allows configurations to be sampled arbitrarily in the ambient space where the manifold is located.
Because a projection is easy to implement, it is utilized to solve the problem of tracking the trajectory
of industrial robots [24]. Berenson et al. [18] proved that, when the planning time approaches infinity,
the configuration set that satisfies the constraints will be fully covered by the projection sampling
process. This means that the constrained motion planning method has probabilistic completeness,
which is similar to the RRT-like planners. The probabilistic completeness of sampling-based motion
planning algorithms means that, if there is a path solution between the starting point and the target
point, a path solution must be found as long as the planning time is long enough. Yakey et al. [12]
proposed using a projection operator to enable sampling-based motion planners such as RRT and
PRM to expand under constraints. They used the framework to solve the motion planning problem
of closed kinematic chains. Stilman [13] defined a generic task constraints description method, and
presented three projection methods based on the Jacobian pseudo inverse: Tangent Space Sampling
(TS), First-Order Retraction (FR) and the Random Gradient Descent (RGD). In recent years, some
humanoid robots such as HRP2 [25] and Humanoid Path Planner System [26] also adopt projection to
meet task constraints.

Although the Projection-based planning techniques are easy to implement and have probabilistic
completeness, the unknown structure of the constraint manifold will lead to many extension steps
towards invalid regions in the C-space. To solve this problem, off-line sampling and machine learning
methods are used to obtain prior knowledge of manifolds. Off-line sampling means obtaining
a configuration set that satisfies constraints by precalculation. Kagami [27] and Burget [28] et al.
utilized this method to realize the whole body motion planning of a humanoid robot under dynamic
equilibrium constraints. Sucan et al. [29] connected the configurations sampled off-line to generate an
approximate graph of the manifold, and then used a variety of sampling-based motion planners to
search on the graph directly. However, because of the limited accuracy of the approximate graph, it is
difficult to ensure that the local expansion process satisfies constraints. Roy N [30] and Phillips M [31]
et al. proposed that the experience graph (E-graph) can be learned from constrained movements (such
as opening doors, or pulling drawers) which are demonstrated by users. The E-graph can guide the
planner to perform new planning tasks and achieve remarkable effects in multi-DOF robots’ motion
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planning such as PR2. However, the manifold prior model mentioned above will need to be resampled
and relearned when the environment changes. No researcher uses an adapted manifold metric to
guide the constrained motion planning.

3. Methods

We introduce the process of constructing an approximate graph of constraint manifolds by off-line
sampling, and utilize an approximate model to learn the approximate metric on the manifold. This
metric is combined with the projection operator to achieve fast and high-quality motion planning
under task constraints.

3.1. Problem Statement

The configuration space of the robot is defined by Q. A path in the space is defined by τ : [0, 1]→
Q. We consider constraints evaluated as a function of a configuration q ∈ Q in τ. The location of q
in τ decides which constraints are active at the configuration. Thus, a constraint is defined as the
pair {C(q), s}, where C(q) ∈ R ≥ 0 is the constraint-evaluation function to decide if the constraint is
satisfied at q, and s ⊆ [0, 1] is the domain of this constraint, i.e., where in the path τ the constraint
is active. We assume that τ satisfies the given constraint when C(q) = 0, ∀q ∈ τ(s). Each constraint
defined in this way implicitly defines a manifold in Q where τ(s) is allowed to exist. Configurations
that satisfy the constraint form the manifoldMC ⊆ Q, which is defined as:

MC = {q ∈ Q : C(q) = 0} (1)

For τ to satisfy a constraint, all the elements of τ(s) must lie within MC. If there exists a
configuration q not onMC, q is said to violate the constraint. In general, we can define any number of
constrains for a given task, each with their own domain. Let a set of n constraint-evaluation functions
be C and the set of domains corresponding to those functions be S. Then, the constrained motion
planning problem is defined as:

find τ : q ∈ MCi ∀q ∈ τ(Si)

∀i ∈ {1 . . . n}
(2)

When the end effector of the three-DOF manipulator in Figure 1a is constrained to be on a straight
line, the path satisfying the constraint must be located on the manifold in Figure 1b. Note that, if two
or more constraints’ domains overlap, the way-points of the path τ need to lie within two or more
constraint manifolds.

3.2. Approximating Constraint Manifolds

Given a specific task constraint, we can construct an approximate graph of the constraint manifold.
Task constraints and environment constraints (e.g., caused by geometry of the robots) are decoupled,
which means that collision avoidance constraints are not considered in the process of constructing a
manifold approximate graph. The form of the approximate graph is G = (V, E, D), where V is the
set of nodes on the approximate graph corresponding to the configurations satisfying task constraint
which are sampled off-line, and E is the edges on the graph, which refer to the node connections on
the manifold. D is the distance matrix of nodes on the approximate graph. The construction process of
manifold approximate graph is shown in Algorithm 1.

V can be sampled off-line by robot inverse kinematic calculation, projection [11–13], tangent
space [14] or atlas [15,16] methods. Samples are drawn to cover the area of interest in the satisfying
subset defined by the constraint and placed within V. Then, the KNN [32] algorithm is used to connect
each node to the k nearest neighbors in V to generate edges on the approximate graph, as shown in
Lines 2–7 of Algorithm 1. KNN is a lazy learning method for data classification by measuring the
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distance between samples in feature space. KNN is used to construct the relationship between adjacent
samples to generate undirected graph. In this process, the k nearest neighbors of each sample need
to be retrieved by Kdtree [33]. As shown in Figure 2a, the torus is a two-dimensional manifold in
the three-dimensional space. An approximate graph covering the entire manifold can be obtained by
uniform sampling and adjacent samples connection process on the torus.

Algorithm 1: Construct approximate graph.

Input: Task constraint C(q);
Output: Manifold approximate graph G(V, E, D);

1 V ←RobotIK(C(q)) or Projection(C(q)) or Atlas(C(q)) or TangentSpace(C(q));
2 for i = 0 to Size(V) do
3 V[i].list← K-NearestNeighbors(V[i], V);
4 for j = 0 to k do
5 E←AddEdge(V[i].list[j], V[i]);
6 end
7 end
8 for i = 0 to Size(V) do
9 for j = 0 to Size(V) do

10 D[i][j]←Dijkstra(E, V[i], V[j]);
11 end
12 end
13 return G(V, E, D);

The above undirected graph can be used to realize the estimation of distance metric on manifold.
Distance metric plays an important role in motion planning. For example, the asymptotically optimal
motion planning methods, such as RRT∗ [7] and RRTX [34], use the distance metric to calculate the
current cost and heuristic value of the path, which realizes the continuous optimization of the path.
The geodesic distance on constraint manifolds cannot be directly calculated in practice, but it can be
approximated piecewise linearly by graph distance [35]. The problem of calculating the shortest arc
length between two points on a manifold can be simplified to the problem of calculating the shortest
path between two points on an approximate graph. The Euclidean distance between the join points in
the approximate graph is labeled as the weight of the edges to generate an undirected weight graph.
Since the shortest path length on the undirected weighted graph satisfies the properties of a metric,
namely being non-negative, symmetric and triangular inequalities, it can be used as an approximate
metric of the manifold.

The remaining problem is constructing the distance matrix D between all nodes in the undirected
weight graph, which can be realized by repeatedly calling the Dijkstra algorithm [36]. The Dijkstra
algorithm can calculate the shortest distance between a source node and all other nodes on the weight
graph. As shown in Figure 2b, the approximate geodesic distance between two points on the torus can
be obtained by searching the approximate graph in Figure 2a with Dijkstra algorithm.

Constructing distance matrix between all nodes on the manifold approximate graph is the process
of metric learning for the constraint manifolds. It is noteworthy that the distance matrix is a real
symmetric matrix with a size of |V| × |V|. When the dimension of planning problems are relatively
high, the number of samples required is large, resulting in large memory occupied required by the
distance matrix. Thus, in practice, we use a constant lookup data structure to read the distance
matrix online.
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(a) Manifold approximate graph (b) Manifold approximate matric

Figure 2. The torus is a two-dimensional manifold in three dimensions. The blue points in (a) are
the samples that are uniformly sampled on the torus surface. Each point is connected to the five
nearest points (red line), thus forming an approximate graph of the manifold. In (b), the green and red
points are the points needed to perform metric calculation. The blue line is the shortest path that the
Dijkstra algorithm searches on the graph, and the yellow points is the way-points on the shortest path.
The length of the path can be used as an approximate metric between the two points on torus surface.
The length of the orange line is the Euclidean metric between these two points.

3.3. Planning on the Constraint Manifold

In this part, the manifold prior knowledge will be used for constrained motion planning. Similar
to CBiRRT [11], the method proposed in this paper implements the exploration of configuration space
by growing two trees from the starting point and the goal point, respectively. However, the difference
is that the method is based on the approximate graph and manifold metric to select the local optimal
expansion direction, rather than by random sampling expansion. Since this algorithm is based on
CBiRRT and utilizes the manifold approximate graph for motion planning, we named the algorithm
the Approximate Graph CBiRRT (AG-CBiRRT). As shown in Algorithm 2, the input includes the
starting point qstart, goal point qgoal of the planning problem and the approximate graph G of the
constraint manifold. The output is the path τ that satisfies the task constraints.

Algorithm 2: AG-CBiRRT.
Input: qstart, qgoal , G;
Output: τ;

1 Ta.init(qstart), Tb.init(qgoal);
2 while TimeRemaining() do
3 qrand ← RandomConfig();
4 qa

near ← NearestNeighbor(Ta, qrand);
5 qrand ←SelectNeighbor(qa

near, qrand, G, Ta);
6 ExtendResult, qa

reached ← ConstraintExtend(Ta, qa
near, qrand);

7 if ExtendResult 6=TRAPPED then
8 qb

near ← NearestNeighbor(Tb, qa
reached);

9 ExtendResult, qb
reached ← ConstraintExtend(Tb, qb

near, qa
reached);

10 end
11 if qa

reached = qb
reached then

12 τ ← ExtractPath(Ta, qa
reached, Tb, qb

reached);
13 return τ;
14 end
15 else
16 Swap(Ta, Tb);
17 end
18 end
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As shown on Lines 3–5 of Algorithm 2, the configurations obtained by random sampling are not
set as local expansion targets directly. Algorithm 2 searches the nearest neighbors qa

near on the current
tree Ta, and uses SelectNeighbor function, which is explained in Algorithm 3, to select the optimal
extension direction for the qa

near.
As shown on Line 2 of Algorithm 3, the function NearestNeighbor is utilized to search the

nearest neighbor of the other tree Tother’s root node, and set it as the global extension target qg.
Then, the function K-NearestNeighbors is utilized to retrieve the k nearest neighbors of qnear on the
approximate graph, which are stored in the data structure qnear.list. In this way, k candidate extension
targets are obtained. The geodesic distance between each candidate nearest neighbor and the global
extension target qg is difficult to calculate in practice, but, as mentioned above, it can be estimated by
the metric GraphMetric(a, b) on the manifold approximate graph. Since the distance matrix of the
approximate graph is obtained by off-line computing, the GraphMetric(a, b) can be read directly so
that it will not generate additional computing overhead. Since the manifoldMC has the property of its
ambient Euclidean space Q in local, the geodesic distance between candidate neighbors and qnear can
be estimated by Euclidean metric function EuclideanMetric(a, b). In this way, as shown on Line 11 of
Algorithm 3, the path cost between each candidate neighbor and qg can be calculated. The candidate
nearest neighbor with the lowest path cost will be chosen as the target of this extension. As shown in
Figure 3, through this process, it can select the most promising local extension target for qnear.

Figure 3. The diagram of selecting the nearest candidate neighbors. The grey point qrand is a random
sampling configuration in the C-space (not on the constraint manifold). The purple point with green
contour qnear is the nearest neighbor of qrand on Ta. The yellow point is one candidate neighbor of qnear

on the manifold approximate graph. Through the Euclidean metric (blue dotted line) between the
candidate nearest neighbors and qnear, and the graph metric (pink line) between the candidate nearest
neighbors and the qg, the estimated cost of each candidate nodes can be calculated. The candidate
neighbor with the lowest cost (yellow point with red contour) is chosen as the extension target of qnear.

Note that the manifold approximate graph obtained by the previous learning process only
considers task constraints, and does not consider the collision avoidance constraint of environment.
Therefore, the expansion failure caused by environmental obstacles may cause the planning algorithm
to fall into dead circulation (an infeasible candidate neighbor is repeatedly selected). Therefore, it is
necessary to ensure that:

• Each node on the search tree only performs once k nearest neighbors searching, as shown on Line
3 of Algorithm 3.

• Each candidate nearest neighbor can only be selected once (but it can be selected as other nodes’
candidate neighbor). As shown on Line 16 of Algorithm 3, when the candidate neighbor is
selected, it will be erased from the data structure qnear.list.
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• If qnear’s k nearest neighbors have been searched but the qnear.list is empty (Line 7 of Algorithm 3),
which indicates that all the neighbors have been selected as qrand and erased from qnear.list,
the qrand sampled in configuration space will be returned without change.

Algorithm 3: SelectNeighbor(qnear, qrand, G, T;).
Output: qrand;

1 minimumcost=MAX;
2 qg ← NearestNeighbor(G, Tother.root);
3 if !qnear.searched then
4 qnear.list← K−NearestNeighbors(qnear, G);
5 qnear.searched←True;
6 end
7 if qnear.list = empty then
8 return qrand;
9 end

10 for i = 0 to Size(qnear.list) do
11 cost← GraphMetric(qnear.list[i], qg)+EuclideanMetric(qnear.list[i], qnear);
12 if minimumcost > cost then
13 minimumcost← cost;
14 qrand ← qnear.list[i];
15 end
16 Erase(qnear.list, qrand);
17 end
18 return qrand;

After completing the selection of candidate neighbors, the ConstraintExtend function is used to
implement local extensions from qnear to target qrand under constraints. If the extension is successful,
the ConstraintExtend function is called again to extend the other tree Tb to the qa

reached which is reached
last time. If qa

reached = qb
reached, it means that two search trees are connected and the planning task

is completed. Otherwise, the trees will be swapped and expanded until the allowed planning time
is reached.

3.4. Local Extension under Constraint

Although the selection of an optimal candidate neighbor on the manifold approximate graph
can make most of the extension on the manifold, the Projection operation is still necessary. The main
reasons are as follows:

• The number of samples is limited, which will lead to the error between an approximate graph
and the constraint manifold.

• When the qnear.list is emptied, qrand will be returned as local extension target, but the configuration
does not satisfy the task constraints, as shown on Lines 7–9 of Algorithm 3. Therefore, to ensure
that all way-points on the path satisfy the task constraints, the ConstrainedExtend function is
used to implement local extension under constraints.

As shown in Algorithm 4, The ConstrainedExtend function works by iteratively moving from
qnear to the configuration qtarget with step size 4qstep. qtarget represents the target of local extension
under task constraints. During each move, the ConstrainConfig function is used to project the
new configuration qs onto the constraint manifold, so that qs satisfies the task constraint. The
ConstrainConfig function is defined by specific problems and is discussed in Section 4. The
CollisionFree function checks whether the interval between the two configurations is feasible by



Electronics 2018, 7, 395 9 of 18

calling the collision query module. After each move, we whether the new configuration qs reaches
qtarget is checked. There are three cases of local extension results: REACHED represents the local
extension target qtarget is reached; ADVANCED indicates that it moves toward the target, but hasn’t
arrived; and TRAPPED indicates that there is no successful movement. Because the planner may fail
to reach the local expansion target qtarget, we need to keep track of where the planner actually reached
in qreached, which could be used as the local expansion target of next round as shown on Line 9 of
Algorithm 2.

Algorithm 4: ConstrainedExtend(T, qnear, qtarget).

Output: ExtendResult, qreached;
1 qs ← qnear; qold

s ← qnear;
2 while True do
3 if qtarget = qs then
4 qreached ← qtarget;
5 return REACHED, qreached;
6 end
7 if |qtarget − qs| > |qold

s − qtarget| then
8 qreached ← qold

s ;
9 return (qreached = qnear?TRAPPED;ADVANCED), qreached;

10 end

11 qs ← qs + min(4qstep, |qtarget − qs|)
(qtarget−qs)

|qtarget−qs | ;

12 qs ← ConstrainConfig(qold
s , qs);

13 if qs 6= NULL and CollisionFree(qold
s , qs) then

14 T.AddVertex(qs);
15 T.AddEdge(qold

s , qs);
16 end
17 else
18 qreached ← qold

s ;
19 return (qreached = qnear?TRAPPED;ADVANCED), qreached;
20 end
21 end

3.5. Projection Operation to Satisfy Constraints

In this section, the method of satisfying task constraints by projection technique is briefly
introduced. CBiRRT [11] extends the Bi-directional RRT (BiRRT) algorithm by using projection
techniques to explore the configuration space manifolds that correspond to constraints and to find
bridges between them. The projection technique used in this article is similar to that of CBiRRT.

Firstly, T0
c is defined as the relative transformation matrix of the task constraints relative to the

world coordinate system. T0
obj is the relative transformation matrix between the end effector and the

world coordinate system, which can be calculated by the positive kinematics. Constraints in Cartesian
space are defined according to the allowable tolerance between T0

obj and T0
c , as shown in Equation (3).

C =



xmin xmax

ymin ymax

zmin zmax

ψmin ψmax

θmin θmax

φmin φmax


(3)
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The first three lines of C provide upper and lower boundaries for the translation transformations
along X, Y, and Z axes, respectively, and the last three lines of C provide upper and lower bounds for
the rotation transformations around these three axes.

Given a configuration qs, the DisplacementFromConstraint(C, T0
c , qs) function is defined as follows:

First, we use forward kinematics at qs to get T0
obj. The relative coordinate transformation between

the end-effector and the task constraint can be calculated by Equation (4):

Tc
obj = (T0

c )
−1T0

obj (4)

Then, Tc
obj can be converted to a six-dimensional vector dc, including X, Y, Z, Roll, Pitch and Yaw,

which represents displacement vector in Cartesian space:

dc =


tc
obj

arctan2(Rc
obj32, Rc

obj33)

−arcsin(Rc
obj31)

arctan2(Rc
obj21, Rc

obj11)

 (5)

where tc
objis the 3×1 translation vector in Tc

obj, and Rc
obj is the 3 × 3 rotation matrix in Tc

obj.
Finally, by comparing with the constraint bounds in Equation (3), we can get the displacement

from the constraint in the Cartesian space4xi:

4 xi =


dc

i −Cimax, if dc
i > Cimax

dc
i −Cimin, if dc

i < Cimin

0, otherwise

i = x, y, z, ψ, θ, φ; (6)

To satisfy the constraint, we use a gradient descent projection method based on the Jacobian
pseudo inverse, which is consistent with the method used in CBiRRT (as shown in Algorithm 5).

Algorithm 5: ProjectConfig(qold
s , qs, C, T0

c ).
Output: qs

1 while true do
2 4x← DisplacementFromConstraint(C, T0

c , qs);
3 if ‖ 4 x‖ < ε then
4 return qs;
5 end
6 J← GetJacobian(qs);
7 4qerror ← JT(JJT)−14 x
8 qs ← (qs −4qerror);
9 if |qs − qold

s | > 24 qstep or OutsideJointLimit(qs) then
10 return NULL;
11 end
12 end

Through the ProjectConfig function, the configuration qs which satisfies the task constraints of the
end effector can be obtained. Due to the manifold approximate graph based local extension, most of
the way-points are satisfied with the task constraint, and the times of Projection operations is reduced
greatly (as shown on Lines 3–5 of Algorithm 5).
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4. Results

In this section, the simulation and experiment results of the proposed method in the constrained
motion planning problem of keeping a cup upright, dual-arm cooperation and passive chains are
shown. All of the above algorithms were implemented in the framework of the Open Motion Planning
Library (OMPL 1.3.1) [37]. All experiments were implemented on an Intel Core i5-4590 3.3GHz
personal computer. ROS Indigo and Gazebo were used to build the simulation platform, and the
Flexible Collision Library (FCL) [38] was used for collision query. In all experiments, search step length
was4qstep = 0.1, and the constraint tolerance was ε = 0.1.

4.1. Constraint Motion Planning for Keeping a Cup Upright

For single-arm robots, the end effector holding a cup and keeping it upright is a typical task
constraint. Firstly, we determined the constraint boundary B of the task in the form of Equation (3):

B =



−∞ +∞
−∞ +∞
−∞ +∞

0 0
0 0
−∞ +∞


(7)

The two degrees of freedom under Cartesian space are restricted, so the feasible configuration of a
6-DOF manipulator under this task is constrained on a continuous four-dimensional manifold. In this
task, the constraint’s coordinate system T0

c can be set to any fixed point in the space. For convenience,
we set it as the base coordinate system of the manipulator. Next, we designed the ConstrainConfig
function for the task, as shown in Algorithm 6.

Algorithm 6: ConstrainConfig(qold
s , qs).

Output: qs

1 C = B;
2 T0

c = BaseofManipulator();
3 qs ← ProjectConfig(qold

s , qs, C, T0
c );

4 return qs;

By traversing the workspace of the robot and the inverse kinematics, a configuration satisfying
the task constraint could be obtained. The approximate graph G(V, E, D) of the four-dimensional
manifold was constructed using 4183 samples in 49.1 min, and occupied a memory of 189.2 Mb. As
shown in Figure 4, a 6-DOF UR10 manipulator was used to build the simulation platform. AG-CBiRRT,
which is proposed in this paper, and CBiRRT were used for motion planning under constraints in
four scenarios, respectively. Note that, since our method decouples the task constraints from collision
avoidance constraints, the obtained manifold metric is applicable in all four scenarios and does not
need to be relearned.

As shown in Table 1, the performance comparison between CBiRRT and AG-CBiRRT algorithm
under four planning scenarios could be obtained through multiple tests. The success rate refers to the
probability that a feasible path could be searched within the 10 s allowed planning time. The path
length refers to the sum of Euclidean distances between adjacent path points on the final path. The
number of nodes refers to the number of feasible nodes on the tree when planning was successful.

To show the algorithm’s effect more intuitively, we present box-plots of the planning time and
the path length. As shown in Figure 5a, since the extension of AG-CBiRRT was carried out on the
manifold approximate graph, many projection operations and the exploration of the invalid regions
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in C-space were avoided. The planning time was controlled within 1 s, and the success rate in each
planning scene was up to 100%. In most of the scenes, the planning efficiency was improved by an
order of magnitude. As shown in Figure 5b, the method proposed in this paper used the approximate
graph to select the lowest cost expansion direction in each step. Compared with the CBiRRT, the path
length was significantly shortened.

(a) Scene 1: Desk (b) Scene 2: Kitchen (c) Scene 3: Microwave (d) Scene 4: Cabinet

Figure 4. The moving trajectory of the manipulator in four scenes. The end effector is required to
always keep the cup upright during the movement. To clearly display the environment model, the
robot states on the path are not all displayed.

Table 1. Single manipulator motion planning under task constraints.

CBiRRT AG-CBiRRT

Scene 1 Scene 2 Scene 3 Scene 4 Scene 1 Scene 2 Scene 3 Scene 4

Success Rate (%) 54.2 100 100 89.6 100 100 100 100
Average Planning Time (s) 5.11 1.25 2.87 3.13 0.54 0.25 0.31 0.53
Average Path Length (rad) 22.76 39.30 30.28 15.49 9.35 8.90 12.25 10.46
Average Nodes Number 1738 646 1142 1155 369 144 172 293

(a) Planning time

(b) Path length

Figure 5. Box-plots of motion planning performance.
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4.2. Constraint Motion Planning for Dual-Arm Cooperation

A dual-arm robot forms a kinematic closed chain when it manipulates an object, which is a
common task constraint. For the task of holding an object and maintaining its levelness with the end
effectors of the dual-arm robot, the configurations that satisfy the constraint constitute a continuous
four-dimensional manifold in a 2d-dimensional space (d is the single manipulator’s DOF). For this task,
similar to the case of the single-arm robot, the constraints’ coordinate system T0

c could be set to any
fixed point in work space. Since the end effectors of the two arms were connected by the manipulated
objects, the coordinate system T0

right of the right end effector had the following relationship with the

left end effector’s coordinate system. T0
le f t:

T0
le f t = TobjT

0
right (8)

where Tobj is the coordinate transformation between the two end effectors, which is related to the size
and shape of the object.

The motion constraints of the manipulated object were decomposed into two end effectors’
constraints:

Bright =



−∞ +∞
−∞ +∞
−∞ +∞

0 0
0 0
−∞ +∞


Ble f t =



0 0
0 0
0 0
0 0
0 0
0 0


(9)

T0
right needs to satisfy the constraint of keeping the object level. T0

le f t could be solved according to
Equation (8), and its projection operation was equivalent to solving inverse kinematics by numerical
iteration. Therefore, the task constraint of the dual-arm robot needed to be satisfied by two projection
operations (as shown in Algorithm 7).

Algorithm 7: ConstrainConfig(qold
s , qs).

Output: qs

1 T0
c = BaseofRightManipulator();

2 qs.right← ProjectConfig(qold
s .right, qs.right, Bright, T0

c );
3 T0

right = ForwardKinematic(qs.right);

4 T0
le f t = TobjT0

right;

5 qs.le f t← ProjectConfig(qold
s .le f t, qs.le f t, Ble f t, T0

le f t);

6 if qs.right = NULL or qs.le f t = NULL then
7 return NULL;
8 end
9 qs ← (qs.right, qs.le f t);

10 return qs;

Subsequently, AG-CBiRRT and CBiRRT were used for the constrained motion planning tasks of
dual-arm robots, respectively, as shown in Figure 6. Two 6-DOF UR10 robots formed a dual-arm robot
simulation platform, which aimed to maintain the levelness of the object in the process of holding and
transferring the object. The time limit for the motion planning was set to 200 s. The approximate graph
of the constraint manifold was constructed using 4286 samples in 53.6 min, and occupied a memory of
204.9 Mb.
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(a) Scene 1

(b) Scene 2

Figure 6. The snapshots of a dual-arm robot performing constrained motion tasks. The object had to
be kept level in the process of transferring.

Table 2 shows the performance comparison of the two motion planning algorithms. In Scene 1,
since the AG-CBiRRT algorithm used the manifold metric, the planning success rate significantly
improved compared with the CBiRRT. In addition, the time required to complete the planning task was
reduced by two orders of magnitude, and the path length was greatly shortened. In Scene 2, because
of the smaller shelf space in the feasible space (as shown in Figure 6b), CBiRRT’s success rate within
limited time was very low. However, AG-CBiRRT still had 100% planning success rate in this task.

Table 2. Dual-arm robot motion planning under task constraint.

CBiRRT AG-CBiRRT

Scene 1 Scene 2 Scene 1 Scene 2

Success Rate (%) 66.3 4.0 100 100
Average Planning Time (s) 2.97 144 0.043 17.3
Average Path Length (rad) 7.82 16.79 5.65 12.15
Average Nodes Number 87 1,121 42 715

4.3. Constraint Manipulation Planning for Passive Chains

The task in this problem was for the robot to pull a drawer or open a door. In these processes, the
robot and the operated object formed a closed kinematics chain. The operated object was assumed to
be completely passive and the kinematics were assumed to be known.

In the task of pulling a drawer, the end effector was constrained on a line that is parallel to the
opening direction. For convenience, we set the constraint’s coordinate system T0

c at the midpoint of
the sliding axis of the drawer. To ensure a smooth opening, the orientation of the end effector was
fixed during the motion. We could determine the constraint boundary B1 of the pulling task in the
form of Equation (3).

In the task of opening a door, the end effector was constrained on an arc centered on the door
hinge. The constraint’s coordinate system T0

c was set on the door hinge. Thus, the end effector can
only rotate around T0

c ’s Z axis and the constraint boundary B2 can be determined:
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B1 =



0 0
−∞ +∞

0 0
0 0
0 0
0 0


B2 =



r cos(P) r cos(P)
−r sin(P) −r sin(P)

0 0
0 0
0 0
−∞ ∞


(10)

where P is the Pitch of end effector relative to the constraint’s coordinate system T0
c , and r is the door’s

revolving radius.
Except for T0

c ’s position, the ConstrainConfig function for these two tasks was exactly the same as
Algorithm 6.

Then, we prepared the manifold approximate graph for the two tasks, respectively, according to
Algorithm 1, and the graph information is shown in Table 3.

Table 3. The information of approximate graphs for passive chain constraint manifolds.

Pulling the Drawer Opening the Door

Node Number 512 422
Construction Time (s) 2.97 2.51

Occupied Memory (Mb) 8.75 5.95

Subsequently, AG-CBiRRT and CBiRRT were used for constrained motion planning tasks of
passive chains, respectively, as shown in Figure 7. The time limit for the motion planning was set to
100 s.

(a) Pulling the drawer

(b) Opening the door

Figure 7. Snapshots of the robot performing constrained manipulation on passive chains.

Table 4 shows the performance comparison of the two motion planning algorithms for passive
chains. In pulling a drawer task, since the AG-CBiRRT algorithm makes use of the manifold
approximate metric, the planning success rate significantly improved compared with the CBiRRT
algorithm. In addition, the time required to complete the planning task was reduced by one order of
magnitude, and the path length was shorter. In opening a door task, CBiRRT could not complete the
planning task. However, AG-CBiRRT still had 100% success rate within limited time.
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Table 4. Robot performing constrained manipulation on passive chains.

CBiRRT AG-CBiRRT

Drawer Door Drawer Door

Success Rate (%) 37.5 0 100 100
Average Planning Time (s) 3.777 – 0.236 2.112
Average Path Length (rad) 1.747 – 1.076 1.536
Average Nodes Number 211 – 8 26

5. Conclusions

In this paper, a motion planning method based on manifold metric learning is proposed to solve
the problem of robot motion planning under task constraints. The off-line sampling method is used to
obtain the configurations satisfying the task constraints, and the KNN algorithm is used to construct a
graph which can approximate the constraint manifold. Then, the shortest path length between the
nodes on the approximate graph is calculated using the Dijkstra algorithm, and the distance matrix is
constructed off-line to realize the metric learning of the constraint manifolds. During on-line planning,
the approximate graph and metric of the manifold are used to select the most promising direction in
the local expansion, thus reducing the exploration of the invalid regions in C-space. Compared with
CBiRRT, the proposed method is faster and has lower path length in experiments of keeping a cup
upright, the dual-arm cooperation and the closed passive chains. In the dual-arm robot’s constrained
motion planning tasks, the planning efficiency is improved by 1–2 orders of magnitude. Therefore, the
method proposed in this paper has the ability to perform various constrained motion planning tasks.

In the future, under the premise of satisfying the task constraints and environmental constraints,
we will improve the algorithm to shorten the path length and make the path smoother. Besides,
we plan to extend the approximate graph method to all RRT-like motion planning algorithms within
the framework of OMPL.
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