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Abstract: The Basic Linear Algebra Subprograms (BLAS) is a fundamental numerical software and
GEneral Matrix Multiply (GEMM) is the most important computational kernel routine in the BLAS
library. On multi-core and many-core processors, the whole workload of GEMM is partitioned and
scheduled to multiple threads to exploit the parallel hardware. Generally, the workload is equally
partitioned among threads and all threads are expected to accomplish their work in roughly the
same time. However, this is not the case on Non-Uniform Memory Access (NUMA) architectures.
The NUMA effect may cause threads to run at different speeds, and the overall executing times of
GEMM is determined by the slowest thread. In this paper, we propose a hybrid-grained dynamic
load-balancing method to reduce the harm of the NUMA effect by allowing fast threads to steal
work from slow ones. We evaluate the proposed method on Phytium 2000+, an emerging 64-core
high-performance processor based on Arm’s AArch64 architecture. Results show that our method
reduces the synchronization overhead by 51.5% and achieves an improvement of GEMM performance
by 1.9%.

Keywords: GEMM; BLAS; high-performance computing; linear algebra

1. Introduction

Dense linear algebra libraries lay the foundation for scientific and engineering computation.
The Basic Linear Algebra Subprograms (BLAS) defines a collection of routines which act as basic
building blocks for dense linear algebra operations. As the BLAS APIs are so widely used, processor
vendors often provide BLAS implementations that are highly optimized for their processors, e.g.,
Intel MKL, AMD ACML and NVIDIA cuBLAS. The High-Performance Computing (HPC) community
has also contributed several high-quality open-source BLAS implementations such as ATLAS [1],
GotoBLAS [2], OpenBLAS [3] and BLIS [4].

The BLAS routines are categorized into three levels, level-1 for vector-vector operations, level-2
for matrix-vector operations, and level-3 for matrix-matrix operations. The three levels have different
computational and memory accessing complexity. Specifically, the computational and memory
accessing complexity are O(N) and O(N) for level-1, O(N2) and O(N2) for level-2, O(N3) and
O(N2) for level-3, respectively. Among all three levels, level-3 provides the most opportunities for
optimization because it performs O(N3) computation while accessing only O(N2) memory.

Among all level-3 operations, GEneral Matrix Multiply (GEMM) is of the most interest as other
level-3 operations can be defined in terms of GEMM and some level-1 and level-2 operations [5].
As a consequence, the research community has spent lots of effort on optimizing GEMM for different
architectures [3,6–10].
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To fully exploit modern multi-core and many-core processors, GEMM is often parallelized with
threading techniques such as OpenMP and pthreads. In the past decades, since the emergence
of multi-core processors, the simplest strategy has been used to parallelize GEMM, in which the
whole workload is equally partitioned among all threads. This simplest strategy worked well
because on a homogeneous processor all threads run at roughly the same speed. So an equalized
workload partition leads to a balanced utilization of processor cores. However, this is not the case
on Non-Uniform Memory Access (NUMA) architectures. On NUMA architectures, the processor
cores witness different memory latency when accessing different memory nodes. For GEMM, data of
matrices are distributed on all memory nodes to maximize memory bandwidth and balance memory
traffic. As a result, threads on different cores may run at different speeds due to the NUMA effect.
The GEMM performance suffers from the variation in thread speed because the overall executing time
is determined by the slowest thread.

In recent years, processor vendors have been introducing more and more cores in a single
processor. To provide sufficient memory capacity and bandwidth for the processor cores,
recent high-end servers and HPC nodes can have 16 or more memory chips installed on a single board.
As the number of memory chips grows, more Memory Controller Units (MCU) will be harnessed to
manage the memory, and future architectures will have more NUMA nodes. The equalized workload
partitioning technique used in current BLAS implementations is not sufficient to achieve optimal
performance on large NUMA systems.

In this paper, we present a hybrid-grained dynamic load-balancing method to reduce the penalty
caused by the NUMA effect. The key idea is to allow fast threads to steal work from slow ones.
Our approach is based on the work-stealing algorithm, but with several improvements specifically
designed for GEMM.

The main contributions are as follows:

• We are the first to address the GEMM performance problem on NUMA architectures.
• We propose a dynamic load-balancing method to reduce the penalty of NUMA effect.
• We implemented the proposed method on Phytium 2000+, an emerging 64-core high-performance

processor based on Arm’s AArch64 architecture. Results show that synchronization overhead is
reduced by 51.5% and GEMM performance get improved by 1.9% with our method applied.

The rest of the paper is organized as follows. Section 2 introduces the GEMM program and current
parallelization techniques. Section 3 demonstrates the proposed dynamic load-balancing method.
Section 4 presents and analyzes the evaluation results. Section 5 reviews the related work. Finally,
Section 6 concludes.

2. Background

GEMM performs a matrix-multiply-accumulation operation, denoted as C = βC + αAB,
where A, B and C are matrices of shape M × K, K × N and M × N, respectively, and α and β are
scalars. While GEMM is algorithmically simple so that a 3-deep loop nest suffices to accomplish
the computation, a high-performance implementation usually use a blocked algorithm due to the
sophisticated memory hierarchies on modern processors.

Listing 1 shows the blocked algorithm for GEMM. Each loop in the original 3-deep loop nest is
blocked, resulting in a total of six loops (iterated with variables k, n, m, nn, mm and kk in Listing 1).
This blocked algorithm can be viewed as two blocking layers. The first blocking layer consists of the
outer three loops and the second blocking layer is formed by the inner 3.

Figure 1 shows the structure of the blocking layers. Figure 1a shows blocking layer 1. The n-loop
(line 5) and m-loop (line 8) are presented, i.e., only one iteration of the outer most k-loop (line 2).
A[:, k : k′] and B[k : k′, :] (line 4) are referred to as Â and B̂ for the sake of brevity. In blocking layer
1, the matrices A, B and C are blocked into Mc × Kc, Kc × Nc and Mc × Nc sub-matrices, denoted as
Ac (line 10), Bc (line 7) and Cc (line 11), respectively. Figure 1b shows blocking layer 2. The nn-loop
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(line 13) and mm-loop (line 16) are presented and the inner most kk-loop (line 21) is represented by a
single task (drawn in gray color). In blocking layer 2, Ac, Bc and Cc are further blocked into Mr × Kc,
Kc × Nr and Mr × Nr sub-matrices, denoted as Ar (line 18), Br (line 15) and Cr (line 19), respectively.
Note that Ac, Bc are obtained by packing A[m : m′, k : k′] (line 10) and B[k : k′, n : n′] (line 7) into
special memory layout to guarantee continuous memory access in GEMM computation, as shown by
the polylines in Figure 1b.

Listing 1: GEMM Blocked Algorithm
1 C = βC
2 for ( i n t k = 0 ; k < K ; k = k + Kc ) {
3 k′ = min(k + Kc, K) ;
4 / / C = C + αA[:, k : k′]B[k : k′, :] ( b l o c k i n g l a y e r 1 )
5 for ( i n t n = 0 ; n < N ; n = n + nt · Nc ) {
6 n′ = min(n + nt · Nc, N) ;
7 Bc = pack(B[k : k′, n : n′])
8 for ( i n t m = 0 ; m < M ; m = m + Mc ) {
9 m′ = min(m + Mc, M) ;

10 Ac = pack(A[m : m′, k : k′])
11 Cc = A[m : m′, n : n′]
12 / / Cc = Cc + αAcBc ( b l o c k i n g l a y e r 2 )
13 for ( i n t nn = n ; nn < n′ ; nn = nn + Nr ) {
14 nn′ = min(nn + Nr, n′) ;
15 Br = B[:, nn : nn′]
16 for ( i n t mm = m ; mm < m′ ; mm = mm + Mr ) {
17 mm′ = min(mm + Mr, m′) ;
18 Ar = A[mm : mm′, :]
19 Cr = A[mm : mm′, nn : nn′]
20 / / Cr += αArBr
21 for ( i n t kk = k ; kk < k′ ; kk = kk + 1 ) {
22 Cr += αAr[:, kk]Br[kk, :]
23 }
24 }
25 }
26 }
27 }
28 }

The blocking factors Mr, Mr, Mc, Nc and Kc are carefully selected so that the sub-matrices Ar, Br,
Cr, Ac, Bc and Cc fit into a certain level in the memory hierarchy, with the following constraints:

Mr + Nr + Mr Nr ≤ c0/es/nt (1)

NrKc + 2MrKc ≤ c1/es/nt (2)

McKc + 2NrKc ≤ c2/es/nt (3)

NcKc + McKc ≤ c3/es/nt (4)

where es denotes the size of matrix element e.g., 8B for a double-precision floating-point number,
nt denotes the number of threads, and cl denotes the total size of all caches on level l. The register file
is viewed as a pseudo cache on level 0. By (1), Mr and Nr are so constrained that Mr elements from Ar,
Nr elements from Br and Cr (Mr × Nr ) fit into the registers (the pseudo level-0 cache). By (2), Kc is so
constrained that Br (Nr × Kc) and two Ars (Mr × Kc) fit into the L1 cache. By (3), Mc is so constrained
that Ac (Mc × Kc) and two Brs (Nr × Kc) fit into the L2 cache. Finally, by (4), Nc is so constrained that
Bc (Kc × Nc) and Ac (Mc × Kc) fit into the L3 cache (if it exists).
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Figure 1. GEMM blocked algorithm. (a) The first blocking layer. (b) The second blocking layer.

The first blocking layer represents a coarse-grained workload partition and the second blocking
layer represents a fine-grained one. The memory footprints of tasks on layer 1 and 2 are roughly the
same as the size of L2 and L1 caches, respectively. GEMM is a computational intensive operation and
Figure 1 clearly shows that workload partition on both layers have a regular shape.

In current GEMM implementations, the whole workload is parallelized on the first blocking
layer, as shown in Figure 2a. There are four tasks for packing matrix A, four tasks for packing matrix
B, and 16 tasks for computing matrix C. These tasks are statically scheduled to 4 different threads
(nt = 4), denoted by different colors in Figure 2a. Specifically, the ith (0 ≤ i < 4) thread Ti gets 1 task
for packing A (Ai), 1 task for packing B (Bi), and four tasks for computing C (Ci,0–Ci,3). For thread Ti,
the packing tasks Bi and Ai are first executed, Then Ci,i is executed as its data dependencies Bi and
Ai are resolved. Then Ti checks if any other thread Tj (0 ≤ j < 4 and j 6= i) has finished Bj because
Ti’s computing task Ci,j depends on Tj’s packing task Bj. If no Bj is done, Ti has to wait until one Bj
is available. This is the first kind of synchronization that may decrease GEMM performance because
threads do no effective computation while waiting for other threads. There exists another kind of
synchronization overhead. When Ti has finished all its computing tasks Ci,0–Ci,3, before it continues
to the next k-iteration (of the outer most loop), it must wait for all computing tasks depending on its
packing task Bi, i.e., C0,i–C3,i, to be finished by their owner threads, as the buffer space of Bi would be
overwritten in the next k-iteration.

Â
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A2

A3

B̂ B0 B1 B2 B3

C

C3, 0 C3, 1 C3, 2 C3, 3
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(a) Coarse-grained

Â
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(b) Hybrid-grained

Figure 2. GEMM parallelization. (a) Coarse-grained. (b) Hybrid-grained.

The code for executing a single Comp task is encapsulated in a standalone function, known as
the kernel function. Generally, the inner-most three loops in Listing 1 are factorized out as the kernel
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function. The kernel function is a serial (single-thread) program which is highly optimized to achieve
near-peak performance. There are plenty of research on optimizing kernel functions, which are briefly
discussed in Section 5.

According to the above description of GEMM parallelization, the overall executing time of GEMM
can be divided into five parts, (1) Comp for effective computation, (2) PackA for packing Acs, (3) PackB
for packing Bcs, (4) Syncc and (5) Syncr for the two kinds of synchronization overhead. The “c” and “r”
subscripts are used here because the threads are waiting for data they are about to “consume” and
“release”, respectively. Syncc and Syncr harms GEMM performance on NUMA architectures. Reducing
the synchronization overhead is the main motivation of this article.

3. Methodology

The synchronization overhead Syncc and Syncr occur when a thread waits for other threads
to finish their tasks. A natural solution is the work-stealing algorithm, whose basic idea is to
allow fast threads to steal work from slow ones. Our proposed dynamic load-balancing method
is essentially a work-stealing algorithm specifically designed and optimized for the GEMM problem.
Its particularities will be described in detail in this sections.

3.1. Hybrid Task Granularity

For the work-stealing algorithm, the choice of a proper task granularity is significant to achieve
optimal performance. To reduce synchronization overhead Syncc, the whole workload must be
partitioned with a granularity smaller than that in Figure 2a. For the problem of Syncr, we allow fast
threads to steal computational tasks from slow ones. Despite the fact that threads may run at different
speeds on NUMA architectures, the variation in speed should not be very large. As a consequence,
a thread should take only a small piece of work each time it tries to steal, i.e., the task granularity
should be quite small, even as small as a single Cr computational task. Such a small granularity
would dramatically increase the number of tasks, resulting in a lot of synchronization overhead.
The synchronization overhead in the work-stealing algorithm includes races for locks, polling,
and management of task queues. For example, with blocking factors Nc = 512 and Nr = 8 (which are
typical configurations on modern multi-core processors), the fine-grained workload partition would
produce 64 (Nc/Nr) times the number of tasks as the original coarse-grained one.

In GEMM, most of the tasks are expected to be executed by their owner threads and only a small
portion of workload are done by thief threads. Based on this observation, we divide each Comp task
in Figure 2a into two chunks, a big chunk dedicated to be executed by its owner thread, and a small
chunk which can be stolen by other threads. We refer to the two chunks as the static chunk (Chunks)
and dynamic chunk (Chunkd), respectively. Both chunks are further divided into multiple tasks,
named static tasks and dynamic tasks, correspondingly. Different granularities are selected for the
two chunks, resulting in a hybrid workload partition, as shown in Figure 2b. Chunks and chunkd are
drawn in colored and non-colored styles, respectively. For Chunks, a relatively bigger granularity is
selected compared to Chunkd. As in the coarse-grained workload partition, all tasks on the ith row are
scheduled to thread Ti before execution. The difference between static tasks and dynamic tasks is that
dynamic tasks are raced by threads at runtime while static tasks can only be executed by the owner
threads. The granularities can be configured and tuned, which will be further discussed in Section 4.3.

3.2. Low-Overhead Task Management

General work-stealing algorithms use queues to manage tasks, directed-acyclic-graphs (DAG)
to track dependencies between tasks, and locks to protect shared data from simultaneous access.
As the GEMM program utilizes the on-chip caches so extensively that almost all data caches are
occupied by matrix data, any other frequently accessed data structure may pollute the caches and
affect GEMM’s performance. By taking advantages of the regular structure of the GEMM program,
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we design an extremely low-overhead task management mechanism which completely avoids the use
of queues, trees and locks.

In Figure 2b, the number of PackA tasks is NA = M/Mc. Let ns and nd be the number of tasks in
each Chunks and Chunkd, then the number of PackB tasks is NB = (ns + nd)N/Nc. We use a flag matrix
FC (NA × NB) to track the status of all Comp tasks. During GEMM execution, the valid value range
for FC elements is [0, K/Kc]. More specifically, during the kth (0 ≤ k < K/Kc) iteration of the outer
most k-loop, FC(i, j) (0 ≤ i < NA, 0 ≤ j < NB) must be either k or k + 1. When a thread tries to acquire
the dynamic task Ci,j, it performs an atomic operation atomic_compare_and_exchange(FC(i, j), k,
k + 1), which succeeds if FC(i, j) = k and fails otherwise. If the operation succeeds, the thread grabs
task Ci,j, leaving FC(i, j) = k + 1 so Ci,j cannot be acquired once again. An operation failure indicates
that the task Ci,j has already been acquired by some other thread. We use atomic operations instead
of locks because they are more light-weighted and incurs far less overhead. For static tasks Ci,j,
the owner thread access FC(i, j) with non-atomic operations because other threads never write to
FC(i, j). On general architectures, the uint8_t type can be used as the element type of FC to support
atomic operations. Besides FC, two other flag matrices, FA (NA × 1) and FB (1× NB) are used to track
the status of PackA and PackB tasks, respectively. Unlike FC, the elements of FA and FB are pointers.
The pointers contain the addresses of the packed matrices on which the Comp tasks depend. A NULL
pointer means that the packed data is not ready yet.

By using the flag matrices FC, FA and FB, we avoid explicit queues to manage tasks and DAGs
to track task dependencies. By using atomic operations, no locks are needed in races for dynamic
tasks. For each Comp task, only several bytes of the flag matrices are accessed, so the cache pollution is
generally ignorable. On 64-bit processors, the memory footprints of the flag matrices can be estimated
by Equation (5). With typical blocking factors Mc = 256, Nc = 512, Kc = 256 and configuration
ns = nd = 2, an M = N = K = 6K GEMM instance only requires Σ = 1728 bytes of memory, which is
negligible compared to the A, B and C matrices.

Σ = ΣA + ΣB + ΣC = 8
M
Mc

+ 8
N
Nc

(nd + ns) +
M
Mc

N
Nc

(nd + ns) (5)

3.3. Locality-Aware Work-Stealing

GEMM is a computational intensive operation, and the optimal performance can only be achieved
by exploiting on-chip caches to the maximal extent. As described in Section 2, the Ac and Br

sub-matrices are expected to reside in L2 and L1 caches during all iterations of the nn-loop and
mm-loop, respectively. Keeping this in mind, we apply a GEMM specific optimization, the Limited
Task Set (LTS) optimization, to the work-stealing algorithm,.

In a classical work-stealing algorithm, any thread Ti (0 ≤ i < nt) is allowed to race for any
dynamic task, that is, Ti’s dynamic task set φi contains all dynamic tasks. The LTS optimization puts
an extra limit to φi that φi only contains Comp tasks that depends on Ti’s PackA or PackB tasks. Figure 3
shows the distribution of dynamic task sets. Dynamic task sets of different threads are shaded by
different patterns. Specifically, Ti’s dynamic task set φi spans along the ith row panel (Comp tasks that
depends on Ti’s PackA tasks) and the ith column panel (Comp tasks that depends on Ti’s PackB tasks)
of the C task chunks.

The LTS optimization brings several benefits:

• Only Comp tasks can be stolen, and all PackA and PackB tasks must be executed by their owner
threads. So the packed matrices Ac, Bc, Ar and Br live in their designated caches as in the original
coarse-grained implementation.

• A thread only races for Comp tasks which depend on matrix data packed by itself. So the stolen
Comp tasks are expected to run fast as the data is already (partially) in Ti’s local caches. This also
avoids pollution to local caches.

• Any dynamic Comp tasks on the Ci,j is raced by only two threads Ti and Tj instead of by all,
thus reducing a lot of competing atomic operations.
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Figure 3. The LTS optimization.

4. Results

We implemented our method in the OpenBLAS [3] library and evaluated it on Phytium 2000+,
an emerging high-performance many-core processor based on Arm’s AArch64 architecture. We restrict
our evaluation to DGEMM, as in prior work [10–12], for two reasons. First, the basic idea of the
hybrid-grained load-balancing method applies to other variants of GEMM such as SGEMM, CGEMM
and ZGEMM. Second, the LINPACK benchmark, which is used to build the TOP500 [13] list of world’s
most powerful supercomputers, relies on the DGEMM variant.

This section presents the evaluation results. First, we introduce the hardware and software
environment used in our experiments. Then, we present the performance results and quantitative
analysis. Finally, we give a brief discussion on tuning the granularity.

4.1. Environment

The Phytium 2000+ processor has 64 cores, organized into 16 core clusters with each cluster
containing four cores. Figure 4a shows the memory hierarchy of the core cluster. Every core has its
own L1 data cache and an L2 unified cache is shared by all cores in the cluster. Figure 4b shows the
structure of the Phytium2000+ machine. L2 caches of all 16 clusters are connected by a hardware
coherence network. The main memory is organized into 8 NUMA nodes, with each NUMA node
hosting two clusters. Table 1 lists the hardware features of the Phytium 2000+ machine and the
software environment used in evaluation. In our evaluation, we parallelize the GEMM test process
with 64 threads (one thread per core).
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Figure 4. The Phytium 2000+ processor. (a) Structure of core cluster. (b) Structure of NUMA nodes.
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Table 1. Hardware/Software Environment.

Feature Description

Hardware

Architecture AArch64 (Arm64)
Number of Cores 64, no hyper-threading support
Frequency 2000 MHZ
SIMD AArch64 Neon instructions (128-bit)
Register File 32 128-bit vector registers
L1 Data Cache 32 KB, 2-way set associative, 64B cache line, LRU
L2 Unified Cache 2 M, 16-way set associative, 64B cache line, pseudo-random
Memory 128 GB, 16 GB per NUMA node

Software

Operating System GNU/Linux 4.4.0 AArch64
Compiler GNU/GCC 6.3.0
Thread Model OpenMP 4.0 (64 threads, one thread per core)
BLAS OpenBLAS 0.3.0-dev

4.2. Performance

The hybrid-grained dynamic load-balancing method can be configured by three parameters,
ns (number of tasks per Chunks), nd (number of tasks per Chunkd) and g (granularity of dynamic task).
For convenience, we take the ratio of one dynamic task to the whole task chunk (sum of Chunks and
Chunkd) as the granularity g. For instance, the configuration (ns, nd, g) = (2, 2, 0.1) means that each
task chunk is divided into two static tasks and two dynamic tasks, with each static task accounting for
40% and each dynamic tasks accounting for 10% of the whole task chunk.

We set ns ∈ [1, 2], nd ∈ [1, 2] and g = 0.1, and evaluate all parameter compositions and compare
the performance with the coarse-grained implementation.

Both the hybrid-grained and the coarse-grained implementations use the same kernel function
generated by the POCA [14] optimizer. So the only difference lies in the way they partition and
schedule the computational tasks, as shown in Figure 2.

Figure 5 presents the results. For comparison, we also evaluate the performance of BLIS [4] GEMM
and ATLAS [1] GEMM. The average thread efficiency, Eavg, is used to describe the performance results.
The average thread efficiency is a normalized metric derived from f lops (floating-point operations per
second), computed as Eavg = f lops/(nt× ̂f lops), where ̂f lops stands for the theoretical performance
peak of a single core.

All reported results in Figure 5 are obtained by running the test program five times and computing
the mean value of all measured results. On each point there is an error bar representing the variation
of the five measured results on that point.

ATLAS shows the worst performance among all because it use an auto-tuning methodology
which has no knowledge of the underlying architecture. BLIS performs better than ATLAS, but falls
behind all hybrid-grained configurations and the coarse-grained version. The reason is that BLIS’s
kernel (the inner-most loop in Listing 1) is not as optimal as that of OpenBLAS. For configuration
(1, 1, 0.1), the hybrid-grained implementation outperforms the coarse-grained implementation at
most matrix sizes except for 3328, 3584, 5120 and 5888. All other hybrid-grained configurations
show better performance than the coarse-grained implementation consistently at all matrix sizes.
The average performance win over the coarse-grained implementation are 1.29% for (1, 1, 0.1),
1.88% for (1, 2, 0.1), 1.94% for (2, 1, 0.1) and 1.91% for (2, 2, 0.1). The results clearly demonstrate
the effectiveness of our hybrid-grained dynamic load-balancing method. (1, 1, 0.1) falls behind the
coarse-grained implementation at some points because the number of tasks is too few (ns + nd = 2)
to balance the variation in thread speed. Though it seems marginal at first glance, the 1%–2%
performance improvement still makes sense for GEMM because it is so fundamental in the domain of
scientific computation.
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Figure 5. GEMM performance (64 threads). Hybrid-grained implementations are labeled with (ns, nd, g).

To analyze the performance gain quantitatively, we measured the Syncc and Syncr overhead
of the GEMM program. Figure 6 compares the synchronization overhead of the coarse-grained
implementation and the hybrid-grained configuration (2, 2, 0.1). The y-axis represents the ratio of
synchronization overhead to the overall GEMM execution time. Both Syncc and Syncr are reduced by
our hybrid-grained dynamic load-balancing method. The average overhead decreases from 4.19% to
2.03%, achieving an reduction of 51.5%. Theoretically, the improvement of GEMM performance should
be 4.19%− 2.03% = 2.16%. The measured improvement (≈1.9%) is quite close to this theoretical result,
proving that the hybrid-grained dynamic load-balancing method incurs little overhead.
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Figure 6. Synchronization overhead. The hybrid-grained configuration is (2, 2, 0.1).

4.3. Tuning Granularity

In Section 4.2 configurations with g = 0.1 achieve good performance. To analyze how the
granularity affect the overall performance of the hybrid-grained dynamic load-balancing method,
we set ns = 2, nd = 2 and vary the granularity g ∈ {0.1, 0.2, 0.3, 0.4}, resulting in a total of four
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configurations. Figure 7 presents the performance results of these four hybrid-grained configurations,
as well as the coarse-grained implementation.
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Figure 7. GEMM performance (64 threads).

All hybrid-grained configurations perform better than the coarse-grained implementation, though
there exists a few points at which (2, 2, 0.4) falls behind. The average thread efficiency of the
hybrid-grained configurations are 78.68% for (2, 2, 0.1), 78.60% for (2, 2, 0.2), 77.80% for (2, 2, 0.3)
and 77.42% for (2, 2, 0.4). The law is that smaller granularity shows better performance. The results
confirm the design in Section 3.1. For configurations (2, 2, 0.3) and (2, 2, 0.4), the dynamic tasks are
larger than the static ones, which violates the design illustrated in Section 3.1. So they show suboptimal
performance compared to configurations (2, 2, 0.1) and (2, 2, 0.2). In general, g ≤ 0.2 is a reasonable
setting for the hybrid-grained dynamic load-balancing method.

5. Related Work

The idea that all level-3 BLAS operations can be built on top of a high-performance GEMM
implementation was first proposed in [5,15]. Optimizing GEMM has always been the central task
in developing dense linear algebra software since then. The GotoBLAS library [2] and its successor
OpenBLAS [3], are instantiated based on this insight. Optimization of GEMM has two aspects. One is
developing fast kernel functions to accomplish the computation of Comp tasks, and the other is
workload partition and parallelization, which is the focus of this article. As far as we know, this paper
is the first to address the problem of GEMM parallelization on NUMA architectures.

There are several approaches for obtaining optimized kernels, yielding different tradeoffs between
performance and portability. In GotoBLAS [2], OpenBLAS [3] and BLIS [4], the kernels are usually
written by domain experts in assembly. ATLAS [1] adopts the auto-tuning method to automatically
generate kernels with different parameters in C and find the best-performing one by running them on
the actual computing system. POET [12,16,17] and AUGEM [11] use a directive-based programming
approach. POCA [14] is a compiler-based approach which generates and optimize kernels automatically
and portably.

The blocking factors Mr, Nr, Mc, Nc and Kc are essential to GEMM performance. ATLAS [1]
relies on auto-tuning to determine optimal values for these factors. Analytic techniques [18–20]
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can also be used instead of auto-tuning. In multi-thread contexts, the m-loop (line 8 in Listing 1) is
generally parallelized. BLIS [10] allows developers to specify a sophisticated configuration so that
any combination of the n-, m-, nn-, and mm-loops can be simultaneously parallelized to suit complex
architecture features like multi-sockets and hyper-threading.

While our hybrid-grained dynamic load-balancing method is specially designed for dense
linear algebra computation on shared memory parallel architectures, generic dynamic load-balancing
techniques have been studied extensively for distributed computing architectures. Olga et al. [21]
proposed a decoupled load-balancing algorithm to enable the load balance computation to run
concurrently with the application so that the scalability of the load-balancing algorithm gets improved.
Patni and Aswal [22] proposed a distributed load-balancing algorithm for grid architectures. Kaur and
Sharma [23] uses a “Central Load Balancer” formula to balance the burden among virtual products
with reasoning data center. In [24], a hierarchical (2 levels) dynamic load-balancing model is proposed
to compromise between centralized and fully distributed load-balancing schemes. The LBPSA
algorithm [25] aims at balancing the workload on multiprocessor systems in real-time contexts to
reduce response time and improve resource utilization. Stavros and Manos [26] address the shortage
of the general block-cyclic redistribution problem on non-all-to-all networks.

6. Conclusions

In this article, we present a hybrid-grained dynamic load-balancing method to reduce
synchronization overhead in parallelized GEMM programs on NUMA architectures. The proposed
method is essentially a work-stealing algorithm with GEMM specific optimizations. Experimental
results show that this method works effectively on the Phytium 2000+ 64-core machine with eight
NUMA nodes. In the future, we will consider higher level dense liner algebra computations such as LU
factorization Cholesky factorization and singular value decomposition. The workload partition of these
higher level computations is not as regular as GEMM, which may require interesting enhancements to
our hybrid-grained dynamic load-balancing method. We would also like to apply the proposed method
to real-world applications in distributed architectures like for instance, the array redistribution problem.
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