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Abstract: In this study maximum power point tracking (MPPT) is applied to the photovoltaic (PV)
system to harvest the maximum power output. The output power of the PV effect changes according
to external solar irradiation and ambient temperature conditions. In the existing MPPT strategies,
most of them only take variations in radiation level into account, rarely considering the impact of
temperature changes. However, the temperature coefficients (TC) play an important role in the PV
system, especially in applications where ambient temperature changes are relatively large. In this
paper, an MPPT method is presented for a PV system that considers the temperature change by using
variable universe fuzzy logic control (VUFLC). By considering the ambient temperature change in PV
modules, the proposed control method can regulate the contraction and expansion factor of VUFLC,
which eliminates the influence of temperature variability and improves the performance of MPPT,
therefore achieving fast and accurate tracking control. The proposed method was evaluated for a
PV module under different ambient conditions and its control performance is compared with other
MPPT strategies by simulation and experimental results.

Keywords: maximum power point tracking (MPPT); photovoltaic (PV) system; variable universe
fuzzy logic control (VUFLC); temperature variability

1. Introduction

With the development of photovoltaic (PV) technologies, an increasing number of PV power
generation systems have been presented for large-scale applications. The PV module is one of the
key components of PV power generation systems; its performance and efficiency directly affect the
high-efficiency operation of the entire system. However, the power energy generated from PV modules
relies highly on environmental factors such as solar insolation and the ambient temperature [1,2].
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Therefore, in order to harvest the maximum power output and improve the efficiency of the entire PV
system, many advanced MPPT control methods have been implemented in PV systems [3–5].

Many MPPT control algorithms have been proposed and developed in recent years [6], such as the
classic methods, including open-circuit voltage (OCV)/short-circuit current (SCC) [7,8], incremental
conductance (INC) [9], perturbation-and-observation (P&O) [10] and other hybrid strategies [3]. Due to
the non-linear problems of PV cells, some soft computing techniques have been applied to the MPPT
of PV systems, such as the artificial neural networks method (ANN) [11] and fuzzy logic control
(FLC) [12–14].

Most of the MPPT approaches only take the variability in radiation level into account, while rarely
considering the effects of temperature. Some new MPPT methods based on temperature measurements
were discussed in Reference [15]. Many control algorithms use temperature as a feedback parameter
to realize MPPT. For example, studies in References [16–18] proposed an MPPT-temperature algorithm
where the PV module temperature was used to determine the maximum power point voltage to
track the maximum power point (MPP). In Reference [19], a sun tracking system that included the
temperature effect was presented, and an optimum system design was achieved. Compared to other
approaches under the same control algorithm, the MPPTs based on temperature measurement directly
consider the temperature variations leading to MPP changes, which can obtain a faster tracking speed,
especially in engineering applications where temperature changes are relatively large.

Furthermore, to improve the tracking accuracy, some artificial intelligence techniques have been
employed for the MPPT implementation [20–22]. Fuzzy logic control (FLC) is a relatively popular and
mature artificial intelligence algorithm and has been applied to track the MPP in PV systems [23,24].
In Reference [25], results indicated that FLC had the best performance when compared to some MPPT
techniques with INC, P&O, and others in both dynamic response and steady-state under most of the
normal operating range. The variable universe fuzzy logic control (VUFLC) can adaptively change the
input and output universes to improve the control effect and obtain higher control accuracy [26–29].

However, how to choose a variable universal scalable or contraction-expansion factor is a
challenging issue practically, according to the nonlinear characteristic of PV systems [29]. Hence,
this works to exploit the PV modules’ real-time temperature variable as the constraints of variable
universal factor selection, then a new VUFLC-temperature MPPT algorithm was designed to obtain
efficient tracking performance in the external working environment (environmental condition)
variations. The proposed VUFLC-temperature MPPT method selects the variable universal factor
according to the dynamic change of temperature by combining the modules’ temperature coefficients
(TC) characteristic, which can accelerate the MPPT and improve the tracking accuracy when compared
to conventional MPPT strategies. The proposed VUFLC-temperature MPPT method was validated by
simulation and experimental results.

This paper is organized as follows: Section 2 describes the characteristics of the PV system.
Section 3 presents the proposed VUFLC-temperature MPPT algorithm and its development techniques.
Section 4 presents the simulation results. Section 5 provides the results of the experimental tests.
Finally, the paper is concluded in Section 6.

2. Model and Characteristics of a PV System

PV cells and modules are the key components of PV systems, which absorb photons of light
and release electron charges, and can directly convert solar energy into electricity [30]. The electric
energy generated from the PV effect is highly dependent on environmental factors [1]. The PV cell is a
nonlinear device and can be represented as a current source model [31]. The common and popular PV
models are single diode and double diode [4,31,32]. Here, we use the single diode model to describe
the characteristics of PV cells.
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The single diode equivalent circuit is shown in Figure 1, where D is a parallel diode, Rsh is the
shunt resistance and Rs is the series resistance. The output mathematical equations were obtained in
References [4,30,33,34].

Ipv = Iph − Id − IRsh (1)

Ipv = Iph − I0

[
exp(

q(Vpv + Rs Ipv)

AKT
)− 1

]
−

Vpv + Rs Ipv

Rsh
(2)

where Iph is the light-generated current of the elementary PV cell, Id is the current of the parallel diode,
IRsh is the shunt current of resistance Rsh, and I0 is the reverse saturation current of the diode. Vpv and
Ipv are the output voltage and current, respectively. q is the electron charge (1.602 × 10−19 C), A is the
diode ideality factor, and K is the Boltzmann constant (1.38 × 10−23 J/K).
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According to Equations (1) and (2), the electrical characteristics of the PV cell are generally 
drawn as a current versus voltage (Ipv-Vpv) curve and a power versus voltage (Ppv-Vpv) curve under 
different environmental conditions [29]. 

Figure 2 shows the characteristics of the PV cell in different environmental conditions. As can 
be seen from the relation between the PV output parameters and the environment variables, it is 
highly nonlinear and dependent on the solar radiation level and temperature changes on the PV cell 
[35]. The output power energy of the PV system is affected by radiation and temperature. Figure 2a 
presents the curves under different radiation, i.e., the current ISC increases quasi-linearly with the 
radiation while the voltage VOC increases slightly, and the maximum electric power Pmax changes as 
the radiation changes. Figure 2b gives the relationship of I_V and P_V at different temperatures, 
where ISC slightly increases and VOC strongly decreases with temperature changes. The maximum 
electric power also significantly decreases with a temperature rise, as illustrated in Figure 3 [30]. 
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Figure 1. Single diode model and equivalent circuit of the photovoltaic (PV) cell.

According to Equations (1) and (2), the electrical characteristics of the PV cell are generally drawn
as a current versus voltage (Ipv-Vpv) curve and a power versus voltage (Ppv-Vpv) curve under different
environmental conditions [29].

Figure 2 shows the characteristics of the PV cell in different environmental conditions. As can be
seen from the relation between the PV output parameters and the environment variables, it is highly
nonlinear and dependent on the solar radiation level and temperature changes on the PV cell [35].
The output power energy of the PV system is affected by radiation and temperature. Figure 2a presents
the curves under different radiation, i.e., the current ISC increases quasi-linearly with the radiation
while the voltage VOC increases slightly, and the maximum electric power Pmax changes as the radiation
changes. Figure 2b gives the relationship of I_V and P_V at different temperatures, where ISC slightly
increases and VOC strongly decreases with temperature changes. The maximum electric power also
significantly decreases with a temperature rise, as illustrated in Figure 3 [30].
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Figure 2. Characteristics of the PV cell at different environmental conditions: (a) Different solar
radiation level effect; (b) different temperature variability effect.
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In recent years, many researchers have conducted MPP control studies under radiation conditions
and proposed many various MPPT algorithms in the literature [1–30]. This paper focuses on the
impact of temperature on MPPT and proposed corresponding control strategies and implementation
methods. The short-circuit current ISC and open-circuit voltage VOC at the reference nominal operating
cell temperature (NOCT) TNOCT can be calculated at a given temperature TC with some temperature
variation [28,30], respectively. The PV output parameters considering temperature effect can be
obtained as follows:

ISC = ISC−NOCT ·[1 + αSC·(Tc − TNOCT)] (3)

VOC = VOC−NOCT ·[1 + βOC·(Tc − TNOCT)] (4)

Pmax = Pmax−NOCT ·[1 + γmax·(Tc − TNOCT)] (5)

where the TC is the operating temperature of the PV cell and TNOCT is the temperature at the nominal
ambient environment. ISC−NOCT , VOC−NOCT , and Pmax−NOCT are the short-circuit current, open-circuit
voltage, and maximum power at the reference NOCT, respectively. αSC, βOC, and γmax are the
temperature coefficients (TC) of ISC, VOC, and Pmax, respectively. According to Equations (3)–(5),
the short-circuit current, open-circuit voltage and maximum power of PV cells will be affected by
temperature changes. Therefore, the impact of temperature variability can be considered when
designing the MPPT control strategy through the direct or indirect measurement of the operating
temperature of the PV cells.

3. MPPT Control System and Proposed Control Method

3.1. MPPT Control System

Power electronic converters are commonly applied in a PV system to achieve different MPPT
control methods, where the converters act as the interface between the PV source and different loads.
In order to efficiently track the MPP, the converter needs to adjust the duty cycle under varying
operating atmospheric conditions [1,4,25]. The MPPT controller acquires the real-time operating
parameters depending on the control algorithm, then outputs the corresponding control signal to
control the DC/DC converter. The most common solar PV MPPT system consists of a PV module,
DC/DC boost converter, MPPT controller and a load, as shown in Figure 4. The PV cells generate
power energy and its output is connected to the DC/DC converter. The converter is controlled by the
MPPT controller where different control algorithms can be carried out.
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3.2. Variable Universe Fuzzy Logic Control (VUFLC)

Due to the nonlinear characteristics of the PV system, intelligent MPPT control algorithms in
PV systems are very promising and some have been successfully employed for maximum power
extraction [4,6]. Fuzzy logic control (FLC) is one of the most prevalent intelligent control techniques,
which has advantages like a fast response time, less fluctuation and high control accuracy. Therefore,
it is effective in controlling nonlinear systems [4].

However, the conventional FLC with fixed fuzzy control rules will not perform well when
working with large uncertainties or unknown variations in the systems [28], and the control precision
is commonly not high. Hence, adaptive fuzzy logic controllers (AFLC) have been proposed to solve
this issue [26–28]. The VUFLC is one of the AFLC that has been applied to various control engineering
projects such as specialty vehicle control [27], analog circuit implementation [28] and liquid lever
system [36]. The VUFLC combined with the characteristics and advantages of the variable universe
control is introduced into the MPPT control, which can improve the control speed and precision of the
PV system.

The VUFLC was proposed in Reference [26] and its discourse universes of the input and output
variables can be adjusted according to changed control conditions instead of adjusting the fuzzy
rules, thus illustrating more control accuracy and flexibility than conventional FLCs [27,28]. Figure 1
illustrates the process diagram of the variable universe, where Figure 5b shows an original universe
with five fuzzy partitions as fuzzy sets of NB (negative big), NS (negative small), ZE (zero), PS (positive
small) and PB (positive big) with a piecewise linear membership function [28]. Figure 5a shows the
contracting of the universe and Figure 5c presents the expanding of the universe.
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In order to simplify the analysis, common two-input and single-output systems were taken as
an example. Let the universes of input (x1, x2) and y output variables be Xi = [−Ei, + Ei] (i = 1, 2) and
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Y = [−U, +U], respectively. According to Figure 5, the input and output universes Xi and Y can be
adjusted with the change of variables x1 and y, respectively. Their relationship is as follows:

Xi(xi) = [−αi(xi)Ei,+αi(xi)Ei], i = 1, 2 (6)

Y(y) = [−β(y)U,+β(y)U] (7)

where αi(xi) is the input universe contraction factor and β(y) is the output universe contraction factor.
With a contraction factor change, the input variable and output variable will change to better adapt
to different control conditions and achieve more precise control objectives. Therefore, the design
and selection of contraction factors is also important and the details about contraction factors will be
introduced based on the proposed MPPT system in the next section.

The fuzzy rule is essential for a VUFLC system, let Axi and By be regarded as linguistic variables
of input xi and output y, respectively. The fuzzy IF-THEN control rule [26] is formed as follows:

IF x1 is Ax1 and x2 is Ax2 , THEN y is By (8)

Unlike the conventional FLC, the universes of VUFLC can correspondingly adjust along with
changes to the input variables. The membership of input and output variables use the triangle. For a
complete fuzzy controller design, a defuzzification process is needed, that is, the VUFLC output is
converted from a linguistic variable to a numerical variable. There are many defuzzification methods,
and in this design, the center-of-gravity (COG) defuzzification method was employed [25,28,37].

3.3. Proposed Control Method

Figure 6 shows the block diagram of the PV MPPT control system. The ordinary PV module was
used for the PV power generation model, the DC/DC was converted and the output was connected to
a load.
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As previously described, the proposed design steps of the VUFLC applied to PV MPPT system
are presented in the remainder of this subsection.

In terms of the input and output variables, the proposed VUFLC has two input variables and one
output variable. The two VUFLC input variables are the error E(k) and the difference in error CE(k),
which are calculated as follows [38].

E(k) =
p(k)− p(k− 1)
v(k)− v(k− 1)

(9)
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CE(k) = E(k)− E(k− 1) (10)

where k refers to the iteration number; p(k) is the instantaneous output power of PV; and v(k) is the
instantaneous output voltage of PV corresponding to kth sample.

In terms of the fuzzy control rules, according to the actual operation of the PV power generation
project and the previous MPPT control engineering experience, the linguistic expressions and the
initial universes of the inputs and output variables are given in Table 1.

Table 1. The input and output variables and initial universe.

Parameter
Type

Linguistic
Universe

I/O Min Max

Power error/Volt error (x1) Input NB NS ZE PS PB −40 +40

Error change (x2) Input NB NS ZE PS PB −80 +80

Duty change (y) Output NB NM NS ZE PS PM PB −0.09 +0.09

The input and output variables have five and seven linguistic expressions, respectively. The input
variables have five linguistic expressions as follows: NB (negative big), NS (negative small), ZE (zero),
PS (positive small) and PB (positive big), and the output variables have seven linguistic expressions
as follows: NB (negative big), NM (negative medium), NS (negative small), ZE (zero), PS (positive
small), PM (positive medium), and PB (positive big), which adds two linguistic expressions. The initial
universe of the input variables x1 and x2 are normalized to the range (−40, +40) and (−80, +80),
respectively. The initial universe of the output variable y is normalized to the range (−0.09, +0.09).
All of the membership functions of the input and output variables use a triangular form, which is easy
to calculate and specifies the entire fuzzy partition of these variables.

According to Equations (9) and (10), the sign of the input variable x1 shows if the operating point
is located on the left or right side when compared to the actual MPP position P–V curve, while x2

expresses the moving direction of this operation point [38,39]. The output control variable y can be
obtained under the fuzzy control rules. Based on Equation (8), the fuzzy control rules are given in
Table 2, which determine the VUFLC output control signal.

Table 2. The input and output variables and initial universe.

CE(x2) U(y) E(x1) NB NS ZE PS PB

NB NB NS PS PM PB
NS NS PS PM PM PB
ZE NM NS ZE PS PM
PS NS ZE PS PM PB
PB NB NM NS PS PB

In terms of universe control factor design, the input and output variables can be adaptively
adjusted by the contraction factor in Equations (6) and (7), and the variable universe process can
be described from Figure 5. The conventional contraction factors are presented and discussed in
Reference [26], which achieved the contraction of the universe when the input variable was small.
In order to speed up the response time and improve the control accuracy, an improved universe control
factor for the input variable was proposed and designed, considering the influence of temperature
characteristics. The control factors of the new input variable are defined as follows:

α′(xi) = 1− λ1 exp[−k1(γmax·∆TC)
2], 0 < λ1 < 1, k1 > 0, i = 1, 2; |∆Tc| ≤ θset (11)

where 0 < α′(xi) < 1, and is related to the maximum power temperature coefficient γmax and the
temperature change value ∆TC = T. The γmax can be found in the manufacturer’s datasheet.
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In Equation (8), the value of γmax·∆TC represents the power change with ambient temperature.
When ∆TC increases, the α′(xi) value decreases, the universe of input variables x1 and x2 are expanded,
the output power change becomes larger, and VUFCL will achieve fast MPP tracking. However,
if |∆Tc| ≥ θset (θset is the maximum threshold for the temperature change setting), then α′(xi) will
become 1, and the universe variables take the maximum value. On the other hand, when ∆TC drops,
the α′(xi) value rises, the universe of input variables x1 and x2 are contracted, and the VUFLC will
limit the oscillations and improve the MPP control tracking accuracy. Similarly, the modified output
variable control factor can be expressed as:

β(y) = 1− λ2 exp[−k2(βOC·∆TC)
2], 0 < λ1 < 1, k1 > 0; |∆Tc| ≤ θset (12)

where β(y) is related to the βOC·∆TC, because the output control signal is ∆D, which can adjust and
change the voltage ratio of the converter. When the control factor β(y) takes the voltage temperature
effect into account, the control compensation can be achieved, and the control accuracy is improved.

Different value selection of parameters λ1, λ2, k1, and k2 will have a certain impact on the range
of variable universes and affect the convergence of the proposed control method. Considering the
correlation between the variables and actual engineering application, the related parameters were
chosen as λ1 = 0.4, λ2 = 0.6, and k1 = k2 = 104. Hence, α′(xi) ranges from 0.4 to 1.0, and the range of
E(k) and CE(k) are limited to the limits (−40/−36, +36/+40) and (−80/−48, +48/+80), respectively.
Similarly, the range of U (output universe) is tuned to the limits (−0.09/−0.054, +0.054/+0.09).
Furthermore, the θset was selected as 2 ◦C. Therefore, the proposed VUFLC-temperature can change
the input and output universes with control factor variation. According to the selected parameters,
the input and output universes control factors α′(xi) and β(y) are calculated by follows:

α′(xi) = 1− 0.4 exp[−104·(γmax·∆TC)
2]

β(y) = 1− 0.6 exp[−104·(βOC·∆TC)
2]

}
when|∆TC| ≤ 2 ◦C

else α′(xi) = β(y) = 1, |∆TC| > 2 ◦C
(13)

Figure 7 shows the curves of the variable universe control factors.Electronics 2018, 7, x FOR PEER REVIEW  9 of 18 
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The TC of Pmax, γmax, VOC and βOC were chosen as −0.40%/◦C and −0.30%/◦C, which can
adjust the universes of the input and output variables to achieve the MPPT of a PV system by using
control factors. Therefore, the VUFLC-temperature can improve the control accuracy and reduce
power fluctuations in the PV MPPT.

In regard to the implementation of VUFLC for MPP, the proposed VUFLC-temperature MPPT
control algorithm was implemented as follows. First, the controller detects the output Vpv and Ipv of
the PV module and computes the E(k) and CE(k), then it measures the PV module temperature TC(k)
and evaluates ∆TC (or calculates by related evaluation method of the test standard). According to
the different ∆TC values, the VUFLC-temperature controller selects different universe control factors
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based on Equation (13). Finally, the updated duty cycle control signal is output to control the power
converter and achieve MPPT tracking. The detailed and complete control implementation flow chart is
shown in Figure 8.
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4. Simulation Results

The MPPT control system based on VUFLC-temperature algorithm was simulated and developed
to test and confirm the proposed method, as shown in Figure 6. A boost circuit was selected to be
the converter to achieve the MPP by adjusting the control signal through the VUFLC-temperature
controller. The proposed control algorithm and MPPT system were simulated in MATLAB/Simulink
(version 9.1, the MathWorks, Inc., Natick, MA, USA). The simulation model consisted of radiation and
temperature input units, a PV module, a converter, a load and the proposed controller. The output of
the PV module was connected to the boost converter, then the controller adjusted the duty cycle of the
converter control signal to achieve maximum power control. The proposed VUFLC-temperature MPPT
PV system is shown in Figure 9. The control logic was implemented through software programming.
The PV module, boost converter and load were built with the related components in SimPowerSystems.
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Figure 9. Simulation model of the VUFLC-temperature PV MPPT system.

The simulation parameters of the Crystalline Silicon PV module are listed in Table 3.
The simulation input was composed of five listed PV modules connected in series and the total
input peak power was 1650 W.

Table 3. Simulation PV module parameters.

Electrical(STC) Temperature Characteristics

Specification Data Specification Data

Maximum Power (Pmax) 330 W Temperature Coefficient of Pmax −0.41%/◦C

Optimum Operating Voltage (Vmp) 37.5 V
Temperature Coefficient of VOC −0.38%/◦C

Temperature Coefficient of ISC 0.05%/◦C

Open Circuit Voltage (Voc) 46.2 V
Nominal Operating Cell Temperature 45±2 ◦C

Operational Temperature −40~+85 ◦C

Figures 2 and 3 demonstrate that the temperature will affect the PV output power and that the MPP
of the PV module also shifts with temperature changes [30]. At maximum and minimum operating
temperatures per day, the output power can vary by about 20%. The simulation model system (Figure 9)
can simulate the temperature and irradiance fluctuation of the input PV array, which indicates the
adaptability and superiority of the system under different operation conditions. In order to better
demonstrate the proposed control strategy, its control effects were compared with conventional MPPT
FLC (fuzzy logic control) and INC (incremental conductance) under the same conditions.

Figure 10 shows that the simulation results of the MPPT control tracking process under the
solar radiation intensity remained at 500 W/m2 constantly and the temperature changed slowly;
the temperature rose from a minimum of 0 ◦C to a maximum of 72 ◦C, then dropped back to the
lowest temperature value as seen in Figure 10a, where the PV output voltage and power changed
slowly. In Figure 10b, using the proposed method, the output and power could respond quickly with
precise tracking. However, in Figure 10c with FLC and Figure 10d with INC, respectively, the output
power had relatively large fluctuations at 0.43 s and 0.56 s, which could not accurately adapt to the
temperature changes.
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Figure 10. MPPT tracking simulation results of different control methods in variable temperature:
(a) Change temperature and keep the solar radiation constant; (b) VUFLC; (c) fuzzy logic control (FLC);
(d) incremental conductance (INC).

In Figure 11, the radiation and temperature simultaneously changed, with random changes during
the 1.0 s period. Before 0.3 s, the irradiance and temperature almost rose synchronously, then kept at the
maximum of 1000 W/m2 and 60 ◦C at 0.37 s. At 0.5 s, the radiation declined to 500 W/m2, and at 0.78 s
reached 1000 W/m2 again. At 0.715 s, the temperature changed to 25 ◦C and at 0.92 s back to 60 ◦C.
In Figure 11b, with VUFLC, when the radiation and temperature varied, the power curve had smooth
tracking, no power loss and the power ripple maximum power point oscillations were eliminated.
In Figure 11c,d, with FLC and INC, the power tracking error and fluctuation were comparatively large,
when the temperature changed the power curves overshot and loss were occurred.

Figure 12 shows the simulation results of the MPPT tracking process under the temperature
step change. Before 0.4 s, the temperature was 20 ◦C. At 0.4 s, the temperature step increased from
20 ◦C to 50 ◦C. Additionally, before 0.2 s, the initial radiation was 0 W/m2, and it quickly increased
to 1000 W/m2 at 0.25 s, then at 0.4 s began to drop to 250 W/m2 at 0.45 s. As shown in Figure 12b,
the VUFLC has a quick MPPT response. However, Figure 12c with FLC and Figure 12d with INC had
a large overshoot and dynamic error; at 0.4 s, the power tracking with FLC and INC both had power
fluctuation loss.

The simulation results for the proposed VUFLC-temperature based MPPT control method are
presented and compared to the conventional FLC with temperature change. The variable universe
control factors of the VUFLC controller will dynamically adjust according to the change in atmosphere;
when the module temperature rises or drops, the input and output universe control factors are chosen
with different values to speed up the MPPT and control convergence and all the power tracking
waveforms with VUFLC are smooth with less loss and no overshooting, which has a faster tracking
speed and more precise control effect than the other methods. It can be seen from the results that
VUFLC had a significant impact on the MPP tracking control, where a relatively small universe can
improve the control accuracy and reduce the oscillation at the MPP. The comparisons between the
simulation results and existing others are briefly summarized in Table 4.
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According to the simulation and comparative analysis results, the proposed VUFLC-temperature
MPPT method had a better control performance, especially under conditions of temperature
change. The VUFLC-temperature method could also obtain a fast tracking speed, small oscillation,
and improved accuracy during the step temperature change.
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Table 4. Performance comparison of different MPPT control methods.

Items
MPPT Methods

P&O INC ANN FLC Proposed
VUFLC

Dynamic
response Poor Medium High Medium High

Transient
fluction Bad Bad Good Good Good

Steady
oscillation Large Moderate Zero Small Zero

Static error High High Low Low Low

Control accurcy Low Accurate Accurate Accurate Excellect

Tracking speed Slow Slow Moderate Fast Very fast

Overall
efficiency Medium Medium High High High

System
complexity Simple Simple Medium Medium Medium

Temperature
characteristics Poor Poor Good Good Excellect

5. Experimental Validation

In order to further verify the analysis and simulation results, the proposed VUFLC-temperature
MPPT control algorithm was experimentally validated on a PV system prototype. A photograph of the
experimental prototype hardware is shown in Figure 13.

Electronics 2018, 7, x FOR PEER REVIEW  13 of 18 

 

Table 4. Performance comparison of different MPPT control methods. 

Items 
MPPT Methods 

P&O INC ANN FLC 
Proposed 
VUFLC 

Dynamic 
response Poor Medium High Medium High 

Transient 
fluction Bad Bad Good Good Good 

Steady 
oscillation Large Moderate Zero Small Zero 

Static error High High Low Low Low 
Control 
accurcy 

Low Accurate Accurate Accurate Excellect 

Tracking 
speed 

Slow Slow Moderate Fast Very fast 

Overall 
efficiency 

Medium Medium High High High 

System 
complexity 

Simple Simple Medium Medium Medium 

Temperature 
characteristics 

Poor Poor Good Good Excellect 

5. Experimental Validation 

In order to further verify the analysis and simulation results, the proposed VUFLC-temperature 
MPPT control algorithm was experimentally validated on a PV system prototype. A photograph of 
the experimental prototype hardware is shown in Figure 13. 

 
Figure 13. Experimental setup of the PV MPPT system. 

A PV module analog programmable DC power supply 6215H-600S (CHROMA ATE (SUZHOU) 
CO., LTD.) was employed as the input for the test; it was also used to emulate different working 
environments and temperature changes. The main control chip was a DSP (Digital signal processor) 
TMS320F28035 which was employed for implementing the proposed control algorithm. A boost 
converter was employed to achieve the power conversion and MPPT. A grid-connected inverter was 
connected to the output of the boost converter. 

The experimental waveforms under different operating conditions were captured using the 
Chroma dedicated photovoltaic power generation monitoring software (F/W Version: Chroma ATE 
61250H-600S,00368,01.10). The experimental results for the temperature change and radiation 
constant operation are shown in Figure 14. The radiation was 1000 W/m2 and temperature was 52 °C. 

Figure 13. Experimental setup of the PV MPPT system.

A PV module analog programmable DC power supply 6215H-600S (CHROMA ATE (SUZHOU)
CO., LTD., Suzhou, China) was employed as the input for the test; it was also used to emulate different
working environments and temperature changes. The main control chip was a DSP (Digital signal
processor) TMS320F28035 which was employed for implementing the proposed control algorithm.
A boost converter was employed to achieve the power conversion and MPPT. A grid-connected
inverter was connected to the output of the boost converter.

The experimental waveforms under different operating conditions were captured using the
Chroma dedicated photovoltaic power generation monitoring software (F/W Version: Chroma ATE
61250H-600S,00368,01.10). The experimental results for the temperature change and radiation constant
operation are shown in Figure 14. The radiation was 1000 W/m2 and temperature was 52 ◦C. The MPPT
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P–V curve is shown as a brightly colored thick line in Figure 14a. The MPP was 1636.50 W, then as
the temperature rose to 60 ◦C as the light color curve shows, when downloading this I–V input file to
the 6215H-600S, the experimental waveform becomes the P–V curves in Figure 14b, and the MPP was
1582.30 W.
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The maximum power reduced can be calculated as follows:

∆Pmax = γmax·∆T·Pmax (14)

According to the set experimental temperature coefficient, γmax was −0.41%/◦C and the set
Pmax maximum power was 1650 W of 6215H-600S output. Because the ∆T was 8 ◦C, the theoretical
calculation was 54.12 W. Additionally, the experimental test value was 54.20 W, which could rapidly
maintain maximum power tracking.

Figure 15 shows the experimental results of the MPPT tracking process under different maximum
powers (the maximum power was set at 1500 W), irradiations and temperatures. When the temperature
varied from 35 ◦C to 45 ◦C and the radiation synchronization increased from 500 to 1000 W/m2,
the MPP also changed from 798.7 to 1498.5 W, and the control output power fast tracked the new MPP
quickly, as shown in Figure 15b.
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To verify the effectiveness and advantages of the proposed VUFLC-temp MPPT algorithm,
comparative experiments of different MPPT control methods were conducted in the same experimental
system. Figure 16 shows the experimental results of the three MPPT algorithms.Electronics 2018, 7, x FOR PEER REVIEW  15 of 18 
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As shown in Figure 16a, the irradiation intensity was a constant 1000 W/m2. Before 5.0 s, the set
temperature was 47 ◦C. At 5.0 s, the temperature steps from 47 to 52 ◦C. The temperature was kept at
52 ◦C at 10 s, then at 15.0 s, it stepped from 52 ◦C to 60 ◦C. Figure 16b–d show the results with VUFLC,
FLC, and INC, respectively.

The experimental results show that the proposed VUFLC-temperature method had a faster
tracking speed and smooth transition in the temperature step change in Figure 16b. However, the MPP
fluctuations and oscillations occurred at temperature transition points with the FLC and INC where
there were both power losses in Figure 16c,d. Furthermore, the VUFLC had better tracking stability as
well as a more robust and lower static error than the others. The maximum power magnitudes and
MPPT effectivenesses with different control algorithms are listed in Table 5.

Table 5. Experimental comparison of MPPT methods.

Condition (1000 W/m2)
The Experimental Results

INC FLC Proposed VUFLC

47 ◦C
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It can be seen that when the temperature changed, the proposed VUFLC-temperature controller
had a better dynamic performance than the conventional FLC and INC control algorithms, and it was
more effective at tracking and reducing the MPP oscillation.

6. Conclusions

In this paper, an advanced MPPT VUFLC-temperature method was proposed for a photovoltaic
system, which could dynamically adjust the universe of the fuzzy controller and consider the effects
of temperature changes. The output characteristics of PV cells were discussed, and according to the
effects of temperature, the universe control factors were proposed and designed. Compared to the fixed
universe of conventional fuzzy control, the new VUFLC-temperature MPPT method had a dynamically
adjusted control factor according to the temperature change value, which could improve the MPPT
tracking speed and accuracy. Different experiments were carried out. The simulation and experimental
results verified the effectiveness and advantages of the proposed VUFLC-temperature MPPT method.
Compared to the traditional methods, the proposed controller had a better tracking control performance
under environmental changes in photovoltaic power generation systems, especially with temperature
variations. The experimental results of the control system are basically consistent with the theoretical
calculations when the temperature condition changes. As shown in Figure 14, the theoretical calculation
and actual error is only 0.08 W. There is almost no power loss and control overshoot in Figure 16. It has
the largest power generation when the temperature changes in Table 5, which is about 4 W higher
than other control methods. The proposed control method not only improves the MPP tracking speed,
it has the fastest tracking speed in all comparison control algorithms under the same simulation and
experimental conditions, but also has higher tracking efficiency, which can improve tracking efficiency
by approximately 1%.
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