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Abstract: A depth estimation has been widely studied with the emergence of a Lytro camera.
However, skin depth estimation using a Lytro camera is too sensitive to the influence of illumination
due to its low image quality, and thus, when three-dimensional reconstruction is attempted, there are
limitations in that either the skin texture information is not properly expressed or considerable
numbers of errors occur in the reconstructed shape. To address these issues, we propose a method
that enhances the texture information and generates robust images unsusceptible to illumination
using a deep learning method, conditional generative adversarial networks (CGANs), in order to
estimate the depth of the skin surface more accurately. Because it is difficult to estimate the depth of
wrinkles with very few characteristics, we have built two cost volumes using the difference of the
pixel intensity and gradient, in two ways. Furthermore, we demonstrated that our method could
generate a skin depth map more precisely by preserving the skin texture effectively, as well as by
reducing the noise of the final depth map through the final depth-refinement step (CGAN guidance
image filtering) to converge into a haptic interface that is sensitive to the small surface noise.

Keywords: skin imaging; disparity estimation; haptic palpation; light-field camera; skin depth
estimation; CGANs; deep learning

1. Introduction

Because the monitoring of skin surface information, such as color, shape, texture, roughness,
and temperature, can be utilized importantly for medical diagnoses of skin lesions and tumors [1,2],
skin aging [3–5], and the development of cosmetics [6–8], its methods have been studied constantly in
the field of biomedical research [9]. Although methods to acquire various information of a skin surface
using cameras have been highlighted as a way to prevent the secondary infection of lesions, reliance on
only visual information based on acquired images is limited in the provision of sufficient information
to dermatologists and cosmetic professionals. Therefore, studies to take advantage of the combination
of visual information from images and tactile information from a haptic interface have continued [9–15].
For palpation based on haptic devices, precise three-dimensional (3D) surface reconstruction is required
through images acquired from cameras. However, although many studies have been conducted on
acquiring 3D information of the skin surface, as in the stereo system [14,16] and multiple-view
system [17], limitations have continued to exist in terms of cost and computational complexity in the
3D reconstruction of the skin surface composed of complex and delicate wrinkles. Overcoming such
limitations may be possible through the use of a single image sensor or the development of a highly
efficient and accurate 3D reconstruction algorithm.
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Recently, with the emergence of technology (the Lytro or plenoptic camera) to reconstruct images
with different foci after simultaneous recording of light in various directions using micro-lens arrays
with a single image sensor, studies on depth estimation or 3D reconstruction using this technology
have received attention. Most previous studies were aimed at depth estimation of synthetic data
or large and rigid objects or scenes, and subsequently proposed a matching-based method by
modifying stereo-image-based depth-computation methods to match micro-lens array images [18–23].
Other methods using focus and defocus cues obtained from the light-field camera in conjunction with
the matching cost [24,25], and using epipolar plane images (EPIs) [26–30], have also been continuously
proposed. Recently, learning-based methods have been proposed [31,32]. However, those studies
have focused on objects where the surface textures were not important; therefore, the methods
proposed therein were not suitable to extract depth information of delicate wrinkles on the skin surface.
Furthermore, the susceptibility to the influence of illumination is a more important point of emphasis
in the diagnosis of the skin surface, rather than the occlusion problem that has been intensively studied
thus far. Such illumination may cause the disappearance or distortion of texture information due
to high sensitivity. Because the light-sensitive low-quality skin image (Figure 1a) generated by the
Lytro camera is the greatest obstacle to the reconstruction of the accurate medical 3D surface texture
information, one might think that there should have been a significant number of studies on this topic.
However, surprisingly, not a single study related to this topic could be found.Electronics 2018, 7, x FOR PEER REVIEW  5 of 19 
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Figure 1. Brief results of 3D skin surface reconstruction from the state-of-the-art depth estimation
methods: (a) shows center view images taken with directional illumination; (b) represents the result
from [23]; (c) presents the result from [18]; (d) shows the estimated depth image obtained from [20];
(e) is result from [26].

In this study, a new algorithm to reconstruct the sophisticated 3D wrinkle information of the skin
surface is proposed using light-field skin images acquired from a single Lytro camera (1st generation).
The proposed algorithm primarily consists of two steps. In the first step, a deep learning method,
generative adversarial networks (GANs) [33], is used to transform a light-sensitive low-resolution
Lytro camera image into a robust image insensitive to light changes. At this step, the skin image,
acquired in various lighting conditions, is learned by the supervised deep learning network. Images
without directional lighting and skin images altered by directional lighting are used as skin image
sets for network learning, which generates robust skin images insensitive to changes in illumination.
This process creates skin images that can overcome the limitation of the Lytro camera (light-sensitive
low-quality images). In the second step, the precise skin depth is estimated using the robust skin
images generated in the first step. To do this, sub-aperture images are generated by the weighted sum
of the images from a GAN model and reflectance images from intrinsic decomposition [34]. In addition,
for the optimization to find the optimal disparity values, two cost volumes were designed with the
weighted sum of the sum of the absolute difference (SAD) and the sum of the squared difference
(SSD) of pixel intensity and gradient cues in two ways, which yielded improved results over existing
methods. In the final disparity-hole-filling step, the outcome that preserved the robust and detailed
texture unsusceptible to illumination was presented by utilizing the center image with enhanced skin
surface textures, free from the influence of lighting as a guidance image. The experimental results show
that our method was effective for skin images captured by a Lytro camera. For light-field images that
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were taken under diverse illumination conditions, our method outperformed state-of-the-art methods
in terms of depth estimation and showed the skin texture more clearly.

This article is composed as follows. Section 2 introduces previous studies on illumination
normalization and depth estimation related to this study, and Section 3 describes the illumination-
insensitive disparity computation from light-field skin images, as proposed in this study. Section 4
shows the experimental results that verified our proposed method in comparison with the best methods
previously published, and Section 5 presents the discussion and conclusion of this study.

2. Related Work

This study can be divided into, illumination normalization based on the deep learning method,
and depth estimation using micro-lens skin images acquired through the Lytro camera. This section
intensively focuses on the related works for each of these topics.

2.1. Illumination Normalization

It is absolutely necessary for the reduction of information distortion to correct the effects of
illumination in using camera-based skin images. Therefore, there have been many studies on
illumination in the past. In the logarithmic discrete cosine transform (LDCT) [35], low-frequency DCT
coefficients were removed in the logarithmic domain to reduce the illumination variation; however,
this could not solve the problems of shadowing and secularity completely. Study [36] proposed a robust
and simple pre-processing method insensitive to variation in lighting conditions (TT), which preserved
details and was computationally efficient in using gamma correction, difference-of-Gaussian (DoG)
filtering, masking, and contrast equalization. The corrected intensity distributions using regularized
energy minimization present a calibration program that does not need a reference image when
non-uniform illumination occurs in an image taken by a microscope (CIDRE) [37]. The new
program is a retrospective method, which controls the intensity distributions using the regularized
energy function. In [38], illumination transfer was used instead of albedo estimation to normalize
illumination, which reduced the element-wise illumination difference through the relighting algorithm.
The analytical skin-reflectance model (ASRM) of the hybrid bidirectional reflectance distribution
function (BRDF) was used. In [39], a facial image was divided into large-scale and small-scale through
logarithmic total variation (LTV), and illumination was normalized through correction on large-scale
components (CLC) in the large-scale spectrum where the illumination field was present. In addition,
recently, studies combining deep learning and illumination have been published. For example,
the study in [40] generated global illumination using Conditional Generative Adversarial Networks
(CGAN). However, it is considerably different from our study that requires illumination normalization
or illumination correction. Another example is illumination correction using deep learning to solve
the problems of difficult stereo reconstruction, image segmentation and visual instrument tracking
caused by specular highlights during endoscopic surgery [41]. More recently, deep cell segmentation
that was robust, even in uneven lighting, has been proposed in order to solve the problem of difficult
segmentation of cells on electron microscopy images due to illumination [42]. However, both studies
have limitations of inapplicability to medical skin images because they were not intended for general
images and also the equipment was not obtained from cameras. This study proposes a method to
reconstruct accurately the 3D skin surface details by recovering skin surface details weakened by
illumination through a deep learning technique, CGAN, in order to improve the quality of light
sensitive skin images of the low-resolution light field, which has never been studied before.
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2.2. Depth Estimation from Light-Field Images

The four-dimensional light-field representation allows the use of the multiple views of
sub-aperture images, and existing depth estimation algorithms are mainly divided into matching-based
methods and epipolar plane image (EPI)-based methods. In matching-based methods, the authors
of [18] proposed a method to apply the phase shift theorem to address an issue of the narrow baseline,
and built the cost volume through the sum of absolute difference and the sum of absolute gradient
difference. While this method has shown good depth estimation performance, it showed a substantial
loss of skin texture due to over-smoothing (Figure 1c). As an expansion of this, a method to construct
four different cost volumes via a learning method was also proposed [19]. A method utilizing the
commonly used zero-mean normalized cross correlation and census transform, in addition to the sum
of absolute differences and the sum of gradient differences used in [18], was proposed. However,
in the skin image, the two remaining data costs did not show improvement over the existing method.
More recently, a method to show better performance for the occlusion problem has been proposed by
introducing novel data costs such as constrained angular entropy and constrained adaptive defocus
cost [20]. However, this also either showed large errors in the texture, such as wrinkles in skin images,
or lost texture information (Figure 1d). In addition to the matching-based method, there have been
studies using defocus or refocus, features of the light-field camera. Representative studies used
the correspondence cue and defocus cue as data costs to estimate depth [21], and in [22], it was
extended to a method to utilize shading constraints as a regularization term, showing an accurate
depth estimation. However, although the additional use of the shading term showed good results in
refining the 3D shape, its performance was poor for real images, such as the skin image. Moreover,
a very long computation time was required. The study in [23] proposed a method to find the minimum
cost by dividing the angular patch into occluded and non-occluded regions on the basis of the
edge orientation information obtained through edge detection, and subsequently by applying the
defocus cue, correspondence, and refocus cue to each region. However, this method focused on single
occlusion and varied greatly in performance depending on how accurately the angular patch was
divided (Figure 1b). In addition, there has been a study to improve light-field triangulation and
stereo matching by applying the constrained Delaunay triangulation (CDT) and line-assisted graph
cut (LAGC) based on the geometry of 3D lines [24]. However, it did not present good results due
to the small disparity range. To address this issue, the authors of [25] proposed a multi-view stereo
model based on the robust principal component analysis matching term and low rank minimization,
and presented the results of applying it to light-field data, from which multi-view data could be
easily obtained. Furthermore, studies on depth estimation using EPI-based methods have also been
performed continuously. A recent representative method using EPI, introduced in [26], presented a way
to estimate the depth by estimating the orientation of the EPI lines. It defined the two regions on the
left and right of the EPI line, and subsequently estimated the depth through a spinning parallelogram
operator that measured the weighted histogram distances. However, this also did not perform well on
the skin image (Figure 1e). There has been a study in which the direction of the local line was obtained
using a structure tensor in the EPI domain and depth estimation was performed through global
optimization [27]. However, because the structure tensor depends on the high angular resolution,
the study had limitations unless the super resolution was not used in the light-field technology, where a
trade-off between angular resolution and spatial resolution existed [28]. Thus, there has been a study
that introduced a method that created high-spatio-angular-resolution images at multiple viewpoints
generated from a DSLR camera with movement and subsequently estimated the depth images from
them [29]. Reference [30] proposed a method that introduced a scale-depth space and then found
local extrema in such a space to display depth information. As described, methods using EPI are too
sensitive to occlusion and noise to apply to the real light-field data, and [26] introduced a method to
address this issue. Recently, there have been studies to estimate the depth map using deep learning
methods, such as convolutional neural networks (CNNs). A method proposed by [31] uses CNNs
for light-field images to estimate depth information. The proposed method learns an end-to-end
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mapping between the 4D light field and the corresponding depth field in its 2D hyperplane orientation.
The estimated depth field is then refined through a higher-order regularization method as the post
processing step. As the extended study of [31], the study [32] proposed a method effectively reducing
the computation time. In this study, we will compare the results from our method with those from the
state-of-the-art methods (EPI-based method [26], matching-based methods [18,20,23]).

3. Materials and Methods

Figure 2 shows the overall flowchart of the proposed method in this study. By decoding the
in-vivo raw light-field lenslet image acquired from the Lytro camera, an array of sub-aperture image
sets can be obtained. We apply intrinsic decomposition to an image, which is generated by correcting
the lens distortion, to obtain the reflectance image. At the same time, based on a trained CGAN
model, we generate an illumination-insensitive and texture-enhanced image. The two images are then
combined to create a set of refined sub-aperture images and disparity computation is performed. Then,
we build a final cost volume which consist of a weighted sum of two cost volumes. One cost volume is
composed of the weighted sum of the sum of absolute difference of intensity differences and the sum
of squared difference of gradient differences. The other data cost volume includes the weighted sum
of the sum of squared difference of intensity differences and the sum of squared difference of gradient
differences. This leads to derive the improved results of describing skin texture and shape on a 3D
scale. In addition, the refined image is used as a guided image for refinement, which is used for a
haptic palpation interface with a haptic device.
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3.1. Conditional Generative Adversarial Network (CGAN)-Based Illumination Insensitive and Texture
Enhancemed Image Generation

3.1.1. Generative Adversarial Networks (GANs)

The GANs are composed of two models, a generative model G and a discriminative model D,
aiming to gradually improve performance through the mutual adversarial networks. The generative
model G tries to imitate data distribution (Pdata) as much as possible, thereby trying to generate
an image that cannot be distinguished from the image obtained from the training data. In contrast,
the discriminator model D seeks to distinguish between the two. The discriminator model tries to
reduce the probability of errors in the distinction between generated image and training data, and the
generative model G tries to increase the probability that a discriminator model D makes a mistake.
Therefore, this concept is similar to solving the minimax problem for the value function V(D, G)

described in Equation (1) [33].

min
G

max
D

V(D, G) = Ex∼Pdata(x)[log D(x)] + Ez∼Pz(z)[log(1− D(G(z)))] (1)

In the above equation, x~Pdata(x) means the data sampled from the probability distribution of
the real data, and z~Pz(z) represents the data sampled from the Gaussian distribution of random noise.
Here, z is also called a latent vector, which represents a vector in latent space that can explain the data
well with reduced dimensions. D(x) indicates a discriminator and D(x) = 1 if the data comes from
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the real data distribution, and D(x) = 0 if data comes from the generator. The discriminator D(G(z))
in the second term has a value 1 if the data generated from G is judged to be genuine and 0 if it is
judged to be false. From the viewpoint that the discriminator D maximizes the value function V(D, G),
the first term log D(x) and the second term log(1− D(G(z))) of the right side should be maximized
in order to maximize the above equation. Thus, D(x) = 1, which means learning D to classify the
real data as real. Likewise, because (1− D(G(z))) = 1, D(G(z)) must be 0. This means learning
discriminator D to classify the fake data generated by generator G as fake. Next, from the viewpoint
that the generator G minimizes the value function V(D, G), log(1− D(G(z))) should be minimized
because the first term of the right side does not include G, so it is omitted from the generator. Therefore,
D(G(z)) should be 1 because log(1− D(G(z))) is minimized when (1− D(G(z))) = 0. This means
that generator G is trained enough to generate fake data that is truly complete enough to be classified
as real. In this way, the discriminator D is taught to maximize the value function V(D, G), and the
generator is taught to minimize V(D, G).

3.1.2. Conditional Generative Adversarial Networks (CGANs)

Figure 3 shows the overall architecture of CGANs used in this study. The difference between
CGANs and the existing GANs is that the existing GANs have one input value for each of D and
G, but in CGANs, two inputs in each of D and G are used to make the output image closer to
our intent. For CGANs, generative model G learns to generate specific fake samples with specific
conditions or characteristics, rather than generic fake samples of unknown noise distributions used in
GANs. We would like to perform specific sampling after matching any condition together with noise.
An example of a specific condition or characteristic can be a label or tag associated with an image.
These specific conditions or characteristics y are included in the generative model G and discriminative
model D of value function V(D, G), respectively, which can be summarized as Equation (2) [44].

min
G

max
D

V(D, G) = Ex∼Pdata(x)[log D(x|y)] + Ez∼Pz(z)[log(1− D(G(z|y)))] (2)

We utilize the conditional GAN model to generate an image with enhanced texture and insensitive
to various illumination conditions. Therefore, a set of sub-aperture images acquired through deep
learning is free from the influence of illumination and has enhanced texture information, which makes
it suitable for estimating skin depth. Figure 4a,c shows the image with illumination, and Figure 4b,d
shows the images obtained through our CGAN model.
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Figure 4. The original images taken from a Lytro camera with directional illumination and
corresponding output images obtained from CGAN model: (a,c) show the center images of Lytro
camera images taken under directional illumination; (b,d) represent the output images obtained from
our CGAN model.

3.2. Intrinsic Image Decomposition

The observed images can be expressed by a multiplication of reflectance term (R and illumination
term (L) by a simplified physical model of light reflectance model [45]. Reflectance R has a value
in (0, 1) (Figure 5c) and illumination L has a value in (0, ∞) (Figure 5b). Therefore, if the image
including illumination is S (Figure 5a), S = R× L, and all images satisfy S ≤ L, it is also possible to
separate illumination term and reflectance term through an objective function. To this end, the directly
estimated reflectance image is generally too smooth or loses a lot of edge and texture detail. Therefore,
we separate illumination and reflectance through a logarithmic transformation R = exp(log S− log L),
rather than directly estimating. The objective function for this separation is same as in Equation (3).

E(r, l) = ‖l + r− s‖2
2 + λ1‖∇l‖2

2 + λ2‖∇r‖1, (3)

where l = log L, r = log R, s = log S, r ≤ 0, and S ≤ 1. In this study, the Lytro camera skin image
is divided into reflectance and illumination term using intrinsic image decomposition method based
on the weighted variational model [34]. Among these, the reflectance image without the illumination
effect is fused with the image generated by the CGAN model, which reduces the noise generated by
the CGAN model and emphasizes the wrinkles of the skin surface more clearly (Figure 5d). Then,
we calculate the disparity of the skin surface using the combined images.
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Figure 5. The decomposed images acquired by applying intrinsic decomposition method proposed
by [35]: (a) shows original center images with directional illumination; (b,c) represent illumination
image and reflectance image, respectively; (d) is the final refined results acquired by merging the
output from CGAN model and the reflectance image.

3.3. Decoding and Distortion Correction of Lytro Images

A micro-lens array (MLA) is placed in front of the photo sensor in the Lytro camera, and then,
the intensity information of the lights passing through the main lens of the camera among the lights
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coming from one point of the object in 3D space is separated by direction and collected (Figure 6b).
We can obtain both the spatial resolution x, y and angular resolution u, v information of 4D light fields
L(u, v, x, y) through the micro-lens characteristic of this light-field camera. The spatial resolution
depends on the number of micro-lenses, and the angular resolution depends on the pixel number
of each micro-lens in each photo sensor (Figure 6c). Therefore, the light-field camera captures the
intensity of each direction of the ray when compared to traditional digital cameras that capture the
integrated intensity of a pixel. Thus, pixels with a certain angle of incidence are stored in the same
image, which becomes a single viewpoint (Figure 6d) [46]. Sub-aperture images of multiple viewpoints
can be created by reordering the values at the same pixel position in each micro-lens image (i.e., lenslet
image) (Figure 6e). This process is called a decoding process and is caused by the characteristics of a
light-field camera. We apply the simple decoding algorithm presented in [47] to generate sub-aperture
images, so we briefly explain the overall decoding process. The decoding process first restores the
RGB values by demosaicing the raw Bayer-pattern image, and then corrects the vignetting effect,
which indicates the degraded brightness near the edges of the images, through the white image
selected according to focus and zoom. Although the lenslet array is located in front of the image
sensor, it is not aligned well with the pixel of the image sensor because of the hexagonal lenslet grid
resulting from the non-integer spacing, unknown translation, and rotational offsets of the lenslet. Thus,
through the resampling process of rotating and scaling the lenslet images, the lenslet centers can be
located in pixel centers (alignment process) and the hexagonally sampled data is transformed into an
orthogonal grid through the interpolation method.Electronics 2018, 7, x FOR PEER REVIEW  9 of 19 
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Figure 6. The overall process for obtaining multiple sub-aperture images from a Lytro camera: (a) is
the original raw lenslet image; (b) shows micro-lens array structures; (c) simple process of recording
light in each direction on an image sensor through micro-lens array; (d) represents pixel reordering
process to generate a single view image from the image sensor; (e) is the obtained sub-aperture images.

Optical distortion occurs due to the ray entering the main lens (thin lens model) and the
micro-lenses (pinhole camera model). The rays of large angular differences from the optical axis
have a distortion called astigmatism [48]. Rays that do not pass through the center of the main lens
do not well fit to the pinhole camera model (field curvature [48]). Therefore, conventional distortion
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models based on the pinhole camera model have limitations in distortion correction. To solve this
distortion problem, we apply simple minimization in [18] as described in Equation (4).

ĝ = argmin
g

∑p|∆(I(p))− ∆o − g(p)|, (4)

where ∆ indicates the slope of EPI with distortion, ∆o indicates the slope of EPI without distortion,
and g(p) indicates the amount of distortion at point p. We measure the EPI slopes of the sub-aperture
images obtained from a captured planar checkerboard. The difference ∆(I(p))− ∆o) is calculated
by comparison with the EPI slope without distortion ∆o. The field curvature ĝ can be estimated by
Equation (3). By rotating the EPI slope by ĝ, a distortion-corrected image can be obtained. Furthermore,
to solve astigmatism, the field curvature is calculated twice in the horizontal and vertical directions.

3.4. Disparity Estimation and Refinement

Stereo matching has been a major research topic in the field of computer vision, and various
methods have been proposed. Classically, stereo matching searches the feature matching between
a rectified pair of images. This step is usually called matching cost computation, and disparity
information of the two images can be obtained under an epipolar constraint. Typically, stereo
algorithms consist of a matching cost computation step, cost-aggregation step, disparity-computation
step, and disparity-refinement step. It is further divided into a local algorithm and a global algorithm
that utilize a window-based matching-cost function. The local algorithms estimate the depth map
through the matching cost based on the intensity difference in the local support window and include a
smoothness constraint in the cost-aggregation step. Here we include the assumption that all pixels
in the same window have similar disparities, which can be broken down by large discontinuities.
On the other hand, the global algorithm finds the optimal disparity by optimizing the energy function
consisting of the data cost term including the matching cost term and the smoothness term considering
the discontinuity between neighboring pixels (see [49] for details).

However, unlike the general disparity estimation described above, the images of the multiple
viewpoints obtained from a light-field camera have difficulty in disparity estimation due to the very
narrow baseline. To overcome this narrow baseline, we used the phase shift method of Equation (5)
proposed in [18]. The image shifted by ∆x in the spatial domain can be obtained by phase shifting each
sub-aperture image in the frequency domain through the Fourier transform.

F{I(x + ∆x)} = F {I(x)}exp2πi∆x

I′(x) = I(x + ∆x) = F−1 {F{I(x)}exp2πi∆x (5)

3.4.1. Initial Depth Estimation

Unlike many of the disparity computation methods for object scenes that have been studied so far,
in a skin scene for haptic palpation, texture information such as wrinkles should be well-preserved in a
disparity map (In this paper, disparity map and depth map have same meaning and we use alternately)
while reducing noise. To compute the matching cost, the intensity and gradient difference between the
reference image and the target sub-aperture image are used, and the angular difference information
is reflected in the sub-pixel shift term because it is not on the same baseline. In building each cost
volume, we used two data costs (SAD, SSD) for the intensity and gradient cues. The first cost volume
consists of the SAD for the intensity difference and the sum of the gradient squared difference (SGSD)
for the gradient difference, as in Equation (6). Each is defined as Equations (7) and (8), respectively.

Cµ1(l, d) =
(
1− αµ1

)
× CSAD(l, d) + αµ1 × CSGSD(l, d), (6)

CSAD(l, d) = ∑s∈S ∑l∈Wl
min(|I(sc, l)− I(s, l + ∆l)||, τ1), (7)
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where αµ1 ∈ [0, 1] denotes the weight for adding each term and S denotes a set of sub-aperture images
except for a sub-aperture image of center view (i.e., sc). Wl means the window whose center pixel
location is l. The parameters τ1 and τ2 are truncation values for eliminating outliers. Also, ∆l is the
term that make sub-pixel shifts according to the unit of the labels in pixels (κµ1) and the degree of
angular difference (sc − s) and defined as ∆l = d× κµ1 × (sc − s), where d is the disparity label.

CSGSD(l, d) = ∑s∈S ∑l∈Wl

[
λ×min(SDi f fx(sc, s, l, d), τ2) + (1− λ)×min

(
SDi f fy(sc, s, l, d), τ2

)]
, (8)

where SDi f fx(sc, s, l, d) represents the squared difference of the gradient in the x direction between
the reference image (i.e., center view sub-aperture image) and the target sub-aperture image and
SDi f fy(sc, s, , l, d) represents the squared difference of the gradient in the y direction. This can be
defined as SDi f fx(sc, s, p, d), τ2) = (∇Ix(sc, p)−∇Ix(s, p + ∆l))2. τ2 plays the same role as in CSAD.
λ represents the gradient difference according to the relative position of the target sub-aperture image
and reference image, which is a necessary parameter because the target sub-aperture image has angular
difference in both the x and y directions from the reference image (αµ1 = 0.5, d = 25).

In the second cost volume computation, two preprocessing methods are added. First, we use the
hue, saturation, and value (HSV) color space and bilateral filter to remove noise while preserving the
shape. After the images are converted into the HSV color space, the V channel of image is extracted.
Next, a bilateral filter is used to remove noise and preserve the shape information, and then the cost
volume is built based on the processed image. We use the weighted sum of the SSD for the intensity
difference and SGSD for the gradient difference, as shown in Equation (9). The SSD is described in
Equation (10) and SGSD is equal to Equation (8).

Cµ2(l, d) =
(
1− αµ2

)
× CSSD(l, d) + αµ2 × CSGSD(l, d), (9)

CSSD(l, d) = ∑s∈S ∑l∈Wl
min((I(sc, l)− I(s, l + ∆l))2|, τ1), (10)

where αµ2 ∈ [0, 1], a cost volume Cµ2(l, d) is constructed by weighting each cost term
(αloc = 0.8, d = 25).

Cµ(l, d) =
(
1− αµ

)
× Cµ1 + αµ × Cµ2, (11)

Both cost volumes have the advantage that Cµ1 represents local texture precisely such as wrinkle,
and Cµ2 preserves the overall shape and produces noise-robust results. By combining two cost volumes
as described in Equation (11) in building the final cost volume, more accurate disparity map can be
estimated. Then, we utilize the reference image as a guided image to perform refinement process
for each cost slice through filtering for edge-aware smoothing and detail enhancement [50]. Finally,
we apply global optimization using graph cuts from [51] to estimate the initial depth map where the
energy function in Equation (12) is minimized.

E(d) = ∑l C(l, d(l)) + λ1 ∑l∈ζ
‖d(l)− da

(
l′
)
‖+ λ2 ∑l′∈Nl

‖d(l)− d
(
l′
)
‖, (12)

where ζ contains the inlier pixels determined by building the cost volume and filtering each cost
slice. The first data term (C(l, d(l)) represents the matching cost, the second data term (‖d(l)− da(l′)‖)
represents the data fidelity, and the third data term (‖d(l)− d(l′)‖) represents smoothness.

3.4.2. Disparity Refinement

Most of the methods up to now have performed a refinement process to remove noise by
smoothing using filtering. For this purpose, large window size has been used and there was a
serious drawback that detail texture disappears. This results in loss of texture information such
as wrinkles in the skin image. In this study, we propose a hole-filling method that simultaneously
preserves texture information and eliminates noise. The reference image is used as a guided image to
reduce the noise of the calculated disparity map and preserve the texture information. At this time,
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in order to emphasize texture information, reference image is enhanced by using guided filter [52].
Next, we utilize the adaptive threshold for each local window in the reference image to create a binary
image containing the texture information [53]. In the obtained binary image, the pixel indexes without
texture information are stored, and the corresponding indexes are searched in the disparity map.
A window around each index is generated, and the average value of the window is compared with the
pixel value of the corresponding index. If the value is smaller, it is regarded as noise rather than texture.
Here, we use a small window size (window size = 2) to reduce the effect of smoothing. The results are
shown in the Figure 7b,d which are refined from Figure 7a,c, respectively.
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Figure 7. Results from the proposed hole-filling method: (a,c) show initial local disparity maps;
(b,d) show refined local disparity maps obtained from hole-filling.

4. Results

In order to verify the proposed method proposed, evaluation experiments were designed with
three steps. First, we show that the CGAN model can accurately generate an illumination insensitive
skin image without losing information contained in the original image through quantitative and
qualitative comparison. Second, we show that our method can provide promising skin depth map
under natural illumination compared to other state-of-the-art methods, and finally, we confirm through
qualitative comparison that our method can estimate the depth map robustly even under the influence
of illumination. Because the existing real or synthetic light-field datasets [54] are all based on objects or
scenes, and because there is no dataset for the skin image, in this study, we generated the skin images
captured from the Lytro camera (1st generation). We used the Intel i7 4.00 GHZ CPU, NVIDIA GeForce
GTX 1060 3 GB, and 32 GB RAM. Figure 8a shows a digital microscope system for imaging the training
set. Figure 8b shows the experimental environment in which a light-field image is taken for testing.Electronics 2018, 7, x FOR PEER REVIEW  12 of 19 
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Figure 8. Experimental setup: (a) setup of training image acquisition; (b) setup for capturing test
images from a Lytro camera with various illumination conditions.
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4.1. CGAN-Based Illumination Insensitive Image Generation

To evaluate our proposed method, skin images for training and testing were taken using a digital
microscope system (KOB-240N(Toolis, Daegu, Korea), 5 mega pixels, 30 fps, zoom ×0~×30) and a
digital light meter (TASI-8720(TASI, Suzhou, China), 1~200,000 lx) used for quantitatively measuring
light intensity on the real skin. In the experiments, 320 real skin images were taken with the digital
microscope system from five people and 250 images of them were used for training for CGAN, and the
rest 70 images were tested for evaluation. It took a total of 16.7 h to training 250 skin images (1000 times
in total). Because the CGAN is well fitted to generate images depend on the direction we want, we used
a microscope image as a training set to make skin images insensitive to illumination and to enhance
texture such as wrinkles. After testing with a test set consisting of a microscope image, light-field skin
image sets were used as a test set. Because in real environment it is hard to obtain the ground truth,
the reference image is taken in an environment where there is little influence of lighting. We compared
the results of our method with the results of TT [36], CIDRE [37], Shen [55] and Zuiderveld [56] through
the Peak signal-to-noise ratio (PSNR), mean squared error (MSE), and structure similarity index
(SSIM) [57] to quantitatively assessed generated image quality. We also showed that our method can
generate the illumination insensitive and texture enhanced image through the qualitative comparison
with the images generated from other methods as depicted in Figure 9. The images from the first to
fourth rows of Figure 9a were taken with directional illumination when the shooting environment
was somewhat dark, and from the fifth row to seventh row of Figure 9a, the images were taken with
directional illumination when the shooting condition was bright. The images of Figure 9a,b are the
original input images and the reference (no illumination) images, and the rest images (Figure 9c–g)
are resulting images obtained from [36,37,55,56], and our method, respectively. We experimented
with various illumination conditions, and the results generated from our method are less sensitive to
illumination and have enhanced texture information such as wrinkles. Table 1 shows the quantitative
comparison result of our proposed method with other methods. It is indicated that acquired image is
closer to a reference image when SSIM is closer to 1, PSNR is higher, and MSE, which is most important
to compute accurate disparity maps (geometric surface information), is lower. Therefore, the result
demonstrates that our method outperforms other methods in terms of geometrically restoring images
degraded by directional lighting conditions.

Table 1. Quantitative comparison results.

Metrics
TT [36] CIDRE [37] Shen [55] Zuiderveld [56] Our method

SSIM PSNR MSE SSIM PSNR MSE SSIM PSNR MSE SSIM PSNR MSE SSIM PSNR MSE

1 0.74 17.39 1184.7 0.83 20.63 562.5 0.82 11.10 5052.1 0.84 11.42 4690.1 0.85 21.03 512.4
2 0.76 17.92 1049.5 0.77 19.21 780.5 0.85 13.10 3183.6 0.85 13.95 2616.5 0.82 24.34 239.2
3 0.73 17.68 1108.8 0.76 18.71 875.7 0.85 15.06 2030.0 0.84 16.08 1605.1 0.84 23.05 321.8
4 0.75 17.69 1106.4 0.78 18.79 859.9 0.88 14.92 2095.7 0.85 15.04 2035.2 0.86 23.91 265.1
5 0.73 15.24 1943.9 0.75 13.66 2800.8 0.84 17.43 1173.8 0.82 17.54 1146.7 0.77 20.77 544.3
6 0.74 15.52 1824.8 0.79 14.71 2198.0 0.86 19.21 779.5 0.86 18.41 937.9 0.81 22.14 397.4
7 0.79 17.21 1237.2 0.85 16.56 1435.3 0.92 19.79 682.8 0.91 17.13 1259.1 0.87 20.78 543.2
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4.2. Disparity Map Estimation Using Light-Field Images under Natural Illumination

Section 4.1 shows that the proposed model can generate an insensitive image to various directional
illumination. Section 4.2 shows the superiority of depth map estimated from the images generated
from our CGAN model under natural illumination through comparing with other state-of-the-art
matching-based methods [18,20,23] and EPI-based method [26] method. First, we confirm the role of
the CGAN model by showing how the images obtained through the CGAN model affect the disparity
estimation in the absence of the illumination condition. In Figure 10, we used the images captured
under natural illumination (Figure 10a) and we compared the disparity map estimated from the images
generated by our CGAN model (Figure 10b,g) with the state-of-the-art depth estimation algorithms.
From the third column to sixth column show the depth maps estimated by the method [18,20,23,26],
respectively and the last column shows the depth estimation results from our method. As can be seen
from the depth estimation results derived from other methods, it is difficult to express the texture
information of the skin image finely using the existing method, and there are many depth errors
such that the parts which should be expressed at a high level were expressed low. Thus, even under
conditions with natural illumination, other methods are shown to be vulnerable to depth estimation
for the skin images. On the other hand, although the method proposed in this study contains some
noise, it is superior to other methods in terms of preserving texture information finely and showing
overall skin depth accurately.
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4.3. Disparity Map Estimation Using Light-Field Images under Controlled Illumination

Section 4.3 shows the effect of lighting conditions on depth estimation, and we will verify that
the proposed method can estimate the depth map robustly even with such illumination. In Figure 11,
the first column shows the skin images captured under various illumination conditions (Figure 11a),
the second column represents the skin images generated from our deep learning model (Figure 11b).
Here, we can see that the skin images obtained through the CGAN model are free from the influence
of illumination, and the texture information in the skin images is enhanced. From the third column
to the sixth column, the depth maps obtained from the state-of-the-art depth estimation methods,
which are listed in the same order as in Figure 10, are shown and it can be clearly seen that the
lighting has a negative influence on the depth estimation. In the results from the most recent
algorithm proposed by [20], texture information is somewhat visible, but the part affected by lighting
is distorted (Figure 11f). In addition, the results obtained from [18] show that lighting can have fatal
effect on depth estimation, and the resulting depth information is not well represented (Figure 11d).
Although blurred texture information remains in the results derived from the method based on EPI [26],
there is a limitation in providing the overall depth information and it is not well expressed as seen
in Figure 11e. In Figure 11c, the texture information is hardly visible and there seems to be a large
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limitation in providing 3D information. In contrast, the proposed method estimates the depth map
with well-represented texture information against various illumination conditions (Figure 11g).
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5. Discussion

Most of depth estimation algorithms proposed in the light-field to date have been focused on
well-made synthetic data, or our everyday objects or real scenes. Subsequently, to be used for the
medical purpose as a skin diagnostic tool, they had limitations that they could not express complex
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features such as skin texture well and might be affected easily by such a factor as illumination.
To overcome such limitations, in this study, we suggested a method that was insensitive to illumination
and at the same time, enhanced the texture based on a deep learning method, CGAN. This method led
to a robust algorithm that reduced noise and preserved textures through the hole-filling method using
enhanced guided image and the final cost volume. Thus, this study presented a new approach using a
light-field camera, and subsequently intended to suggest a possibility of development in this direction
as the first attempt.

In Table 1, it was quantitatively demonstrated that the proposed CGAN model did not damage
the source image, which is shown by PSNR and SSIM, and at the same time, could generate images
that were insensitive to illumination and reproduced skin textures faithfully as the source of 3D
geometric surface, which is proven by MSE. Experiments conducted with images taken under various
lighting conditions demonstrate that our proposed method shows improvements in PSNR by 31.71%,
29.59%, 46.87%, and, 45.85% (increase) and MSE by 69.61%, 62.19%, 68.13% and, 73.41% (decrease)
over existing methods TT and CIDRE, Shen, and Zuiderveld respectively, and yielded highly stable
and superior outcomes (SSIM avg. 0.83, std. dev. 0.03, PSNR avg. 22.29, std. dev. 1.39). As seen in
Figure 9c, images obtained from TT are too dark and include errors (undesired white vertical lines)
which results in inaccurate depth estimation. Images from CIDRE, Shen, and Zuiderveld show no
improvement in removing or normalizing illumination, which causes in general severe geometric
errors in disparity computation. This shows that learning via networks enables our method to improve
the image quality of the skin texture highly adaptively to illumination compared to existing methods
that do not involve. However, despite learning via networks, if illumination is too strong to identify
wrinkles on the skin surface, original wrinkle structure cannot be reconstructed. Because this can be
improved by learning of an algorithm that predicts disappearing wrinkles accurately based on residual
skin wrinkles together on networks, it will be addressed in our ongoing further study.

In Figure 10, a qualitative comparison shows that our method can perform a better disparity
estimation under natural illumination compared to state-of-the-art methods. It can be seen that the
disparity map generated by our method in Figure 10g preserves the texture information well while
the best map produced by existing methods in Figure 10f does not. Moreover, the fourth and sixth
rows in Figure 10f show an error that the skin depth of the upper surface of a finger is expressed lower.
An EPI-based depth estimation method also yields unsatisfactory outcomes as shown in Figure 10e.
Figure 10d shows that [18] using a weighted median filter after disparity map estimation through
global optimization cannot preserve skin textures well in the disparity maps. This shows that over
smoothing has occurred in the process of the reduction of noise generated in computation of the depth
map. This type of methods only relying on smoothing to reduce noise lead to errors in expression of
the texture depth on the skin surface.

Figure 11 shows the results obtained from existing methods and our method under the conditions
with illumination. Basically, illumination causes distortions in information that are applicable as
various data costs such as pixels and gradients in the image. Therefore, as distorted information is
reflected in computation of disparity using difference information between images, disparity map
obtained from this is inaccurate, which may in turn cause problems when haptic palpation utilizing it
is used for skin diagnosis. In Figure 11, the disparity map obtained from images (Figure 11a) under
the influence of illumination shows a large distortion in Figure 11d,f. Representatively, the images in
the first, second and third rows of Figure 11 show the influence of lighting visible in the low depth
expression of the areas where the lighting is present in the results obtained in [18,20] (Figure 11d,f).
These are typical problems observed in matching-based methods to estimate a sophisticated disparity
map, and it can be seen that the influence is relatively small in EPI-based methods (Figure 11e).
However, this latter method has a limitation in expressing the texture and shows very little overall
depth information of the finger. In addition, it can be seen that in [20], which shows good outcomes
for objects, abnormal results are observed in overall skin depth expression caused by disparity noise.
Thus, it is essential to remove noise from the outcome of initial depth estimation and fill it with the
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correct depth information. Our method utilizes two cost volumes to reduce noise while preserving
skin texture information accurately.

However, the problem of how precisely the skin depth can be expressed in the initial step is still
very difficult to address, and the precise reconstruction of the depth without using simple smoothing
in refinement step is another problem to be solved in the future. This study focused on how faithfully
the skin texture information can be expressed in using a light-field camera for the medical purpose
such as skin diagnosis, and how robustly a disparity map can be estimated for the lighting that can
easily affect skin photography, and suggested a possibility of future development in a new direction.
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